Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine which contains all the properties of numbers; by calculating the successive terms of such sequences, decomposing them into their prime factors and seeking out by experimentation the laws of appearance and reproduction of the prime numbers, one can advance in a systematic manner the study of the properties of numbers and their application to all branches of mathematics.

Total Variation Isoperimetric Profiles and Political Redistricting

Daryl DeFord

MIT – CSAIL Geometric Data Processing Group

Math Department Colloquium Dartmouth College April 25, 2019

people.csail.mit.edu/ddeford/Networks_Not_Graphs.pdf

Outline

Introduction

Ø Multiscale Compactness

Why Multiscale? TV Isoperimtery Curve Shortening

3 Partisan Measures

4 Ensemble Applications

Outliers Baselines Reform Analysis

6 Conclusion

Collaborators

- Prof. Moon Duchin
- Prof. Justin Solomon
- Hugo Lavenant
- Zachary Schutzman

Tufts Math MIT CSAIL Universitè Paris–Sud Math UPenn CIS

Collaborators

- Prof. Moon Duchin
- Prof. Justin Solomon
- Hugo Lavenant
- Zachary Schutzman
- Voting Rights Data Institute
 - 52 undergraduate and graduate students
 - 8 week summer program
 - mggg.org
 - github.com/{gerrymandr,mggg,mggg-states}
 - districtr.org

Tufts Math MIT CSAIL Universitè Paris–Sud Math UPenn CIS

Computational Redistricting Introduction

MORAL #1:

MORAL #1:

Computational Redistricting is NOT a solved problem!

Computational Redistricting Introduction

MORAL #2:

MORAL #2:

Computational Redistricting is NOT a solved problem!

MORAL #2:

Computational Redistricting is NOT a solved problem!

More Background: people.csail.mit.edu/ddeford/CAPR

> **Research Projects:** tinyurl.com/gerryprojects

> > Research Papers: mggg.org/work

Computational Redistricting Introduction

Political Partitioning

Geographic Units

Tabular Data

Arkansas Congressional Districts

X666

Permissible Districting Plans

We want to study partitions of a given geography, at a given scale, into k pieces, satisfying some constraints:

- Contiguity
- Population Balance
- Compactness
- Communities of Interest
- Municipal Boundaries
- Competitiveness/Responsiveness
- Incumbency Protection
- ...

Permissible Districting Plans

We want to study partitions of a given geography, at a given scale, into k pieces, satisfying some constraints:

- Contiguity
- Population Balance
- Compactness
- Communities of Interest
- Municipal Boundaries
- Competitiveness/Responsiveness
- Incumbency Protection
- ...

Example: Iowa

- 4 Congressional Districts, 100 House Districts, 50 Senate Districts
- House districts nest into Senate districts
- Congressional districts made out of counties
- Independent committee with legislative approval
- No partisan data allowed

Example: Pennsylvania

- 18 Congressional Districts, 203 House Districts, 50 Senate Districts
- Zero-balanced population
- Legislature draws congressional districts committee draws legislative districts

Computational Redistricting is **NOT** a solved problem!

Single Valued Compactness Measures

Multiple Types of "Badness"

Measurement Problems

Theorem (Bar-Natan, Najt, and Schutzman 2019)

There is no local homeomorphism from a sphere to the plane that preserves your favorite compactness measure.

Measurement Problems

Theorem (Bar-Natan, Najt, and Schutzman 2019)

There is no local homeomorphism from a sphere to the plane that preserves your favorite compactness measure.

Problem (1, 2)

Compactness scores can be distorted by:

- Data resolution
- Map projection
- State borders and coastline
- Topography

...

(2018)

 1 M. Duchin and B. Tenner: Discrete geometry for electoral geography, https://arxiv.org/abs/1808.05860, (2018).

² R. Barnes and J. Solomon: Gerrymandering and Compactness: Implementation Flexibility and Abuse, https://arxiv.org/abs/1803.02857,

rg/abs/1803.02857

Bigger Problem

(a) NC12

(b) NC16

Polsby-Popper

Theorem (Isoperimetry)

Let Ω be a bounded open subset of \mathbb{R}^2 with finite perimeter. Then:

 $4\pi A \leq P^2.$

Definition (Polsby–Popper)

The Polsby–Popper score of a district is:

$$PP(\Omega) = \frac{4\pi A}{P^2}$$

Polsby-Popper

Theorem (Isoperimetry)

Let Ω be a bounded open subset of \mathbb{R}^2 with finite perimeter. Then:

 $4\pi A \leq P^2.$

Definition (Polsby–Popper)

