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Abstract

Analyzing dynamics on graphs leads to some of the most important
tools and invariants in complex networks. In this talk we present an
algebraic method for extending these techniques to multiplex
networks, in terms of an operator that connects the endogenous and
exogenous dynamics on the graph. As a case study, we present a
multiplex analysis of the World Trade Web using our operator.
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World Trade Web

Figure : Visual Realizations of the 2000 WTW
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Commodity Definitions

Layer Description Volume % Total Transitivity

0 Food and live animals 291554437 5.1 .82
1 Beverages and tobacco 48046852 0.9 .67
2 Crude materials 188946835 3.3 .79
3 Mineral fuels 565811660 10.0 .62
4 Animal and vegetable oils 14578671 0.3 .64
5 Chemicals 535703156 9.5 .83
6 Manufactured Goods 790582194 13.9 .87
7 Machinery 2387828874 42.1 .85
8 Miscellaneous manufacturing 736642890 13.0 .83
9 Other commodities 107685024 1.9 .56
All Aggregate Trade 5667380593 100 .93

Table : Commodity information for the WTW
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Layer Metrics

Density Reciprocity

Path Length Clustering

Figure : Comparisons of standard network metrics between the aggregate WTW and the
individual commodity networks
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Degree Distributions

Aggregate Unweighted Layer 1 Unweighted

Layer 2 Weighted Layer 5 Weighted

Figure : Representative Degree Distributions
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Multiplex Definition

Definition

A multiplex is a collection of graphs all defined on the same node set.

The motivations for studying these objects are mostly practical:

• Trade networks

• Social networks

• Neural networks

• Anonymity networks
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Toy Multiplex

(a) Layer 1 (b) Layer 2 (c) Multiplex
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Spectral Methods

Spectral Graph Theory

Spectral graph theory studies invariants of graphs using the spectral
structure of associated matrices.

Process:

• Structural Representation



Multiplex Dynamics

Spectral Methods

Adjacency Matrix

A =



0 0 0 1 0 0 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 0 0 0
1 1 1 0 1 1 1 0
0 1 1 1 0 1 0 1
0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1
0 1 0 0 1 0 1 0


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Spectral Methods

Laplacian

L =



5 0 0 −1 −1 −1 −1 −1
0 2 0 −1 −1 0 0 0
0 0 1 −1 0 0 0 0
−1 −1 −1 6 −1 −1 −1 0
−1 −1 0 −1 5 −1 0 −1
−1 0 0 −1 −1 5 −1 −1
−1 0 0 −1 0 −1 3 0
−1 0 0 0 −1 −1 0 3


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Spectral Graph Theory

Spectral graph theory studies invariants of graphs using the spectral
structure of associated matrices.

Process:

• Structural Representation

• Dynamical Interpretation
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Dynamics on Networks

These representative structural matrices have dynamical interpretations
as well:

• Adjacency Matrix
• vi =

∑
i∼j vj =

∑
j Ai,jvj

• Flows across edges
• Normalized (AD−1) leads to random walks

• Laplacian
• Heat flow
• Isoperimetric clustering

• Random walks AD−1 = D− 1
2 (I −D− 1

2LD− 1
2 )D

1
2
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Spectral Methods

Spectral Graph Theory

Spectral graph theory studies invariants of graphs using the spectral
structure of associated matrices.

Process:

• Structural Representation

• Dynamical Interpretation

• Spectral Analysis
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Spectral Methods

Clustering

Figure : 2-out subgraph of the Manufactured Goods trade network
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Clustering

Figure : 2-out subgraph of the Other Commodities trade network
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Multiplex Dynamics

Figure : Aggregate World Trade Web
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Motivation

Many of these structures have intrinsic dynamics that distinguish
between connections between distinct nodes and connections between
copies of the same node. Early approaches to studying graph problems in
this context tried to address this problem from a structural perspective1

(summing matrices or adding edges between copies). These approaches
tend to distort the metrics of interest by conflating the intra and inter
relationships.

1 S. Gomez, A. Diaz-Guilera, J. Gomez-Gardenes,
C.J. Perez-Vicente, Y. Moreno, and A. Arenas:
Diffusion Dynamics on Multiplex Networks, Physical
Review Letters, 110, (2013).
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Algebraic Approach

Instead of trying to add new structural components we connect the
dynamics using a collection of scaled orthogonal projections. To each
node, we associate a projection operator Pn that gathers the information
stored at each node and proportionally redistributes it among the copies.
This allows us to respect the independence of the endogenous dynamics.
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Linear Case

In this linear case this is particularly convenient. Given a collection of
operators Di on our layers, this is equivalent to constructing the new
operator:

M =


α1,1C1D1 α1,2C1D2 · · · α1,kC1Dk

α2,1C2D1 α2,2C2D2 · · · α2,kC2Dk

...
...

...
...

αk,1CkD1 αk,2CkD2 · · · αk,kCkDk



where the Ci = diag(ci,1, ci,2 . . . , ci,`) represent the coefficients for the
node projections with the condition that

∑
j ci,j = 1 for all i.
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Preserved Properties

The types of questions we are interested in depend on the initial
properties of the dynamics, like positive definiteness or stochasticity. In
order to interpret the results about our operator it must share these
properties.

Theorem (Condensed)

If the original dynamics are
{Irreducible, Primitive, Stochastic, Positive(negative) (semi–)Definite}
then M is
{Irreducible, Primitive, Stochastic, Positive(negative) (semi–)Definite}.
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Laplacian Bounds

Theorem

If the flows between layers are equidistributed and the individual
dynamics are the associated network Laplacians we have the following
eigenvalue bounds:

• Fiedler Value: maxi(λ
i
f ) ≤ λf ≤ mini(λ

i
1) +

∑
j 6=` λ

j
f ,

• Leading Value: mini(λ
i
1) ≤ λ1 ≤

∑
i λ

i
1,

• Synchronization Stability:
mini(λ

i
1)

mini(λi
1)+

∑
j 6=` λ

j
f

≤ Gss ≤
∑

i λ
i
1

maxi(λi
f )
.
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Centrality
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Multiplex Centrality

Equal In Strength Out Strength Layer Strength
Rank Layer Country Layer Country Layer Country Layer Country

1 All USA 7 Japan 7 USA 7 USA
2 All Canada 7 USA 7 Canada 7 Japan
3 All Japan 7 Mexico 7 Mexico 7 Canada
4 All China 7 Canada 7 Japan 7 Mexico
5 All Mexico 7 Germany 7 China 7 China
6 All Germany 8 China 3 Japan 7 Germany
7 All UK 7 S. Korea 7 Germany 6 USA
8 All France 7 China 8 USA 8 USA
9 All S. Korea 7 Laos 8 Japan 6 Japan
10 All Italy 8 USA 7 Laos 7 S. Korea

Table : Multiplex Centrality Leaders
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Community Detection
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Conclusions

• The aggregate WTW is not very representative of the underlying
economic structure

• Better information about the WTW can be obtained by viewing it as
a multiplex of directed networks

• Our multiplex operator allows these structures to be analyzed using
standard network theoretic tools as well as providing a general
framework for multiplex analysis
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That’s all...

Thank You!
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