Compactness Profiles and Reversible Sampling Methods for Plane and Graph Partitions

Daryl DeFord

MIT/Tufts Metric Geometry and Gerrymandering Group

SAMSI Gerrymandering Workshop Duke University October 8, 2018

Outline

1 Introduction

Multiscale Compactness Why Multiscale? TV Isoperimtery Variants

Merge Walks Variants Tree Steps

4 Conclusion

Collaborators

- Prof. Moon Duchin
- Prof. Justin Solomon
- Hugo Lavenant
- Zachary Schutzman
- Voting Rights Data Institute
 - 52 undergraduate and graduate students
 - 6–8 week summer program
 - mggg.org
 - github.com/gerrymandr

MIT CSAIL Universitè Paris–Sud Math UPenn CIS

Tufts Math

Multiscale Compactness and Tree Walks Introduction

Arkansas

Multiscale Compactness

Why Multiscale?

Single Valued Compactness Measures

Multiscale Compactness

TV Isoperimtery

Isoperimetric Ratio

Multiscale Compactness

TV Isoperimtery

Isoperimetric Profile

Definition (Isoperimetric Inequality)

Let $\Omega\subseteq\mathbb{R}^n$ to be a compact region whose boundary $\partial\Omega\subseteq\Omega$ is an (n-1)-dimensional hypersurface in \mathbb{R}^n

$$n \cdot \operatorname{vol}(\Omega)^{\frac{(n-1)}{n}} \cdot \operatorname{vol}(B(1,\mathbf{0}))^{\frac{1}{n}} \leq \operatorname{area}(\partial\Omega).$$

Multiscale Compactness

TV Isoperimtery

Isoperimetric Profile

Definition (Isoperimetric Inequality)

Let $\Omega\subseteq\mathbb{R}^n$ to be a compact region whose boundary $\partial\Omega\subseteq\Omega$ is an $(n-1)\text{-dimensional hypersurface in }\mathbb{R}^n$

$$n \cdot \operatorname{vol}(\Omega)^{\frac{(n-1)}{n}} \cdot \operatorname{vol}(B(1,\mathbf{0}))^{\frac{1}{n}} \leq \operatorname{area}(\partial\Omega).$$

Definition (Isoperimetric Profile)

With Ω as above and $t \in [0, vol(\Omega)]$ we ask for the smallest surface area needed to enclose volume t completely within Ω :

 $I_{\Omega}(t) := \min\{\operatorname{area}(\partial \Sigma) : \Sigma \subseteq \Omega \text{ and } \operatorname{vol}(\Sigma) = t\}.$

Multiscale Compactness

TV Isoperimtery

Total Variation

Definition (Three formulations of TV)

$$\mathrm{TV}[f] =$$

Multiscale Compactness

TV Isoperimtery

Perimeter as Total Variation

Definition

For a region $\Sigma \subseteq \mathbb{R}^n$, denote its *indicator function* $\mathbb{1}_{\Sigma}$ via

$$\mathbb{1}_{\Sigma}(x) := \begin{cases} 1 & \text{if } x \in \Sigma \\ 0 & \text{otherwise.} \end{cases}$$

Then, a consequence of the co-area formula is that

$$\operatorname{area}(\partial \Sigma) = \operatorname{TV}[\mathbb{1}_{\Sigma}].$$
 (2)

(1)

Multiscale Compactness

TV Isoperimtery

TV Relaxation

Definition (Isoperimetric Profile)

$$I_{\Omega}(t) = \begin{cases} \inf_{f \in L^{1}(\mathbb{R}^{n})} & \operatorname{TV}[f] \\ \text{subject to} & \int_{\mathbb{R}^{n}} f(x) \, dx = t \\ & 0 \leq f \leq \mathbb{1}_{\Omega} \\ & f(x) \in \{0, 1\} \, \forall x \in \mathbb{R}^{n}. \end{cases}$$

Multiscale Compactness

TV Isoperimtery

TV Relaxation

Definition (Isoperimetric Profile)

$$I_{\Omega}(t) = \begin{cases} \inf_{f \in L^{1}(\mathbb{R}^{n})} & \operatorname{TV}[f] \\ \text{subject to} & \int_{\mathbb{R}^{n}} f(x) \, dx = t \\ & 0 \leq f \leq \mathbb{1}_{\Omega} \\ & f(x) \in \{0, 1\} \; \forall x \in \mathbb{R}^{n}. \end{cases}$$

Definition (TV Profile)

$$I_{\Omega}^{\mathrm{TV}}(t) := \begin{cases} \min_{f \in L^{1}(\mathbb{R}^{n})} & \mathrm{TV}[f] \\ \text{subject to} & \int_{\mathbb{R}^{n}} f(x) \, dx = t \\ & 0 \leq f \leq \mathbb{1}_{\Omega}. \end{cases}$$

Multiscale Compactness

TV Isoperimtery

Example: Circle

Proposition

For all (Ω, t) , we have $I_{\Omega}^{\mathrm{TV}}(t) \leq I_{\Omega}(t)$.

