2015 STATE SOLUTIONS

CROSSROADS ACADEMY MATHCOUNTS PREPARATION

1. Problem 26

Problem. Each of the 25 cells in a five-by-five grid of squares is filled with a 0, 1, or 2 in such a way that the numbers written in neighboring cells differ from the number on that cell by 1. Two cells are considered neighbors if they share a side. How many different arrangements are possible?

Solution 1. The key idea here is that if any square contains a 0 or 2 then all of its neighboring squares must be 1's. Imagine coloring the board like a chessboard with the upper right square black: the previous sentence means that either all of the white squares or all of the black squares must be ones. For each of the non 1 squares we have two choices that are entirely independent so we can count them all at once. If the black squares have ones then there are $2^{12} = 4096$ ways to fill in the white squares with either 0's or 2's. If the white squares have ones then there are $2^{13} = 8192$ ways to fill in the black squares with 0's or 2's. Summing these gives the answer: 4096 + 8192 = 12,288.

2. Problem 30

Problem. How many ways are there to arrange the digits 1 through 9 in a 3×3 grid, such that the numbers are increasing from left to right in each row and increasing top to bottom in each column?

Solution 2. This type of problem – filling in a grid with increasing integers in both directions – is known as a standard young tableaux. These are incredibly useful objects that have applications all over mathematics. The number of standard young tableaux is given by the "hook–length" formula, which doesn't have a particularly intuitive interpretation – it requires some fairly advanced techniques to prove – but it fairly easy to write down:

For a young diagram with n blocks we look at each block in position (i, j) individually and compute b(i, j): the number of blocks that are directly below or directly to the right of that block including itself. For example in our 3×3 grid for the upper left block we have 2 to the right, 2 below, and 1 for itself for a total of 5, while the center block has 1 to the right, 1 below, and 1 for itself for a total of 3. We then multiply these all together and divide n! by the product:

$$\frac{n!}{\prod_{i,j} b(i,j)}$$

Date: February 11, 2016.

For this problem there are 9 blocks and the b(i,j) are easy to compute:

$$b(1,1) = 5$$

$$b(1,2) = 4$$

$$b(2,1) = 4$$

$$b(1,3) = 3$$

$$b(2,2) = 3$$

$$b(3,1) = 3$$

$$b(3,2) = 2$$

$$b(2,3) = 2$$

$$b(2,3) = 1$$

Then, applying the hook length formula gives:

9!	_ 362880
$\overline{5 \cdot 4 \cdot 4 \cdot 3 \cdot 3 \cdot 3 \cdot 2 \cdot 2 \cdot 1}$	- 8640

 $E\text{-}mail\ address: \texttt{ddeford}\texttt{Qmath.dartmouth.edu}$