
Computational Redistricting

Introduction

Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into their
prime factors and seeking out by experimentation the laws of
appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.



Computational Redistricting

Introduction

Computational Challenges for Neutral
Redistricting

Daryl DeFord

MIT – CSAIL
Geometric Data Processing Group

Graphics Seminar
MIT – CSAIL

March 13, 2019



Computational Redistricting

Introduction

Outline

1 Introduction

2 Computational Redistricting

3 Shape Analysis

4 Ensemble Analysis

5 Hardness Results

6 Tree Based Methods

7 Conclusion



Computational Redistricting

Introduction

Collaborators

• Prof. Justin Solomon MIT CSAIL

• Lorenzo Najt Wisconsin Math

• Prof. Moon Duchin Tufts Math

• Hugo Lavenant Universitè Paris–Sud Math
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Political Partitioning

(a) Geography (b) Dual Graph
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Blocks

(a) Pennsylvania (b) Allegheny (c) Philadelphia
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Precincts

(a) Pennsylvania (b) Pittsburgh (c) Philadelphia
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Wards
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Municipalities

(a) Pennsylvania (b) Allegheny
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Counties
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Arkansas Congressional Districts

(b) District # 1 (c) District # 2 (d) District # 3 (e) District # 4
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Permissible Districting Plans

We want to partition a given geography (graph), at a given scale, into k
pieces, satisfying some constraints:

• Contiguity

• Population Balance

• Compactness

• Communities of Interest

• Municipal Boundaries

• Competitiveness/Responsiveness

• Incumbency Protection

• ...



Computational Redistricting

Computational Redistricting

Permissible Districting Plans

We want to partition a given geography (graph), at a given scale, into k
pieces, satisfying some constraints:

• Contiguity

• Population Balance

• Compactness

• Communities of Interest

• Municipal Boundaries

• Competitiveness/Responsiveness

• Incumbency Protection

• ...



Computational Redistricting

Computational Redistricting

Mathematical Formulation

Given a (connected) graph G = (V,E):

• A k-partition P = {V1, V2, . . . , Vk} of G is a collection of disjoint
subsets Vi ⊆ V whose union is V .

• A partition P is connected if the subgraph induced by Vi is
connected for all i.

• The cut edges of P are the edges (u,w) for which u ∈ Vi, w ∈ Vj ,
and i 6= j

• A partition P is ε-balanced if µ(1− ε) ≤ |Vi| ≤ µ(1 + ε) for all i
where µ is the mean of the |Vi|’s
• An equi–partition is a 0-balanced partition
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Vote Data
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Data Availability

Example (What adjective best describes US Electoral data?)

Abominable∗

∗ Alternatively, any adjective from “You’re a mean one, Mr. Grinch.” 1

1Dr. Seuss, How the Grinch Stole Christmas, 1966.



Computational Redistricting

Computational Redistricting

Data Availability

Example (What adjective best describes US Electoral data?)

Abominable∗

∗ Alternatively, any adjective from “You’re a mean one, Mr. Grinch.” 1

1Dr. Seuss, How the Grinch Stole Christmas, 1966.



Computational Redistricting

Computational Redistricting

Data Availability

Example (What adjective best describes US Electoral data?)

Abominable∗

∗ Alternatively, any adjective from “You’re a mean one, Mr. Grinch.” 1

1Dr. Seuss, How the Grinch Stole Christmas, 1966.