The Polsby–Popper score of a district is:

$$PP(\Omega) = \frac{4\pi A}{P^2}$$

Computational Redistricting Multiscale Compactness TV Isoperimtery

Boundary Perturbation

Multiscale Desiderata

- Disambiguate different types of "badness"
- Stability under practical constraints
- Interpolate well-studied single measures
- Continuous and discrete versions
- Internal vs. external

Isoperimetric Profile

Definition (Isoperimetric Inequality)

Let $\Omega\subseteq\mathbb{R}^n$ to be a compact region whose boundary $\partial\Omega\subseteq\Omega$ is an $(n-1)\text{-dimensional hypersurface in }\mathbb{R}^n$

$$n \cdot \operatorname{vol}(\Omega)^{\frac{(n-1)}{n}} \cdot \operatorname{vol}(B(1,\mathbf{0}))^{\frac{1}{n}} \leq \operatorname{area}(\partial\Omega).$$

Isoperimetric Profile

Definition (Isoperimetric Inequality)

Let $\Omega\subseteq\mathbb{R}^n$ to be a compact region whose boundary $\partial\Omega\subseteq\Omega$ is an $(n-1)\text{-dimensional hypersurface in }\mathbb{R}^n$

$$n \cdot \operatorname{vol}(\Omega)^{\frac{(n-1)}{n}} \cdot \operatorname{vol}(B(1,\mathbf{0}))^{\frac{1}{n}} \leq \operatorname{area}(\partial\Omega).$$

Definition (Isoperimetric Profile)

With Ω as above and $t \in [0, vol(\Omega)]$ we ask for the smallest surface area needed to enclose volume t completely within Ω :

 $I_{\Omega}(t) := \min\{\operatorname{area}(\partial \Sigma) : \Sigma \subseteq \Omega \text{ and } \operatorname{vol}(\Sigma) = t\}.$

Geometric Properties

Theorem (Flores and Nardulli (2016) [1)

] Let M^n be a complete smooth Riemannian manifold with $\operatorname{Ric}_M \ge (n-1)k$, with $k \in \mathbb{R}$ and $V(B(p,1)) \ge v_0 > 0$. Then the isoperimetric profile is continuous on [0, V(M)]

¹ A. Flores and S. Nardulli: Continuity and differentiability properties of the isoperimetric profile in complete noncompact Riemannian manifolds with bounded geometry, https://arxiv.org/abs/1404.3245.

Geometric Properties

Theorem (Flores and Nardulli (2016) [1)

] Let M^n be a complete smooth Riemannian manifold with $\operatorname{Ric}_M \ge (n-1)k$, with $k \in \mathbb{R}$ and $V(B(p,1)) \ge v_0 > 0$. Then the isoperimetric profile is continuous on [0, V(M)]

Question

Identify a polynomial-time algorithm or NP-hardness result for computing isoperimetric profiles. The simplest open problem is computing the isoperimetric profile of a polygon in the plane \mathbb{R}^2 .

¹ A. Flores and S. Nardulli: Continuity and differentiability properties of the isoperimetric profile in complete noncompact Riemannian manifolds with bounded geometry, https://arxiv.org/abs/1404.3245.

0

Total Variation

Definition (Three formulations of TV)

$$\mathrm{TV}[f] =$$

$$\sup\left\{\int_{\mathbb{R}^n} [f(x)\nabla \cdot \phi(x)] \, dx : \phi \in C_c^1(\mathbb{R}^n \to \mathbb{R}^n) \text{ and } \|\phi\|_{\infty} \le 1\right\}$$

$$\int_{\mathbb{R}^n} \|\nabla f\|_2 \, dx$$

$$3$$

 J_0

$$\operatorname{area}(\partial \{f \ge s\})ds$$

Perimeter as Total Variation

Definition

For a region $\Sigma \subseteq \mathbb{R}^n$, denote its *indicator function* $\mathbb{1}_{\Sigma}$ via

$$\mathbb{1}_{\Sigma}(x) := \begin{cases} 1 & \text{if } x \in \Sigma \\ 0 & \text{otherwise.} \end{cases}$$

Then, a consequence of the co-area formula is that

$$\operatorname{area}(\partial \Sigma) = \operatorname{TV}[\mathbb{1}_{\Sigma}].$$
 (2)

(1)

TV Relaxation

Definition (Isoperimetric Profile)

$$I_{\Omega}(t) = \begin{cases} \inf_{f \in L^{1}(\mathbb{R}^{n})} & \operatorname{TV}[f] \\ \text{subject to} & \int_{\mathbb{R}^{n}} f(x) \, dx = t \\ & 0 \leq f \leq \mathbb{1}_{\Omega} \\ & f(x) \in \{0, 1\} \, \forall x \in \mathbb{R}^{n}. \end{cases}$$

