
Computational Redistricting

Introduction

Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into their
prime factors and seeking out by experimentation the laws of
appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.
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“Fairness” in Redistricting

Political Partitioning

(a) Geography (b) Dual Graph
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Arkansas Congressional Districts

(b) District # 1 (c) District # 2 (d) District # 3 (e) District # 4
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Districting Plans

We want to partition a given geography (graph), at a given scale, into k
pieces, satisfying some constraints:

• Contiguity

• Population Balance

• Compactness

• Communities of Interest

• Municipal Boundaries

• Competitiveness/Responsiveness

• Incumbency Protection

• ...
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“Fairness” in Redistricting

Why Grids?

(a) Iowa Counties (b) Congressional Districts

Figure: Still quintillions of possibilities...
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“Fairness” in Redistricting

Mathematical Formulation

Given a (connected) graph G = (V,E):

• A k-partition P = {V1, V2, . . . , Vk} of G is a collection of disjoint
subsets Vi ⊆ V whose union is V .

• A partition P is connected if the subgraph induced by Vi is
connected for all i.

• The cut edges of P are the edges (u,w) for which u ∈ Vi, w ∈ Vj ,
and i 6= j

• A partition P is ε-balanced if µ(1− ε) ≤ |Vi| ≤ µ(1 + ε) for all i
where µ is the mean of the |Vi|’s
• An equi–partition is a 0-balanced partition
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“Fairness” in Redistricting

Ugly Shapes

(a) NC12 #1 (b) NC12 #2 (c) NC12 #12

(d) PA11
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“Fairness” in Redistricting

Partisan Imbalance

(e) NC16 (f) PA TS-Proposed
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Partisan Fairness

• MA
• Duchin et al. (2018) Locating the representational baseline:

Republicans in Massachusetts arXiv:1810.09051
• Not all partisan outcomes are possible, given discretization

• MD
• Two recent preprints claiming not gerrymandered
• Court ruled one district unconstitutional

• NJ
• Controversial constitutional amendment
• Competitiveness defined in terms of historical statewide averaging
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“Fairness” in Redistricting

Virginia House of Delegates
(https://mggg.org/VA-report.pdf)

(a) Enacted (b) Dem (c) Princeton

(d) GOP1 (e) GOP2 (f) GOP3
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“Fairness” in Redistricting

Racial Gerrymandering in Virginia
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Racial Gerrymandering in Virginia
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“Fairness” in Redistricting

MORAL:

Computational Redistricting is
NOT a solved problem!
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“Fairness” in Redistricting

Outlier Analysis

• The wide variety in rules applied to districting problems (even in the
same state) means that any single measure of gerrymandering will be
insufficient/exploitable

• Instead we want to do outlier analysis by comparing to large
ensembles of other feasible plans.

• This allows us to understand the impacts of the underlying political
and demographic geography on a wide collection of metrics.
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Previous MCMC Approaches

AR Outlier Example

Figure: Mean–Median score using senate 2016 election data on 1,000,000 plans.
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Previous MCMC Approaches

Which ensembles?
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Previous MCMC Approaches

Ensembles in Practice

• The appeal of an ensemble method is that you get to control the
input data very carefully

• However, just because a particular type of data was not considered
doesn’t mean that the outcome is necessarily “fair”

• There are lots of “random” methods for constructing districting plans

• Most don’t offer any control over the distribution that you are
drawing from
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MCMC on partitions

1 Set constraints to define the state space

2 Start with an initial plan

3 Propose a modification

4 Verify that the modification satisfies the constraints

5 Accept using MH criterion

6 Repeat

Why?
• Control over sampling distribution and input data

• Possibility of local sampling

• Ergodic Theorem
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Previous MCMC Approaches

Single Edge Flip Proposals

1 Uniformly choose a cut edge

2 Change one of the incident node assignments to the other

• Mattingly et al. (2017, 2018) Court cases in NC and WI.