Computational Redistricting

Computational Redistricting

Problem Setting

Input Data

• Fixed geography and level of resolution defines the dual graph

• Weights on the nodes determine voting and demographic data

Generate

• Graph partitions – Districting plans

Analysis

• Properties of the map

• (Expected) Partisan performance of the map

Aggregate

• Large ensembles

• Multiple statistics

• Baseline
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Example: Iowa

• 4 Congressional Districts, 100 House Districts, 50 Senate Districts

• House districts nest into Senate districts

• Congressional districts made out of counties

• Independent committee with legislative approval

• No partisan data allowed
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Example: Pennsylvania

• 18 Congressional Districts, 203 House Districts, 50 Senate Districts

• Zero–balanced population

• Legislature draws congressional districts committee draws legislative
districts

• Partisan behavior allowed
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MORAL:

Computational Redistricting is
NOT a solved problem!
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Ugly Shapes

(a) NC12 #1 (b) NC12 #2 (c) NC12 #12



Computational Redistricting

Shape Analysis

Ugly Shapes



Computational Redistricting

Shape Analysis

Partisan Imbalance

(a) NC16

(b) PA TS-Proposed
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(Discrete) Total Perimeter
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Polsby–Popper

Theorem (Isoperimetry)

Let Ω be a bounded open subset of R2 with finite perimeter. Then:

4πA ≤ P 2

Definition (Polsby–Popper)

The Polsby–Popper score of a district is:

PP (Ω) =
4πA

P 2

4πA

L2
= 0.359 0.411 0.680 0.841 1.000
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Total Variation Profile1

1 D. DeFord, H. Lavenant, Z. Schutzman, and J. Solomon: Total Variation

Isoperimetric Profiles, arXiv:1809.07943, 2018.
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Partisanship Measures



Computational Redistricting

Shape Analysis

Partisan Fairness

• MA
• Duchin et al. (2018) Locating the representational baseline:

Republicans in Massachusetts arXiv:1810.09051
• Not all partisan outcomes are possible, given discretization

• MD
• Two recent preprints claiming not gerrymandered
• Court ruled one district unconstitutional

• NC/PA/WI
• Heavy court involvement
• Wide variance in partisan metrics
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MORAL:

Computational Redistricting is
NOT a solved problem!
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Ensemble Analysis

• The wide variety in rules applied to districting problems (even in the
same state) means that any single measure of gerrymandering will be
insufficient/exploitable

• Instead we want to do outlier analysis by comparing to large
ensembles of other feasible plans.

• This allows us to understand the impacts of the underlying political
and demographic geography on a wide collection of metrics.
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Ensemble Example: VA

(a) No NoVa (b) Full state

(c) No NoVa (d) Full state
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Which ensembles?
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Ensembles in Practice

• The appeal of an ensemble method is that you get to control the
input data very carefully

• However, just because a particular type of data was not considered
doesn’t mean that the outcome is necessarily “fair”

• There are lots of “random” methods for constructing districting plans

• Most don’t offer any control over the distribution that you are
drawing from
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MCMC on partitions

1 Set constraints to define the state space

2 Start with an initial plan

3 Propose a modification

4 Verify that the modification satisfies the constraints

5 Accept using MH criterion

6 Repeat

Why?
• Control over sampling distribution and input data

• Possibility of local sampling

• Ergodic Theorem
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Single Edge Flip Proposals

1 Uniformly choose a cut edge

2 Change one of the incident node assignments to the other

• Mattingly et al. (2017, 2018) Court cases in NC and WI.

• Pegden et al. Assessing significance in a Markov chain without
mixing, PNAS, (2017). Court case in PA.
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Single Edge Ensembles
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PA Single Edge Flip
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Boundary Flip Mixing

(a) Initial (b) 10,000,000 Flip Steps
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Boundary Flip Mixing

(b) 10,000,000 Flip Steps
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Boundary Flip Mean–Median

(a) Flip Seed31 (b) Flip Seed99 (c) Flip Enacted
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Slowly Mixing Graph Families

Theorem (Najt 2019)

Let G be any connected graph. Then let G(d) be the graph obtained by
replacing each edge by a doubled d-star. Then the flip walk on partitions

of family of graphs G
(d)
d≥1 is slowly mixing, in the sense the Cheeger

constant is decaying exponentially fast. More specifically:

H(Metagraph(G(d)) = O(2−d)
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Slow Mixing Example


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Slow Mixing Example


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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Uniform Sampling of Contiguous Partitions

Theorem (Najt 2019)

Suppose that D is the class of connected planar graphs and k ≥ 2. If
there is a polynomial time algorithm to sample uniformly from any of:

• the connected k-partitions of graphs in D,

• or the connected, 0-balanced k-partitions of graphs in D.

then RP = NP .

