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Introduction

Code for this talk:

Example (Sage code:)

An interactive tool for experimenting with the objects from this talk can
be found here:

• https:/people.csail.mit.edu/ddeford/STS_Tufts

• https:/people.csail.mit.edu/ddeford/sage_cell_dolphins

You can right–click to open the page source and copy the Sage code to
https://people.csail.mit.edu.ddeford/sage_cell to make
modifications and run variations.

https:/people.csail.mit.edu/ddeford/STS_Tufts
https:/people.csail.mit.edu/ddeford/sage_cell_dolphins
https://people.csail.mit.edu.ddeford/sage_cell


Null Models for Social Networks

Introduction

Modeling Philosophy

Philosophy

Data

Math Objects

Output

Build Model

A
nalysis

Prediction

M
ath



Null Models for Social Networks

Introduction

Modeling Philosophy

Philosophy

Data

Math Objects

Output

Build Model

A
nalysis

Prediction

M
ath



Null Models for Social Networks

Introduction

Modeling Philosophy

Philosophy

Data Math Objects

Output

Build Model

A
nalysis

Prediction

M
ath



Null Models for Social Networks

Introduction

Modeling Philosophy

Philosophy

Data Math Objects

Output

Build Model

A
nalysis

Prediction

M
ath



Null Models for Social Networks

Introduction

Modeling Philosophy

Philosophy

Data Math Objects

Output

Build Model

A
nalysis

Prediction

M
ath



Null Models for Social Networks

Introduction

Modeling Philosophy

Philosophy

Data Math Objects

Output

Build Model

A
nalysis

Prediction

M
ath



Null Models for Social Networks

Social Networks

What is a social network?

What is a social network?

Definition (Social Network)

Mathematically, a social network is represented by a collection of “nodes”
representing individual actors and a set of “edges” representing a binary
relationship between the actors.

Example

What kinds of systems can social networks describe?

• What could be represented by nodes?

• Academic Departments

• What type of edges could connect them?

• Located in same building
• Students who major in both
• Crosslisted courses
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Social Networks

What is a social network?

What is a social network?

Definition (Social Network)

Mathematically, a social network is represented by a collection of “nodes”
representing individual actors and a set of “edges” representing a binary
relationship between the actors.

Example

What kinds of systems can social networks describe?

• What could be represented by nodes?
• Tufts Students

• What type of edges could connect them?
• In a class together
• Facebook friends
• Speak at least twice a week
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Social Networks

What is a social network?

Centrality

Figure: Relevant comic by Randall Munroe1 (emphasis mine).

1 https://xkcd.com/451/
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What is a social network?

Common Properties of Social Networks

Example (What features distinguish social networks?)

• ?

• Transitivity

• Community structure

• Small average path length

• Long–tailed degree distribution

• Hubs

• . . .
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Ego Networks

Definition (Ego Network)

An ego network is a social network centered at a particular individual
containing their connections and the connections between their “friends.”

Example (Draw your ego network)



Null Models for Social Networks

Social Networks

Ego Networks

Ego Networks

Definition (Ego Network)

An ego network is a social network centered at a particular individual
containing their connections and the connections between their “friends.”

Example (Draw your ego network)



Null Models for Social Networks

Social Networks

Ego Networks

Ego Networks

Definition (Ego Network)

An ego network is a social network centered at a particular individual
containing their connections and the connections between their “friends.”

Example (Draw your ego network)



Null Models for Social Networks

Social Networks

Ego Networks

How to construct networks?

Example (Which edges to add?)

• ?

• Proximity

(a) Centrality (b) Clustering

Figure: Dolphin social network1

s 1D. Lusseau, K. Schneider, O. Boisseau, Patti Haase, E. Slooten, and S. Dawson, The bottlenose dolphin community of Doubtful Sound
features a large proportion of long-lasting associations, Behavioral Ecology and Sociobiology 54 (2003), no. 4, 396–405.
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Different Perspectives on “Friendship”

Krackhardt D. (1987). Cognitive social structures. Social Networks, 9, 104-134.
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Social Networks

People are complicated

Karnataka Village Data

(a) Village 5 (b) Village 61

Figure: Two of the Karnataka Village networks1

1 A. Banerjee, A.G. Chandrasekhar, E. Duflo, and M.O. Jackson, The Diffusion of Microfinance. Science, (2013).
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Social Networks

People are complicated

Village Layers

Layer Village 4 Village 61
Description Density Comp. Giant % Density Comp. Giant %

Borrow Money .0082 26 .8354 .0108 15 .9188
Give Advice .0077 49 .5892 .0098 34 .7377