• Pegden et al. Assessing significance in a Markov chain without
mixing, PNAS, (2017). Court case in PA.
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Previous MCMC Approaches

Single Edge Ensembles
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Previous MCMC Approaches

PA Single Edge Flip



Computational Redistricting

Previous MCMC Approaches

Boundary Flip Distribution

(a) Compactness (b) 11996 cut edges
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Previous MCMC Approaches

Boundary Flip Mixing

(a) Initial (b) 10,000,000 Flip Steps
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Previous MCMC Approaches

Booundary Flip Mixing

(b) 10,000,000 Flip Steps
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Previous MCMC Approaches

Boundary Flip Mean–Median

(a) Flip Seed31 (b) Flip Seed99 (c) Flip Enacted
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Previous MCMC Approaches

Slowly Mixing Graph Families

Theorem

Let G be any connected graph. Then let G(d) be the graph obtained by
replacing each edge by a doubled d-star. Then the flip walk on partitions

of family of graphs G
(d)
d≥1 is slowly mixing, in the sense the Cheeger

constant is decaying exponentially fast. More specifically:

H(Metagraph(G(d)) = O(2−d)
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Slow Mixing Example


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Previous MCMC Approaches

Slow Mixing Example


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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Hardness Results

Uniform Sampling of Contiguous Partitions

Theorem

Suppose that D is the class of connected planar graphs. If there is a
polynomial time algorithm to sample uniformly from any of:

• the connected 2-partitions of graphs in D,

• the connected, 0-balanced 2-partitions of graphs in D,

• or the connected, 0-balanced k-partitions of graphs in D.

then RP = NP .

Conjecture

The same holds for uniform sampling of connected k-partitions.
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Hardness Results

Weighted Graphs

The case for node-weighted graphs also easily leads to hard problems. Our
graphs come with weight functions W : V → R, and a partition is
ε-balanced if µW (1− ε) ≤W (Vi) ≤ µW (1 + ε) where
W (Vi) =

∑
u∈Vi

W (u) and µW is the mean of the W (Vi).

By considering the complete graph with proscribed integer node weights,
finding a connected component of a given size is the SUBSET-SUM problem
and finding a k–equi partition is BIN PACKING.
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Tree Based Methods

Tree based methods

(a) District (b) Spanning Tree
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Tree Based Methods

Tree Seeds Ensemble



Computational Redistricting

Tree Based Methods

Recombination Steps

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Draw a spanning tree for the new super–district

4 Delete an edge leaving two population balanced districts

5 Repeat

6 (Optional) Mix with single edge flips
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Tree Based Methods

Recombination Step Example
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Recombination Step Example
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Tree Based Methods

Recombination Step Example
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Tree Based Methods

AR Ensembles
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Tree Based Methods

PA Recombination Steps


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}
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Tree Based Methods

Recombination Distribution

(a) Compactness (b) 5702 cut edges
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Tree Based Methods

Recombination Mixing

(a) Initial (b) 20,000 Recombination Steps
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Tree Based Methods

Recombination Mean–Median

(a) ReCom Seed31 (b) ReCom Seed99 (c) ReCom Enacted
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Tree Based Methods

General Tree Proposals

1 Form the induced subgraph on the complement of the cut edges

2 Add some subset of the cut edges

3 Uniformly select a maximal spanning forest

4 Apply a Markov chain on trees

5 Partition the spanning forest into k population balanced pieces
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Tree Based Methods

Special Cases

• Uniform Trees: Add all cut edges

• k–edges: Uniformly add k cut edges

• Recombination: Add all cut edges between one pair of districts.

• Super-Recombination: Take a maximal matching on the dual graph
to the districts and add all cut edges between matched districts.

• Bounce Walk: Add a single cut edge between enough pairs of districts
to make a tree in the dual graph of districts.

Question

What are the steady state distributions (and mixing times) of these walks?
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Tree Based Methods

Tree Partitioning Questions

• Characterizing the distribution on partitions defined by cutting trees!

• How bad is the best cut?

• Criteria for determining when a tree is ε cuttable?

• Criteria for determining when all spanning trees of a graph are ε
cuttable?

• How hard is it to find the mininum ε for which a cut exists?

• As a function of ε what proportion of spanning trees are cuttable?

• As a function of ε what proportion of edges in a given tree are
cuttable?

• What is the fastest way to sample uniformly from k − 1 balanced cut
edges?
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Conclusion

MORAL:

Computational Redistricting is
NOT a solved problem!
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Conclusion

The End

Thanks!
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