
Computational Redistricting

Introduction

Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into their
prime factors and seeking out by experimentation the laws of
appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.
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Research Projects:
tinyurl.com/gerryprojects

Research Papers:
mggg.org/work



Computational Redistricting

Introduction

MORAL #2:

Computational Redistricting is
NOT a solved problem!

More Background:
people.csail.mit.edu/ddeford/CAPR

Research Projects:
tinyurl.com/gerryprojects

Research Papers:
mggg.org/work



Computational Redistricting

Introduction

MORAL #2:

Computational Redistricting is
NOT a solved problem!

More Background:
people.csail.mit.edu/ddeford/CAPR

Research Projects:
tinyurl.com/gerryprojects

Research Papers:
mggg.org/work



Computational Redistricting

Introduction

Political Partitioning

(a) Geography (b) Dual Graph
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Geographic Units

(a) Census Blocks (b) Precincts (c) Counties
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Tabular Data
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Arkansas Congressional Districts

(b) District # 1 (c) District # 2 (d) District # 3 (e) District # 4
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Permissible Districting Plans

We want to study partitions of a given geography, at a given scale, into k
pieces, satisfying some constraints:

• Contiguity

• Population Balance

• Compactness

• Communities of Interest

• Municipal Boundaries

• Competitiveness/Responsiveness

• Incumbency Protection

• ...
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Example: Iowa

• 4 Congressional Districts, 100 House Districts, 50 Senate Districts

• House districts nest into Senate districts

• Congressional districts made out of counties

• Independent committee with legislative approval

• No partisan data allowed
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Example: Pennsylvania

• 18 Congressional Districts, 203 House Districts, 50 Senate Districts

• Zero–balanced population

• Legislature draws congressional districts committee draws legislative
districts

• Partisan behavior allowed
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MORAL:

Computational Redistricting is
NOT a solved problem!
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Single Valued Compactness Measures
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Ugly Shapes
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Multiscale Compactness

Why Multiscale?

Multiple Types of “Badness”

(a) NC12 #2 (b) NC12 #9 (c) NC12 #12
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Multiscale Compactness

Why Multiscale?

Measurement Problems

Theorem (Bar-Natan, Najt, and Schutzman 2019)

There is no local homeomorphism from a sphere to the plane that
preserves your favorite compactness measure.

Problem ( 1, 2)

Compactness scores can be distorted by:

• Data resolution

• Map projection

• State borders and coastline

• Topography

• ...
1 M. Duchin and B. Tenner: Discrete geometry for electoral geography, https://arxiv.org/abs/1808.05860, (2018).

2 R. Barnes and J. Solomon: Gerrymandering and Compactness: Implementation Flexibility and Abuse, https://arxiv.org/abs/1803.02857,

(2018).
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Why Multiscale?

Bigger Problem

(a) NC12

(b) NC16



Computational Redistricting

Multiscale Compactness

TV Isoperimtery

Polsby–Popper

Theorem (Isoperimetry)

Let Ω be a bounded open subset of R2 with finite perimeter. Then:

4πA ≤ P 2.

Definition (Polsby–Popper)

The Polsby–Popper score of a district is:

PP (Ω) =
4πA

P 2

4πA

L2
= 0.359 0.411 0.680 0.841 1.000
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TV Isoperimtery

Boundary Perturbation

4πA

L2
= 0.004

4πA

L2
= 0.359
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Multiscale Desiderata

• Disambiguate different types of “badness”

• Stability under practical constraints

• Interpolate well–studied single measures

• Continuous and discrete versions

• Internal vs. external
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Isoperimetric Profile

Definition (Isoperimetric Inequality)

Let Ω ⊆ Rn to be a compact region whose boundary ∂Ω ⊆ Ω is an
(n−1)-dimensional hypersurface in Rn

n · vol(Ω)
(n−1)

n · vol(B(1,0))
1
n ≤ area(∂Ω).