Help Make Decisions .0076 61 .1277 .0100 24 .8562
Borrow Kerosene or Rice .0085 21 .8338 .0113 14 .9171

Lend Kerosene or Rice .0086 22 .8308 .0113 14 .9255
Lend Money .0081 14 .7908 .0107 17 .9036

Medical Advice .0075 84 .2938 .0106 14 .9306
Friends .0089 15 .9277 .0105 22 .8714

Relatives .0085 29 .7231 .0105 26 .5448
Attend Temple With .0073 117 .0462 .0089 108 .0372

Visit Their Home .0087 15 .9185 .0116 11 .9475
Visit Your Home .0088 16 .9108 .0117 11 .9492

Aggregate .0121 3 .9862 .0155 8 .9679

Table: Layer information for two of the Karnataka Villages 1.

1 D. DeFord and S. Pauls, A new framework for dynamical models on multiplex networks, Journal of Complex Networks, 6(3), 353–381,

2018.
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Null Models

Definition (Null Model)

A random network, parameterized to match some features of a given
network, used to compare “expected” network measures.

Example (How to grow a network?)

• Ego networks
• Start with a single node
• Attach that node to k other nodes
• Add edges between the each pair of friends with probability p

• ?
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Random Networks

Configuration Model

Configuration Model (Degree Sequence)

Parameters

• Initial graph

Process

• Start with the initial graph

• Cut each edge in half so that each end remains attached to one of
the adjacent nodes

• Randomly pair up the half–edges
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Configuration Model

Configuration Model (Degree Sequence)

(a) Graph Example (b) Rewired
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Random Networks

Configuration Model

Dolphins Degree Distribution

(a) Dolphins (b) Degree Distribution
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Random Networks

Configuration Model

Configuration Transitivity Comparison

(a) Average Path Length (b) Transitivity
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Random Networks

Erdos–Renyi

Erdos–Renyi (Independence)

Parameters

• Number of nodes n

• Connection Probability: p

Process

• Start with n nodes

• Connect each pair of nodes independently with probability p

P. Erdos and A. Renyi: On Random Graphs. I, Publicationes Mathematicae, 6, 290-–297, (1959).
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Erdos–Renyi

Erdos–Renyi (Independence)

(a) Graph Example (b) Degree Distribution
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Random Networks

Erdos–Renyi

ER Transitivity Comparison

(a) Density (b) Transitivity
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Random Networks

Barabasi–Albert

Barabasi–Albert (Centrality)

Parameters

• Initial graph

• Number of nodes: n

• Number of neighbors for new nodes: m

Process

• Start with the initial graph

• Add nodes one at a time until there are n total

• Each added node gets connected to m nodes already in the graph

• These connections are chosen so that the probability that the new
node is connected to an existing node is proportional to the degree of
the existing node

A. Barabasi and R. Albert: Emergence of scaling in random networks, Science, 286 (5439), 509-–512, (1999).
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Random Networks

Barabasi–Albert

Barabasi–Albert (Centrality)

(a) Graph Example (b) Degree Distribution
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Random Networks

Barabasi–Albert

BA Transitivity Comparison

(a) Degrees (b) Transitivity
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Random Networks

Watts–Strogatz

Watts–Strogatz (Local Clustering)

Parameters

• Number of nodes n

• Number of initial neighbors: k

• Rewiring Probability: p

Process

• Start with n nodes connected in a ring so that each node is
connected to k

2 nodes on each side

• For each edge in the initial graph, rewire it with probability p to a
uniformly chosen other node in the graph

D. Watts and S. Strogatz, Collective dynamics of ’small-world’ networks, Nature, 393 (6684), 440-–442, (1998).
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Random Networks

Watts–Strogatz

Watts–Strogatz (Local Clustering)

(a) Graph Example (b) Degree Distribution
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Random Networks

Watts–Strogatz

WS Transitivity Comparison

(a) Average Path Length (b) Transitivity
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Conclusion

Ego Models

Example (Things to think about)

• https://people.csail.mit.edu/ddeford/STS_Tufts

• Can you generate your ego network with one of these null models?

• Which model is most likely to generate your ego network?

• Which features of your network aren’t described well by any of the
models?

• Can you create your own model that generates networks similar to
your ego network?

https://people.csail.mit.edu/ddeford/STS_Tufts
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Conclusion

The end!

Thanks!
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Dot Product Models

Dot Product Graphs

Definition (Dot Product Graph)

G is a dot product graph of dimension d if there exists a map
f : V (G)→ Rd such that (i, j) ∈ E(G) if and only if 〈f(i), f(j)〉 > 1.