Example (Circle)

Suppose $\Omega \subset \mathbb{R}^2$ is a circle of radius R, and take $t = \pi r^2$ for $r \in (0, R)$. In this case, by the isoperimetric inequality we know $I_{\Omega}(t) = 2\pi r$. But suppose we take $f(x) \equiv \frac{r^2}{R^2}$. By the co-area formula

$$I_{\Omega}^{\mathrm{TV}}(t) \leq \mathrm{TV}[f] = 2\pi R \cdot \frac{r^2}{R^2} = 2\pi r \cdot \frac{r}{R} < I_{\Omega}(t).$$

Hence, our relaxation is not tight.

Multiscale Compactness

TV Isoperimtery

Isoperimetry and Convexity

Proposition (Isoperimetry)

Suppose $B \subset \mathbb{R}^n$ is a ball whose volume matches $vol(\Omega)$. Then, for all $t \in [0, vol(\Omega)]$, we have $I_B^{TV}(t) \leq I_{\Omega}^{TV}(t)$, and if the equality holds for some t > 0 then Ω is a ball.

Proposition (Convexity)

 $I_{\Omega}^{\mathrm{TV}}(t)$ is a convex function of t.

Proposition (Convex Envelope)

The function I_{Ω}^{TV} is the lower convex envelope of I_{Ω} .

Multiscale Compactness

TV Isoperimtery

Minimizer Structure

Proposition (Distinguished Solutions)

There exists a family $(f_t)_{t \in [0,1]}$ such that:

- For any $t \in [0,1]$, the function $f_t \in L^1(\mathbb{R}^n)$ satisfies $0 \le f_t \le \mathbb{1}_{\Omega}$, $\int_{\mathbb{R}^n} f_t(x) dx = t$ and $\mathrm{TV}(f_t) = I_{\Omega}^{\mathrm{TV}}(t)$.
- For any $t \in [0,1]$, there exist $v_t \in (0,1)$ such that f_t takes its values in $\{0, v_t, 1\}$.
- For a.e. $x \in \Omega$, the function $t \to f_t(x)$ is increasing.

Multiscale Compactness

TV Isoperimtery

Simple Animation

Multiscale Compactness

TV Isoperimtery

Cheeger Sets

Definition (Cheeger Constant)

The Cheeger constant of Ω , denoted by $h_1(\Omega)$, is defined as

$$h_1(\Omega) := \inf_{\tilde{\Sigma} \subseteq \Omega} \frac{\operatorname{area}(\partial \tilde{\Sigma})}{\operatorname{vol}(\tilde{\Sigma})},$$

and a subset $\Sigma \subseteq \Omega$ such that $h_1(\Omega) = \frac{\operatorname{area}(\partial \Sigma)}{\operatorname{vol}(\Sigma)}$ is known as a Cheeger set of Ω .

Proposition (Small t)

Let Ω be compact, let $h_1(\Omega)$ be the Cheeger constant of Ω , and let Σ be a Cheeger set of Ω . Then for any $t \leq \operatorname{vol}(\Sigma)$, we have $I_{\Omega}^{\mathrm{TV}}(t) = h_1(\Omega)t$, and a solution f is given by $f := \frac{t}{\operatorname{vol}(\Sigma)} \cdot \mathbb{1}_{\Sigma}$.

Multiscale Compactness

TV Isoperimtery

Synthetic Examples

Multiscale Compactness

TV Isoperimtery

Synthetic Profiles

Multiscale Compactness

TV Isoperimtery

Synthetic Derivatives

Multiscale Compactness

TV Isoperimtery

North Carolina

Multiscale Compactness

TV Isoperimtery

NC 2011 Districts

Dist 1	rict L	District 2	District 3	District 4	District 5	District 6	District 7	District 8	District 9	District 10	District 11	District 12	District 13
t = 0.23		2							*			٤	-
t = 0.34		' ~							*			ł	-
t = 0.45		' `							•			3	-
t = 0.56		'	1			•			•			ع	-
t = 0.67	1	'	1						•			بري. د	
t = 0.78	1		l .3		-				**	•		r a	
t = 0.89	3		45			' - *		•	**	3	1	d'and	╼╼ᢏ
t = 1.0	k		4			-		1	**	*		And a	7 5