Definition (Isoperimetric Profile)

With Ω as above and t ∈ [0, vol(Ω)] we ask for the smallest surface area
needed to enclose volume t completely within Ω:

IΩ(t) := min{area(∂Σ) : Σ ⊆ Ω and vol(Σ) = t}.
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Geometric Properties

Theorem (Flores and Nardulli (2016) [1)

] Let Mnbe a complete smooth Riemannian manifold with
RicM ≥ (n− 1)k, with k ∈ R and V (B(p, 1)) ≥ v0 > 0. Then the
isoperimetric profile is continuous on [0, V (M)[

Question

Identify a polynomial-time algorithm or NP-hardness result for computing
isoperimetric profiles. The simplest open problem is computing the
isoperimetric profile of a polygon in the plane R2.

1 A. Flores and S. Nardulli: Continuity and differentiability properties of the isoperimetric profile in complete noncompact Riemannian

manifolds with bounded geometry, https://arxiv.org/abs/1404.3245.
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Total Variation

Definition (Three formulations of TV)

TV[f ] =

1

sup

{∫
Rn

[f(x)∇ · φ(x)] dx : φ ∈ C1
c (Rn → Rn) and ‖φ‖∞ ≤ 1

}
2 ∫

Rn

‖∇f‖2 dx

3 ∫ +∞

0

area(∂{f ≥ s})ds
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Perimeter as Total Variation

Definition

For a region Σ ⊆ Rn, denote its indicator function 1Σ via

1Σ(x) :=

{
1 if x ∈ Σ
0 otherwise.

(1)

Then, a consequence of the co-area formula is that

area(∂Σ) = TV[1Σ]. (2)
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TV Relaxation

Definition (Isoperimetric Profile)

IΩ(t) =


inff∈L1(Rn) TV[f ]
subject to

∫
Rn f(x) dx = t

0 ≤ f ≤ 1Ω

f(x) ∈ {0, 1} ∀x ∈ Rn.

Definition (TV Profile)

ITV
Ω (t) :=

 minf∈L1(Rn) TV[f ]
subject to

∫
Rn f(x) dx = t

0 ≤ f ≤ 1Ω.
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Example: Circle

Proposition

For all (Ω, t), we have ITV
Ω (t) ≤ IΩ(t).

Example (Circle)

Suppose Ω ⊂ R2 is a circle of radius R, and take t = πr2 for r ∈ (0, R).
In this case, by the isoperimetric inequality we know IΩ(t) = 2πr. But

suppose we take f(x) ≡ r2

R2
. By the co-area formula

ITV
Ω (t) ≤ TV[f ] = 2πR · r

2

R2
= 2πr · r

R
< IΩ(t).

Hence, our relaxation is not tight.
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Isoperimetry and Convexity

Proposition (Isoperimetry)

Suppose B ⊂ Rn is a ball whose volume matches vol(Ω). Then, for all
t ∈ [0, vol(Ω)], we have ITV

B (t) ≤ ITV
Ω (t), and if the equality holds for

some t > 0 then Ω is a ball.

Proposition (Convexity)

ITV
Ω (t) is a convex function of t.

Proposition (Convex Envelope)

The function ITV
Ω is the lower convex envelope of IΩ.
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Dual Optimization

Dual Formulation:

ITVΩ (t) =

{
supφ∈C1

c (Rn→Rn),λ∈R λt−
∫

Ω
max(λ−∇ · φ(x), 0) dx

subject to ‖φ‖∞ ≤ 1

Proof.

With the dual in hand, the convexity results follow from constructing an
auxilliary function:

h(λ) = inf
‖φ‖∞≤1

∫
Ω

max(λ−∇ · φ(x), 0) dx.

and computing some Legendre transforms.
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Minimizer Structure

Proposition (Distinguished Solutions)

There exists a family (ft)t∈[0,1] such that:

• For any t ∈ [0, 1], the function ft ∈ L1(Rn) satisfies 0 ≤ ft ≤ 1Ω,∫
Rn ft(x) dx = t and TV(ft) = ITV

Ω (t).