• Initial work: Fiduccia et al. (1998)1

• Planar graphs: Kang et al. (2011)2

• NP–Hard: Kang and Muller (2012)3

• n
2 critical graphs: Li and Chang (2014)4

1C. Fiduccia, E. Scheinerman, A. Trenk, and J. Zito: Dot Product Representations
of Graphs, Discrete Mathematics, 181, 1998, 113–138.

2R. Kang, L. Lovasz, T. Muller, and E. Scheinerman: Dot Product Representations
of Planar Graphs, Electronic Journal of Combinatorics, 18, (2011), 1–14.

3Sphere and Dot Product Representations of Graphs: Discrete Computational
Geometry, 47, (2012), 548–568.

4B. Li and G. Chang: Dot Product Dimension of Graphs, Discrete
Applied Mathematics, 166, (2014), 159–163
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Interpretations

• Since each node is associated to a vector, it is natural to try and
interpret the properties of the node from the vector

• 〈x, y〉 = ||x|| · ||y|| cos(x, y)

• Angle – Community assignment

• Magnitude – Centrality
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Interpretations
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interpret the properties of the node from the vector

• 〈x, y〉 = ||x|| · ||y|| cos(x, y)
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Dot Product Models

Angle – Community Assignment

(a) Vectors (b) Graph



Null Models for Social Networks

Dot Product Models

Magnitude – Centrality

(c) Vectors (d) Graph
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Dot Product Models

Network Properties

• Initial work: Kraetzel et al. (2005)5

• General distributions: Young and Scheinerman (2007)6

• Small world networks

• Clustering
• Small diameter
• Degree distribution

5M. Kraetzel, C. Nickel, and E. Scheinerman: Random Dot Product
Networks: A model for social networks, Preliminary Manuscript, (2005).

6S. Young and E. Scheinerman: Random Dot Product Models for Social
Networks, Algorithms and Models for the Web-Graph, Lecture Notes
in Computer Science, 4863, (2007), 138–149.
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Dot Product Models

Statistical Applications

• Inverse problem: Scheinerman and Tucker (2010)7

• Iterative SVD for approximating Ai,j = 〈Xi, Xj〉
• Angular k-means

• Spectral Embedding and Statistics: Priebe Lab (2012–present)

• Adjacency embedding8

• Hypothesis testing9

• Limit theorems10

7E. Scheinerman and K. Tucker: Modeling graphs using dot product
representations, Computational Statistics, 25, (2010), 1–16.

8D. Sussman, M. Tang, D. Fishkind, and C. Priebe: A consistent adjacency
spectral embedding for stochastic blockmodel graphs, Journal of the American
Statistical Association, 107, (2012), 1119–1128.

9M. Tang, A. Athreya, D. Sussman, V. Lyzinski, and C. Priebe: A
nonparametric two–sample hypothesis testing problem for random graphs, Arxiv:
1409.2344v2, (2014), 1–24.

10M. Tang and C. Priebe: Limit theorems for eigenvectors of the
normalized Laplacian for random graphs, ArXiv:1607.08601, (2016), 1–52.
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Dot Product Models

WRDPM

WRDPM

(WRDPM 0): Select a probability distribution P (p1, p2, . . . , pk) for
the edge weights. Let Si ⊆ R the domain for pi.

(WRDPM 1): Select the number of desired nodes n.

(WRDPM 2): For each parameter pi, select a dimension di.

(WRDPM 3): For each parameter pi, select a distribution Wi

defined over Rdi so that P(〈Xi, Yi〉 ∈ Si) = 1 where Xi and Yi are
drawn independently from Wi.

(WRDPM 4): For each node, 1 ≤ j ≤ n, select k vectors 1 ≤ i ≤ k
(one from each parameter space), Xj

i ∈ Rdi , according to distribution
Wi.

(WRDPM 5): Finally, construct a weighted adjacency matrix, A, for
the network, with Aj,` drawn according to

P (〈X`
1, X

j
1〉, 〈X`

2, X
j
2〉, . . . , 〈X`

k, X
j
k〉) for j > `, Aj,` = A`,j for

j > ` and Aj,j = 0 for all 1 ≤ j ≤ n.
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Example: Uniform Noise

0) Take P to be the Poisson distribution with parameters λ.

1) Select n = 150.

2) Choose dλ = 3

3) let Y be a normal random variable with mean 0 and variance .1 and
take Wλ to be be defined by:

Wλ =


e1 + Y e1 + Y e2 + Y e3

1
3

e2 + Y e1 + Y e2 + Y e3
1
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e3 + Y e1 + Y e2 + Y e3
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Edge Parameterized Models

Theorem

Let n be a fixed positive integer. For each pair (i, j) with 1 ≤ i < j ≤ n
let ai,j = aj,i ∈ R. Then there exist n real numbers a`,` for 1 ≤ ` ≤ n
such that the matrix Ai,j = ai,j is positive definite.