Remark

This theorem has various interesting extensions, including:

• Connectivity constraints on D

• Degree bounds

• Subgraphs of lattices

• Distributions propotional to cut length

• Weaker population bounds
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Tree based methods

(a) District (b) Spanning Tree
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Tree Seeds Ensemble
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Tree Based Methods

Recombination Steps

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Draw a spanning tree for the new super–district

4 Delete an edge leaving two population balanced districts

5 Repeat

6 (Optional) Mix with single edge flips



Computational Redistricting

Tree Based Methods

Recombination Step Example
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Recombination Step Example
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Tree Based Methods

AR Ensembles
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Tree Based Methods

PA Recombination Steps


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}
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Recombination Distribution

(a) Compactness (b) 5702 cut edges
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Recombination Mixing

(a) Initial (b) 20,000 Recombination Steps
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Tree Based Methods

Recombination Mean–Median

(a) ReCom Seed31 (b) ReCom Seed99 (c) ReCom Enacted
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General Tree Proposals

1 Form the induced subgraph on the complement of the cut edges

2 Add some subset of the cut edges

3 Uniformly select a maximal spanning forest

4 Apply a Markov chain on trees

5 Partition the spanning forest into k population balanced pieces
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Special Cases

• Uniform Trees: Add all cut edges

• k–edges: Uniformly add k cut edges

• Recombination: Add all cut edges between one pair of districts.

• Super-Recombination: Take a maximal matching on the dual graph
to the districts and add all cut edges between matched districts.

• Bounce Walk: Add a single cut edge between enough pairs of districts
to make a tree in the dual graph of districts.

Question

What are the steady state distributions (and mixing times) of these walks?
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Tree Partitioning Questions

• Characterizing the distribution on partitions defined by cutting trees!

• How bad is the best cut?

• Criteria for determining when a tree is ε cuttable?

• Criteria for determining when all spanning trees of a graph are ε
cuttable?

• How hard is it to find the mininum ε for which a cut exists?

• As a function of ε what proportion of spanning trees are cuttable?

• As a function of ε what proportion of edges in a given tree are
cuttable?

• What is the fastest way to sample uniformly from k − 1 balanced cut
edges?



Computational Redistricting

Conclusion

MORAL:

Computational Redistricting is
NOT a solved problem!
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The End

Thanks!
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General Merge Proposals

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Bipartition the new super–district

4 Repeat

5 (Optional) Mix with single edge flips

(a) Before (b) During (c) After
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Tree Partitions

Method

• Generate a uniform spanning
tree

• Cut an edge that leaves
population balanced
components
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Flood Fill

Method

• Select a node at random

• Select a random neighbor of
the current cluster

• Alternatively, generate a list
of neighbors and append
sequentially

• Add if population allows and
doesn’t disconnect the
complement

• Repeat until population
balanced
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Path Fill

Method

• Start with an arbitrary node

• Select a node not in the
district

• Add all the nodes on a
shortest path from the new
node to the district if it
doesn’t disconnect the
complement or add too
much to the population

• Repeat until population
balanced
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Agglomerative

Method

• Start with each node in own
component

• Select an arbitrary edge
between two components
• Merge clusters if

population allows and
doesn’t disconnect the
complement

• If population doesn’t
allow, delete edge

• If merging would
disconnect the graph,
merge the smallest
population component

• Repeat until only 2 clusters
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What can go wrong?
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Min Cut

Method

• Select random source and
sink nodes

• Weight the edges in the
graph by 10min distance−3

• Compute the min cut

• Repeat until population
balanced
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