TV Relaxation

Definition (Isoperimetric Profile)

$$I_{\Omega}(t) = \begin{cases} \inf_{f \in L^{1}(\mathbb{R}^{n})} & \operatorname{TV}[f] \\ \text{subject to} & \int_{\mathbb{R}^{n}} f(x) \, dx = t \\ & 0 \leq f \leq \mathbb{1}_{\Omega} \\ & f(x) \in \{0, 1\} \; \forall x \in \mathbb{R}^{n}. \end{cases}$$

Definition (TV Profile)

$$I_{\Omega}^{\mathrm{TV}}(t) := \begin{cases} \min_{f \in L^{1}(\mathbb{R}^{n})} & \mathrm{TV}[f] \\ \text{subject to} & \int_{\mathbb{R}^{n}} f(x) \, dx = t \\ & 0 \leq f \leq \mathbb{1}_{\Omega}. \end{cases}$$

Example: Circle

Proposition

For all (Ω, t) , we have $I_{\Omega}^{\mathrm{TV}}(t) \leq I_{\Omega}(t)$.

Example (Circle)

Suppose $\Omega \subset \mathbb{R}^2$ is a circle of radius R, and take $t = \pi r^2$ for $r \in (0, R)$. In this case, by the isoperimetric inequality we know $I_{\Omega}(t) = 2\pi r$. But suppose we take $f(x) \equiv \frac{r^2}{R^2}$. By the co-area formula

$$I_{\Omega}^{\mathrm{TV}}(t) \leq \mathrm{TV}[f] = 2\pi R \cdot \frac{r^2}{R^2} = 2\pi r \cdot \frac{r}{R} < I_{\Omega}(t).$$

Hence, our relaxation is not tight.

Isoperimetry and Convexity

Proposition (Isoperimetry)

Suppose $B \subset \mathbb{R}^n$ is a ball whose volume matches $vol(\Omega)$. Then, for all $t \in [0, vol(\Omega)]$, we have $I_B^{TV}(t) \leq I_{\Omega}^{TV}(t)$, and if the equality holds for some t > 0 then Ω is a ball.

Proposition (Convexity)

 $I_{\Omega}^{\mathrm{TV}}(t)$ is a convex function of t.

Proposition (Convex Envelope)

The function I_{Ω}^{TV} is the lower convex envelope of I_{Ω} .

Dual Optimization

Dual Formulation:

$$I_{\Omega}^{TV}(t) = \begin{cases} \sup_{\phi \in C_c^1(\mathbb{R}^n \to \mathbb{R}^n), \lambda \in \mathbb{R}} & \lambda t - \int_{\Omega} \max(\lambda - \nabla \cdot \phi(x), 0) \, dx \\ \text{subject to} & \|\phi\|_{\infty} \le 1 \end{cases}$$

Proof.

With the dual in hand, the convexity results follow from constructing an auxilliary function:

$$h(\lambda) = \inf_{\|\phi\|_{\infty} \le 1} \int_{\Omega} \max(\lambda - \nabla \cdot \phi(x), 0) \, dx.$$

and computing some Legendre transforms.

Minimizer Structure

Proposition (Distinguished Solutions)

There exists a family $(f_t)_{t \in [0,1]}$ such that:

- For any $t \in [0,1]$, the function $f_t \in L^1(\mathbb{R}^n)$ satisfies $0 \le f_t \le \mathbb{1}_{\Omega}$, $\int_{\mathbb{R}^n} f_t(x) dx = t$ and $\mathrm{TV}(f_t) = I_{\Omega}^{\mathrm{TV}}(t)$.
- For any $t \in [0,1]$, there exist $v_t \in (0,1)$ such that f_t takes its values in $\{0, v_t, 1\}$.
- For a.e. $x \in \Omega$, the function $t \to f_t(x)$ is increasing.

Cheeger Sets

Definition (Cheeger Constant)

The Cheeger constant of Ω , denoted by $h_1(\Omega)$, is defined as

$$h_1(\Omega) := \inf_{\tilde{\Sigma} \subseteq \Omega} \frac{\operatorname{area}(\partial \tilde{\Sigma})}{\operatorname{vol}(\tilde{\Sigma})},$$

and a subset $\Sigma \subseteq \Omega$ such that $h_1(\Omega) = \frac{\operatorname{area}(\partial \Sigma)}{\operatorname{vol}(\Sigma)}$ is known as a Cheeger set of Ω .

