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Multiscale Compactness

Why Multiscale?

Single Valued Compactness Measures
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Multiscale Compactness

TV Isoperimtery

Isoperimetric Ratio

4πA

L2
= 0.359 0.411 0.680 0.841 1.000

Figure: A variety of shapes marked with isoperimetric ratios
4πA

L2
marked.
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Multiscale Compactness

TV Isoperimtery

Isoperimetric Profile

Definition (Isoperimetric Inequality)

Let Ω ⊆ Rn to be a compact region whose boundary ∂Ω ⊆ Ω is an
(n−1)-dimensional hypersurface in Rn

n · vol(Ω)
(n−1)

n · vol(B(1,0))
1
n ≤ area(∂Ω).

Definition (Isoperimetric Profile)

With Ω as above and t ∈ [0, vol(Ω)] we ask for the smallest surface area
needed to enclose volume t completely within Ω:

IΩ(t) := min{area(∂Σ) : Σ ⊆ Ω and vol(Σ) = t}.
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Total Variation

Definition (Three formulations of TV)

TV[f ] =

1

sup

{∫
Rn

[f(x)∇ · φ(x)] dx : φ ∈ C1
c (Rn → Rn) and ‖φ‖∞ ≤ 1

}
2 ∫

Rn

‖∇f‖2 dx

3 ∫ +∞

0

area(∂{f ≥ s})ds
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Multiscale Compactness
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Perimeter as Total Variation

Definition

For a region Σ ⊆ Rn, denote its indicator function 1Σ via

1Σ(x) :=

{
1 if x ∈ Σ
0 otherwise.

(1)

Then, a consequence of the co-area formula is that

area(∂Σ) = TV[1Σ]. (2)
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TV Relaxation

Definition (Isoperimetric Profile)

IΩ(t) =


inff∈L1(Rn) TV[f ]
subject to

∫
Rn f(x) dx = t

0 ≤ f ≤ 1Ω

f(x) ∈ {0, 1} ∀x ∈ Rn.

Definition (TV Profile)

ITV
Ω (t) :=

 minf∈L1(Rn) TV[f ]
subject to

∫
Rn f(x) dx = t

0 ≤ f ≤ 1Ω.
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Multiscale Compactness

TV Isoperimtery

Example: Circle

Proposition

For all (Ω, t), we have ITV
Ω (t) ≤ IΩ(t).

Example (Circle)

Suppose Ω ⊂ R2 is a circle of radius R, and take t = πr2 for r ∈ (0, R).
In this case, by the isoperimetric inequality we know IΩ(t) = 2πr. But

suppose we take f(x) ≡ r2

R2
. By the co-area formula

ITV
Ω (t) ≤ TV[f ] = 2πR · r

2

R2
= 2πr · r

R
< IΩ(t).

Hence, our relaxation is not tight.
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Multiscale Compactness

TV Isoperimtery

Isoperimetry and Convexity

Proposition (Isoperimetry)

Suppose B ⊂ Rn is a ball whose volume matches vol(Ω). Then, for all
t ∈ [0, vol(Ω)], we have ITV

B (t) ≤ ITV
Ω (t), and if the equality holds for

some t > 0 then Ω is a ball.

Proposition (Convexity)

ITV
Ω (t) is a convex function of t.

Proposition (Convex Envelope)

The function ITV
Ω is the lower convex envelope of IΩ.



Multiscale Compactness and Tree Walks

Multiscale Compactness
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Minimizer Structure

Proposition (Distinguished Solutions)

There exists a family (ft)t∈[0,1] such that:

• For any t ∈ [0, 1], the function ft ∈ L1(Rn) satisfies 0 ≤ ft ≤ 1Ω,∫
Rn ft(x) dx = t and TV(ft) = ITV

Ω (t).

• For any t ∈ [0, 1], there exist vt ∈ (0, 1) such that ft takes its values
in {0, vt, 1}.

• For a.e. x ∈ Ω, the function t→ ft(x) is increasing.
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Simple Animation
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Cheeger Sets

Definition (Cheeger Constant)

The Cheeger constant of Ω, denoted by h1(Ω), is defined as

h1(Ω) := inf
Σ̃⊆Ω

area(∂Σ̃)

vol(Σ̃)
,

and a subset Σ ⊆ Ω such that h1(Ω) = area(∂Σ)
vol(Σ) is known as a Cheeger set

of Ω.

Proposition (Small t)

Let Ω be compact, let h1(Ω) be the Cheeger constant of Ω, and let Σ be
a Cheeger set of Ω. Then for any t ≤ vol(Σ), we have ITV

Ω (t) = h1(Ω)t,
and a solution f is given by f := t

vol(Σ) · 1Σ.
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Synthetic Examples
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Synthetic Profiles
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Synthetic Derivatives
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North Carolina
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NC 2011 Districts
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NC 2016 Districts
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Higher Dimensions
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Other Formulations

Definition (Population Measure)

ITV
Ω,ρ(t) :=

 minf∈L1(Rn) TV[f ]
subject to

∫
Rn f(x) dρ(x) = t

0 ≤ f ≤ 1Ω.

Definition (Discrete )

ITV
V0

(t) :=


minf∈RV

∑
(v,w)∈E |f(v)− f(w)|

subject to
∑
v∈V0

f(v) = t|V0|
f(v) = 0 ∀v 6∈ V0

f(v) ∈ [0, 1] ∀v ∈ V.
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Synthetic Cities
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Discrete Animation


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Variants

Heat Trace Kernel (VRDI)
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Heat Trace Kernel (VRDI)

(a) Continuous (b) Discrete
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Multiscale Compactness

Variants

Mean Curvature Flow (VRDI)


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}


Me
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Multiscale Compactness

Variants

Mean Curvature Flow (VRDI)


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}


Me
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Single Edge Flip


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}
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Merge steps

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Bipartition the new super–district

4 Repeat

5 (Optional) Mix with single edge flips

(a) Before (b) During (c) After
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Merge steps
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Merge Walks

Variants

Agglomerative

Method

• Start with each node in own
component

• Select an arbitrary edge
between two components

• Merge clusters if
population allows and
doesn’t disconnect the
complement

• If population doesn’t
allow, delete edge

• If merging would
disconnect the graph,
merge the smallest
population component

• Repeat until only 2 clusters
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Merge Walks

Variants

Flood Fill

Method

• Select a node at random

• Select a random neighbor of
the current cluster

• Add if population allows and
doesn’t disconnect the
complement

• Repeat until population
balanced
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Merge Walks

Variants

Min Cut

Method

• Select random source and
sink nodes

• Weight the edges in the
graph by 10min distance−3

• Compute the min cut

• Repeat until population
balanced
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Merge Walks

Variants

Path Fill

Method

• Start with an arbitrary node

• Select a node not in the
district

• Add all the nodes on a
shortest path from the new
node to the district if it
doesn’t disconnect the
complement or add too
much to the population

• Repeat until population
balanced



Multiscale Compactness and Tree Walks

Merge Walks

Tree Steps

Tree Partitions

Method

• Generate a uniform spanning
tree

• Cut an edge that leaves
population balanced
components
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Merge Walks

Tree Steps

Pennsylvania


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}
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Conclusion

The end!

Thanks!
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