• For any t ∈ [0, 1], there exist vt ∈ (0, 1) such that ft takes its values
in {0, vt, 1}.

• For a.e. x ∈ Ω, the function t→ ft(x) is increasing.



Computational Redistricting

Multiscale Compactness

TV Isoperimtery

NC 12 # 9
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NC 12 # 2
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NC 12 # 12
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Cheeger Sets

Definition (Cheeger Constant)

The Cheeger constant of Ω, denoted by h1(Ω), is defined as

h1(Ω) := inf
Σ̃⊆Ω

area(∂Σ̃)

vol(Σ̃)
,

and a subset Σ ⊆ Ω such that h1(Ω) = area(∂Σ)
vol(Σ) is known as a Cheeger set

of Ω.

Proposition (Small t)

Let Ω be compact, let h1(Ω) be the Cheeger constant of Ω, and let Σ be
a Cheeger set of Ω. Then for any t ≤ vol(Σ), we have ITV

Ω (t) = h1(Ω)t,
and a solution f is given by f := t

vol(Σ) · 1Σ.
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Cheeger Proof

Proof.

We start with f̂ = t
vol(Σ) · 1Σ which satisfies the constraints of the

problem defining ITV
Ω (t) as soon as t ≤ vol(Σ), which ensures

0 ≤ f̂ ≤ 1Σ ≤ 1Ω. Hence, ITV
Ω (t) ≤ h1(Ω)t. On the other hand, using

the co-area formula, if f is any competitor then

TV(f) =

∫ +∞

0

area(∂{f ≥ s})ds

=

∫ +∞

0

vol({f ≥ s}) · area(∂{f ≥ s})
vol({f ≥ s})︸ ︷︷ ︸
≥h1(Ω) by definition

ds

≥ h1(Ω)

∫ +∞

0

vol({f ≥ s})ds = h1(Ω)

∫
Rd

f(x)dx = h1(Ω)t.

Hence, for t ≤ vol(C), we have ITV
Ω (t) = h1(Ω)t.
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Synthetic Examples
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Synthetic Profiles
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Synthetic Derivatives
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North Carolina
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NC 2011 Districts
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NC 2016 Districts
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Judge’s Plan
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Higher Dimensions
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Other Formulations

Definition (Population Measure)

ITV
Ω,ρ(t) :=

 minf∈L1(Rn) TV[f ]
subject to

∫
Rn f(x) dρ(x) = t

0 ≤ f ≤ 1Ω.

Definition (Discrete )

ITV
V0

(t) :=


minf∈RV

∑
(v,w)∈E |f(v)− f(w)|

subject to
∑
v∈V0

f(v) = t|V0|
f(v) = 0 ∀v 6∈ V0

f(v) ∈ [0, 1] ∀v ∈ V.
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Synthetic Cities
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Discrete Animation


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}
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Curve Shortening

Mean Curvature Flow (VRDI)


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}
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Curve Shortening

Mean Curvature Flow (VRDI)


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}
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Curve Shortening

Multiscale Wrapup

Open questions:

• How much can we learn about the full profile from the relaxed
version?

• Can the medial axis be computed from the TV-Profile?

• What is the right way to compare regions of the profiles?

• Spectral Versions (i.e. how to make the heat kernel useful)

• Random walk versions (absorbing boundary nodes)

• Distance based measures

• ...
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Partisan Measures

Seats–Votes Curves

Figure: Dem %: [.249,.389,.273,.51]
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Seats–Votes Curves

Figure: Dem %: [.698,.458,.724,.43,.435,.428,.553,.489,.407,.387,.731,.45]
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Partisan Measures

Seats–Votes Curves

Figure: Dem %:
[.487,.79,.934,.635,.652,.589,.535,.546,.403,.487,.41,.34,.705,.421,.322,.473,.563]
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Partisan Measures

Partisan Metrics

Definition (Mean–Median)

Horizontal distance between (.5, .5) and the seats votes curve).