Proposition (Small t)

Let Ω be compact, let $h_1(\Omega)$ be the Cheeger constant of Ω , and let Σ be a Cheeger set of Ω . Then for any $t \leq \operatorname{vol}(\Sigma)$, we have $I_{\Omega}^{\mathrm{TV}}(t) = h_1(\Omega)t$, and a solution f is given by $f := \frac{t}{\operatorname{vol}(\Sigma)} \cdot \mathbb{1}_{\Sigma}$.

Cheeger Proof

Proof.

We start with $\hat{f} = \frac{t}{\operatorname{vol}(\Sigma)} \cdot \mathbb{1}_{\Sigma}$ which satisfies the constraints of the problem defining $I_{\Omega}^{\mathrm{TV}}(t)$ as soon as $t \leq \operatorname{vol}(\Sigma)$, which ensures $0 \leq \hat{f} \leq \mathbb{1}_{\Sigma} \leq \mathbb{1}_{\Omega}$. Hence, $I_{\Omega}^{\mathrm{TV}}(t) \leq h_1(\Omega)t$. On the other hand, using the co-area formula, if f is any competitor then

$$\begin{aligned} \mathrm{TV}(f) &= \int_{0}^{+\infty} \operatorname{area}(\partial\{f \geq s\}) ds \\ &= \int_{0}^{+\infty} \operatorname{vol}(\{f \geq s\}) \cdot \underbrace{\frac{\operatorname{area}(\partial\{f \geq s\})}{\operatorname{vol}(\{f \geq s\})}}_{\geq h_{1}(\Omega) \text{ by definition}} ds \\ &\geq h_{1}(\Omega) \int_{0}^{+\infty} \operatorname{vol}(\{f \geq s\}) ds = h_{1}(\Omega) \int_{\mathbb{R}^{d}} f(x) dx = h_{1}(\Omega) t. \end{aligned}$$

Hence, for $t \leq \operatorname{vol}(C)$, we have $I_{\Omega}^{\mathrm{TV}}(t) = h_1(\Omega)t$.

Synthetic Examples

Synthetic Profiles

Synthetic Derivatives

Computational Redistricting Multiscale Compactness TV Isoperimtery

North Carolina

NC 2011 Districts

District 1		Dis	trict 2	Distri 3	ict [District 4	District 5	District 6	District 7	District 8	District 9	District 10	District 11	District 12	District 13
t = 0.23			-								*			3	-
t = 0.34	1		1								*			2	-
t = 0.45			~		۶						*			۲.	-
t = 0.56			2		>			•			•			٠٦,	-
t = 0.67	1		い	•	,					٦	•			ł,	
t = 0.78	p.		J.	'							**	•		and a second	╺╼┑
t = 0.89	Į.		7	' ł	E .	ł	-	' - *		٦.	₹.	3		and i	╶╌┑
t = 1.0			3	" 1	ST I	ł		•		*	-	*	-	and a	77

NC 2016 Districts

District 1		Dis	trict 2	District 3	istrict District 3 4		District 5	District 6	District 7	District 8	District 9	District 10	District 11	District 12	District 13
t = 0.23	31		9						3	•	~				
t = 0.34		B	9				-		3	•	~		•		
t = 0.45			9						3	•	~		-		
t = 0.56		B	9						3	•	~	-	-		-
t = 0.67	-	R	,9	'			, –	• 1	3	~	~	-	e 10		
t = 0.78	7	R	2	' 🖌				• 1	3	~	~	-	e ro		#4 *
t = 0.89	7	K.	<u>,</u>	'			, –	- 1	5	•••	~	-	<u>_</u>		-
t = 1.0	~	F	, A	' "			,	• \$	4	***		1	<u>_</u>		71

Computational Redistricting Multiscale Compactness TV Isoperimtery

Judge's Plan

District 1		Distrio 2	t D)istrict 3	District 4	District 5	District 6	District 7	District 8	District 9	District 10	District 11	District 12	District 13
t = 0.23													•	
t = 0.34				-									●	\$
t = 0.45													•	•
t = 0.56			-										\bullet	•
t = 0.67				-									\bullet	•
t = 0.78				-						۲			•	•
t = 0.89			•	-	•					•			4	-
t = 1.0			ø	-			ſ		•	•		>	*	