Proof.

Let the ai,j be selected arbitrarily. For 1 ≤ ` ≤ n choose a`,` ∈ R so that
a`,` >

∑
j 6=` |aj,`|. Form a matrix A with Ai,j = ai,j . This is a real

symmetric matrix and so by the spectral theorem A has real eigenvalues.
Applying Gershgorin’s Circle Theorem to A gives that the eigenvalues of A
lie in the closed disks centered at a`,` with radius

∑
j 6=` |aj,`|. Intersecting

these disks with the real line gives that the eigenvalues of A must lie in⋃n
`=1

[
a`,` −

∑
j 6=` |aj,`|, a`,` +

∑
j 6=` |aj,`|

]
⊆ R+. Thus, all eigenvalues

of A are positive and A is positive definite.
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Edge Parameterized Models

Corollary

Any generative network model, on a fixed number of nodes n, where the
edge weight between each pair of nodes is drawn independently from a
fixed probability distribution, possibly with different parameters for each
pair, can be realized under the WRDPN.

Proof.

Let P be the k–parameter distribution from which the edge weights are
drawn and for 1 ≤ i ≤ k let aij,` = ai`,j be the value of the ith parameter

between nodes j and `. Applying Theorem 1 to the collection aij,` = ai`,j
gives a positive definite matrix Ai. Thus, there exists an n× n matrix Xi

such that (Xi)TXi = A.
To form the WRDPM that matches the given generative model we take
di = n for all 1 ≤ i ≤ k and to each node 1 ≤ j ≤ n assign the collection
of vectors given by the jth columns of the Xi for 1 ≤ i ≤ k.
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Examples

• Erdos–Renyi
• Single vector for W
• Simplest null model

• Chung–Lu

• One–dimensional model
• Expected degree distribution
• Poisson version: Ranola et al. (2010)11

• WSBM

• Finite W
• Community structure
• Inference

11J. Ranola, S. Ahn, M. Sehl, D. Smith, and K. Lange:
A Poisson Model for random multigraphs, Bioinformatics, 26, (2010), 2004–2011.
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Methodology

Want to find a collection of d× n vectors {Xi} in order to approximate
the entries of Ai,j by 〈Xi, Xj〉. Equivalently, XTX ≈ A.

• Positive semi–definite approximation

• Extra degrees of freedom along diagonal

• Introduce a diagonal term

• Alternating, iterative optimization12

12E. Scheinerman and K. Tucker: Modeling graphs using dot
product representations, Computational Statistics, 25, (2010), 1–16.
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Unweighted Collaboration Network

(i) Collaboration
Network

(j) Unweighted 2–Embedding (k) Unweighted 3–Embedding

13

13V. Batagelj and A. Mrvar: Pajek datasets, (2006), URL:
http://vlado.fmf.uni-lj.si/pub/networks/data/.
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Weighted Collaboration Network

(l) Collaboration
Network

(m) Weighted 2–Embedding (n) Weighted 3–Embedding

14

14V. Batagelj and A. Mrvar: Pajek datasets, (2006), URL:
http://vlado.fmf.uni-lj.si/pub/networks/data/.
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Voting Data

J. Lewis and K. Poole: Roll Call Data,
voteview.com/dwnl.html.
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Dimension Selection

Since the dimension of the embedding is intrinsically related to the realized
community structure it is natural to try and make use of this relationship
to determine the right choice of d. Motivated by the case of disjoint
communities, where if we have an effective, normalized embedding we
should have

〈Xi, Xj〉 =

{
1 i and j belong to the same community

0 i and j belong to different communities

Thus, the sum of intra–community dot products should be
∑`
i=1

(
z`
2

)
.

Similarly, the sum of the inter–community dot products should be 0. we
define a stress function s depending on the community assignments after
embedding.

s(d) =

d∑
i=1

(
zi
2

)
− sintra(d) + sinter(d)
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Dimension Example

(o) Weighted Network (p) 2-Embedding (q) 3-Embedding

(r) Stress Function

Figure: Comparison of WRDPN embeddings of a weighted network (a) as the
dimension of the embedding varies. As expected, the minimum value occurs at
d = 3, matching the correct structure.
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Coauthorship Revisited

Figure: Comparison of stress values for the computational geometry coauthorship
network between the weighted and unweighted realizations. The weighted
embedding significantly outperforms the binarized model.
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