Definition (Partisan Bias)

Vertical distance between (.5, .5) and the seats votes curve

Definition (Partisan Asymmetry)

Integral of the difference between the seats votes curve and its reflection
around (.5, .5).

Definition (Efficiency Gap)

Wasted R Votes−Wasted D Votes

Total Votes

With equal turnout: twice the seat margin minus the vote margin.
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Partisan Measures

Partisan Examples

• Utah
• Mean–Median: -.024
• Efficiency Gap: -.039
• Asymmetry: .048

• Pennsylvania
• Mean–Median: .011
• Efficiency Gap: .063
• Asymmetry: .050

• North Carolina
• Mean–Median: .062
• Efficiency Gap: .198
• Asymmetry: .093
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Partisan Measures

Seats–Votes Asymmetry
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Partisan Measures

Seats–Votes Asymmetry
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Partisan Measures

Seats–Votes Asymmetry
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Partisan Measures

Alternative Formulations

Dem seat share S = #{i : Di > Ri}/k
Efficiency gap[1] EG = S − 2V + 1

2 + S(1−S)(1−ρ)
S(1−ρ)+ρ

Mean-median gap MM = median({Vi})− mean({Vi})

In the efficiency gap formula ρ is the turnout ratio: the average number of
votes cast in Democratic-won districts divided by the average in
Republican-won districts.
1 E. Veomett, Efficiency Gap, Voter Turnout, and the Efficiency Principle, Election Law Journal, 17(4), 249–263, (2018).
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Ensemble Applications

Redistricting Analysis in Practice

The shape and partisan imbalance metrics that I discussed above

• Outlier Analysis

• Political Geography Baselines

• Reform Legislation Consequences

• More Case Studies:
http://people.csail.mit.edu/ddeford/IAP_2019_Part4.pdf

http://people.csail.mit.edu/ddeford/IAP_2019_Part4.pdf
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Redistricting Analysis in Practice

The shape and partisan imbalance metrics that I discussed above

• Outlier Analysis

• Political Geography Baselines

• Reform Legislation Consequences

• More Case Studies:
http://people.csail.mit.edu/ddeford/IAP_2019_Part4.pdf
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Ensemble Applications

Ensemble Generation
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Ensemble Applications

Outliers

Outlier Example: NC
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Outlier Example: NC
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Ensemble Applications

Outliers

Outllier Example: NC
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Ensemble Applications

Outliers

Outlier Example: PA

(a) Mean–Median (b) Efficiency Gap
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Ensemble Applications

Baselines

Baseline Example: VA

(a) Mean–Median (b) Efficiency Gap
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Ensemble Applications

Baselines

Baseline Example: PA

(a) 2012 Senate (b) 2016 Senate
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Ensemble Applications

Reform Analysis

Reform Example: VA

(a) Congress
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Reform Analysis

Reform Example: VA

(b) Senate
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Ensemble Applications

Reform Analysis

Reform Example: VA

(a) Congress (b) Senate
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Ensemble Applications

Reform Analysis

Reform Example: VA

(a) Congress (b) Senate
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Ensemble Applications

Reform Analysis

Reform Example: PA
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Conclusion

Try it at home!

• Draw your own districts with Districtr
• https://districtr.org
• Easy to generate complete districting plans in browser or on a tablet
• Measures district demographics and expected partisan performance
• Identifies communities of interest

• Generate your own ensembles with GerryChain1

• https://github.com/mggg/gerrychain
• Flexible, modular software for sampling graph partitions
• Handles the geodata processing as well as the MCMC sampling
• Current support for a
• Successfully applied in VA, NC, PA, etc.

1Originally RunDMCMC

https://districtr.org
https://github.com/mggg/gerrychain
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Conclusion

MORAL:

Computational Redistricting is
NOT a solved problem!
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Conclusion

The end!

Thanks!
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