Multiscale Compactness

TV Isoperimtery

NC 2016 Districts

Di	strict 1	District 2	D	istrict 3	District 4	District 5	District 6	District 7	District 8	District 9	District 10	District 11	District 12	District 13
t = 0.23	1						• 3	3	-	~				
t = 0.34	1						• 1	3	-	~		-		
t = 0.45	1						• 1	3	-	~				
t = 0.56	1	8 1				1	- 1	3	•	~			*	
t = 0.67	- 1	E _				, –	• 1	3	~	~	-	e 10		
t = 0.78	7	E 🛃		-		, –	- 1	3	~	~	-	e n		-
t = 0.89	~	E zi		J		, 4	- 1	5	~	~		~		-
t = 1.0	~~	r X	X	7	∖ Ľ,	,	• 35		••••		-	_		74 *

Multiscale Compactness

TV Isoperimtery

District 1	District 2	District 3	District 4	District 5	District 6	District 7	District 8	District 9	District 10	District 11	District 12	District 13
t = 0.23											\blacklozenge	
t=											${\color{black} \bullet}$	\$
t =											${\color{black} \bullet}$	•
f =											•	\$
t = 0.67		•	•	-		-					\bullet	•
t =		•		-	F	-	-		•		•	-
t =		• -	-	. T	ſ			•			♦	-
t = 1.0	•	* 🔺	.	. ""	Ĩ		-	•	-		*	**

Multiscale Compactness

TV Isoperimtery

Higher Dimensions

Multiscale Compactness

TV Isoperimtery

Other Formulations

Definition (Population Measure)

$$I_{\Omega,\rho}^{\mathrm{TV}}(t) := \begin{cases} \min_{f \in L^1(\mathbb{R}^n)} & \mathrm{TV}[f] \\ \text{subject to} & \int_{\mathbb{R}^n} f(x) \, d\rho(x) = t \\ & 0 \le f \le \mathbb{1}_{\Omega}. \end{cases}$$

Definition (Discrete)

$$I_{V_0}^{\mathrm{TV}}(t) := \begin{cases} \min_{f \in \mathbb{R}^V} & \sum_{(v,w) \in E} |f(v) - f(w)| \\ \text{subject to} & \sum_{v \in V_0} f(v) = t |V_0| \\ & f(v) = 0 \ \forall v \notin V_0 \\ & f(v) \in [0,1] \ \forall v \in V. \end{cases}$$

Multiscale Compactness

TV Isoperimtery

Synthetic Cities

Multiscale Compactness

TV Isoperimtery

Discrete Animation

Multiscale Compactness

Variants

Heat Trace Kernel (VRDI)

Multiscale Compactness

Variants

Heat Trace Kernel (VRDI)

Multiscale Compactness

Variants

Mean Curvature Flow (VRDI)

Multiscale Compactness

Variants

Mean Curvature Flow (VRDI)

Multiscale Compactness and Tree Walks Merge Walks

Single Edge Flip

Merge steps

- 1 At each step, select two adjacent districts
- Ø Merge the subunits of those two districts
- 3 Bipartition the new super-district
- 4 Repeat
- 6 (Optional) Mix with single edge flips

Merge steps

- 1 At each step, select two adjacent districts
- Ø Merge the subunits of those two districts
- 3 Bipartition the new super-district
- 4 Repeat
- 6 (Optional) Mix with single edge flips

(b) During

Merge Walks

Variants

Agglomerative

- Start with each node in own component
- Select an arbitrary edge between two components
 - Merge clusters if population allows and doesn't disconnect the complement
 - If population doesn't allow, delete edge
 - If merging would disconnect the graph, merge the smallest population component
- Repeat until only 2 clusters

Merge Walks

Variants

Flood Fill

- Select a node at random
- Select a random neighbor of the current cluster
- Add if population allows and doesn't disconnect the complement
- Repeat until population balanced

Merge Walks

Variants

Min Cut

- Select random source and sink nodes
- Weight the edges in the graph by $10^{min\ distance-3}$
- Compute the min cut
- Repeat until population balanced

Merge Walks

Variants

Path Fill

- Start with an arbitrary node
- Select a node not in the district
- Add all the nodes on a shortest path from the new node to the district if it doesn't disconnect the complement or add too much to the population
- Repeat until population balanced

Merge Walks

Tree Steps

Tree Partitions

- Generate a uniform spanning tree
- Cut an edge that leaves population balanced components

Merge Walks

Tree Steps

Pennsylvania

Multiscale Compactness and Tree Walks Conclusion

The end!

Thanks!