Higher Dimensions

Other Formulations

Definition (Population Measure)

$$I_{\Omega,\rho}^{\mathrm{TV}}(t) := \begin{cases} \min_{f \in L^1(\mathbb{R}^n)} & \mathrm{TV}[f] \\ \text{subject to} & \int_{\mathbb{R}^n} f(x) \, d\rho(x) = t \\ & 0 \le f \le \mathbb{1}_{\Omega}. \end{cases}$$

Definition (Discrete)

$$I_{V_0}^{\mathrm{TV}}(t) := \begin{cases} \min_{f \in \mathbb{R}^V} & \sum_{(v,w) \in E} |f(v) - f(w)| \\ \text{subject to} & \sum_{v \in V_0} f(v) = t |V_0| \\ & f(v) = 0 \ \forall v \notin V_0 \\ & f(v) \in [0,1] \ \forall v \in V. \end{cases}$$

Synthetic Cities

Discrete Animation

Computational Redistricting Multiscale Compactness Curve Shortening

Mean Curvature Flow (VRDI)

Computational Redistricting Multiscale Compactness Curve Shortening

Mean Curvature Flow (VRDI)

Multiscale Wrapup

Open questions:

- How much can we learn about the full profile from the relaxed version?
- Can the medial axis be computed from the TV-Profile?
- What is the right way to compare regions of the profiles?
- Spectral Versions (i.e. how to make the heat kernel useful)
- Random walk versions (absorbing boundary nodes)
- Distance based measures
- ...

Seats-Votes Curves

Seats-Votes Curves

Figure: Dem %: [.698,.458,.724,.43,.435,.428,.553,.489,.407,.387,.731,.45]

Seats–Votes Curves

Partisan Metrics

Definition (Mean-Median)

Horizontal distance between (.5, .5) and the seats votes curve).

Definition (Partisan Bias)

Vertical distance between (.5, .5) and the seats votes curve

Definition (Partisan Asymmetry)

Integral of the difference between the seats votes curve and its reflection around (.5,.5).

Definition (Efficiency Gap)

Wasted R Votes - Wasted D Votes

Total Votes

With equal turnout: twice the seat margin minus the vote margin.
Partisan Examples

Utah

- Mean–Median: -.024
- Efficiency Gap: -.039
- Asymmetry: .048
- Pennsylvania
 - Mean–Median: .011
 - Efficiency Gap: .063
 - Asymmetry: .050
- North Carolina
 - Mean–Median: .062
 - Efficiency Gap: .198
 - Asymmetry: .093

Seats–Votes Asymmetry

Seats–Votes Asymmetry

Seats–Votes Asymmetry

Alternative Formulations

In the efficiency gap formula ρ is the turnout ratio: the average number of votes cast in Democratic-won districts divided by the average in Republican-won districts.

¹ E. Veomett, Efficiency Gap, Voter Turnout, and the Efficiency Principle, Election Law Journal, 17(4), 249–263, (2018).

The shape and partisan imbalance metrics that I discussed above

The shape and partisan imbalance metrics that I discussed above

• Outlier Analysis

The shape and partisan imbalance metrics that I discussed above

- Outlier Analysis
- Political Geography Baselines

The shape and partisan imbalance metrics that I discussed above

- Outlier Analysis
- Political Geography Baselines
- Reform Legislation Consequences

The shape and partisan imbalance metrics that I discussed above

- Outlier Analysis
- Political Geography Baselines
- Reform Legislation Consequences
- More Case Studies:

http://people.csail.mit.edu/ddeford/IAP_2019_Part4.pdf

Ensemble Generation

Computational Redistricting Ensemble Applications Outliers

Outlier Example: NC

Computational Redistricting Ensemble Applications Outliers

Outlier Example: NC

Outllier Example: NC

Computational Redistricting Ensemble Applications Outliers

Outlier Example: PA

Computational Redistricting Ensemble Applications Baselines

Baseline Example: VA

*666

Computational Redistricting Ensemble Applications Baselines

Baseline Example: PA

Reform Example: VA

(a) Congress

Reform Example: VA

(b) Senate

Reform Example: VA

Reform Example: VA

X666

Reform Example: PA

1666

Try it at home!

• Draw your own districts with Districtr

- https://districtr.org
- Easy to generate complete districting plans in browser or on a tablet
- Measures district demographics and expected partisan performance
- Identifies communities of interest
- Generate your own ensembles with GerryChain¹
 - https://github.com/mggg/gerrychain
 - Flexible, modular software for sampling graph partitions
 - Handles the geodata processing as well as the MCMC sampling
 - Current support for a
 - Successfully applied in VA, NC, PA, etc.

¹Originally RunDMCMC

Computational Redistricting is **NOT** a solved problem!

The end!

Thanks!

