EUCLIDEAN ALGORITHM, BEZOUT'S IDENTITY, AND THE CHINESE REMAINDER THEOREM

CROSSROADS ACADEMY MATHCOUNTS PREPARATION

I) Find the GCDs of the following pairs of numbers: (10,75), (51,172), (2049, 54).

II) Find the GCD of (24541,9797).

III) Write a GCD problem that is easy to solve with factoring.

IV) Write a GCD problem that is easier to solve with the Euclidean Algorithm.

Date: April 5, 2016.

a) Another definition of the GCD of (x,y) is the smallest positive integer that can be written as ax + by when a and b are integers. For example, the GCD of (10,17) is 1 and $-5 \cdot 10 + 3 \cdot 17 = 1$.

b) Find integers a and b so that $a \cdot 84 + b \cdot 606 = \gcd(84, 606)$.

c) Find integers a and b so that $a \cdot 24541 + b \cdot 9797 = 97$.

d) Find integers a and b so that $a \cdot 52 + b \cdot 256 = 100$.

e) Find integers a and b so that $a \cdot 17 + b \cdot 697 = 1234567890$.

i) Find the smallest positive integer n so that

$$n \equiv 1 \pmod{4}$$
$$n \equiv 1 \pmod{12}$$
$$n \equiv 1 \pmod{75}$$

ii) Find the smallest positive integer n so that

 $n \equiv 1 \pmod{6}$ $n \equiv -1 \pmod{7}$ $n \equiv 1 \pmod{2}$

iii) Find the smallest positive integer n so that

$$n \equiv 3 \pmod{5}$$

$$n \equiv 2 \pmod{7}$$

$$n \equiv 4 \pmod{11}$$

iv) Write a congruence problem that requires the Chinese Remainder Theorem to solve.

v) Write a congruence problem that can be solved without the Chinese Remainder Theorem.