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Abstract

Space Filling Curves are frequently used in parallel processing

applications to order and distribute inputs while preserving proximity.

Several different metrics have been proposed for analyzing and comparing

the efficiency of different space filling curves, particularly in database

settings. Here, we introduce a general new metric, called Average
Communicated Distance, that models the average pairwise

communication cost expected to be incurred by an algorithm that makes use

of an arbitrary space filling curve. For the purpose of empirical evaluation of

this metric, we modeled the communications structure of the Fast Multipole

Method for n body problems.

Using this model, we empirically address a number of interesting

questions pertaining to the effectiveness of space filling curves in reducing

communication, under different combinations of network topology and input

distribution settings. We consider these problems from the perspective of

ordering the input data, as well as using space filling curves to assign ranks

to the processors. Our results for these varied scenarios point towards a list

of recommendations based on specific knowledge about the input data. In

addition, we present some new empirical results, relating to proximity

preservation under the average nearest neighbor stretch metric, that are

application independent.

Introduction

Many applications of parallel computing rely on distributing codependent

portions of a given problem onto multiple processors. This communication

behavior often limits the performance of algorithms in practice, as each

processor’s computations cannot be performed without the data, but

generally all of the processors are trying to communicate at the same time

over the same network.

In the context of these parallel computing applications, space filling

curves may be implemented in two distinct fashions. Most commonly,

curves are used to provide an ordering on a set of n dimensional input

points that is used to assign the data to individual processors. Such curves

may also be used to rank the processors themselves.

The problem of determining the efficiency of any particular curve for a

given application has been studied extensively [1, 3], particularly in the

context of data selection and attribute clustering [4, 6]. In 2012, Xu and

Tirthapura showed that all continuous curves were asymptotically

equivalent under the most commonly used clustering metrics [8].

This led us to construct a metric (Average Communicated Distance) that

permits algorithm designers to differentiate between the expected

communication costs of various curves. Here, we define this metric and use

it to evaluate an abstraction of the Fast Multipole Method for n body

problems. These empirical results allow us to provide recommendations for

scientists working in parallel computing.

Definition 1 (SFC)

For our purposes, a Space–filling Curve (SFC) is a mapping from a

multi–dimensional space to a linear ordering that allows for unique indexing

of the points in that space.

(a) Hilbert Curve H4 (b) Z–Curve Z4

(c) Gray Order G4 (d) Row/Column–Major

Figure 1 : An example illustration of the Space-Filling Curves

considered in our study.

Defintion 2 (ACD)

Given a particular problem instance, the Average Communicated Distance
(ACD) is defined as the average distance for every pairwise communication

made over the course of the entire application. The communication distance

between any two communicating processors is given by the length of the

shortest path (measured in the number of hops) between the two processors

along the network intraconnect.

Definition 3 (FMM)

The Fast Multipole Method (FMM) is an algorithm for computing the

interactions in an n body problem [2]. We modeled the communications

structure of this algorithm as a case study because it relies on computing

the Near Field Interactions (NFI) and Far Field Interactions (FFI)

separately. Each of these sets of computations has a different

communications profile and requires distinct analysis under the ACD metric.

Probability Distributions

(a) Uniform Distribution (b) Normal Distribution

(c) Exponential Distribution

Figure 2 : This figure shows examples of the two dimensional

probability distributions considered in this paper.

Ordered Points

(a) Hilbert Ordering (b) Gray Ordering

(c) Z Ordering (d) Row Major Ordering

Figure 3 : As an example of particle–ordering SFCs, this figure shows

the linear order of the exponentially distributed particles displayed in Figure

2(c) by each of the SFCs respectively. It is interesting to observe the large

“jumps” that occur in the orderings by the discontinuous curves, (b), (c), and

(d), especially along the lines of symmetry [8].

Research Questions

We addressed the following four research questions using our

empirical models:

Q1) What is the nearest-neighborhood preservation efficacy

achieved by different particle–order SFCs?

Q2) What is the effect of different combinations of

{particle-order, processor-order} SFCs on the Average

Communicated Distance metric?

Q3) What is the performance of each of the particle-order

SFCs under the ACD metric, for a given network

topology? Similarly, what is the performance of each of

the network topologies under the ACD metric, for a

given input distribution?

Q4) How does the Average Communicated Distance vary as a

function of processor size, input size and input

distribution, for each SFC?

A1) ANNS Results

(a) Standard ANNS (b) Large Radius ANNS

Figure 4 : This figure shows the ANNS values [7] of the SFCs under

consideration as the spatial resolution varies. Expanding the radius (b) does

not affect the relative ordering of the SFCs. This confirms the theoretical

calculations of Xu and Tirthapura on the Z and Row Major curves, and

suggests that proximity preservation is not the best measure of SFC

effectiveness for scientific computing [5].

A2) Main Results (NFI)

Table 1 : A comparison of different particle/processor-order SFC

combinations for NFI under various distributions. The lowest ACD value

within each row is displayed in boldface blue, while the lowest ACD value

within each column is displayed in red italics. The best option for each

distribution is displayed in bold green italics.

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major

Hilbert Curve 4.008 4.308 4.939 13.117

Z–Curve 5.486 5.758 6.573 18.127

Gray Code 5.802 6.010 6.970 19.220

Row Major 9.126 9.763 11.713 70.353

(a) Uniform Distribution

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major

Hilbert Curve 8.561 9.297 10.123 20.340

Z–Curve 11.003 11.551 12.984 26.842

Gray Code 11.881 12.595 13.249 28.188

Row Major 20.143 22.221 24.053 66.719

(b) Normal Distribution

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major

Hilbert Curve 5.238 5.654 6.271 14.943

Z–Curve 6.943 7.070 8.235 20.851

Gray Code 7.276 7.663 8.760 22.269

Row Major 12.483 13.017 15.289 61.227

(c) Exponential Distribution

A2) Main Results (FFI)

Table 2 : A comparison of different particle/processor-order SFC

combinations for FFI under various distributions. The lowest ACD value

within each row is displayed in blue boldface, while the lowest ACD value

within each column is displayed in red italics. The best option for each

distribution is displayed in bold green italics.

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major

Hilbert Curve 19.494 20.841 22.572 31.124

Z–Curve 24.217 24.793 27.787 37.709

Gray Code 24.622 25.446 27.997 39.282

Row Major 44.513 48.762 50.118 57.880

(a) Uniform Distribution

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major

Hilbert Curve 26.336 26.824 31.963 32.542

Z–Curve 29.160 28.036 34.241 36.663

Gray Code 29.449 27.981 31.909 37.291

Row Major 43.639 44.636 49.133 45.475

(b) Normal Distribution

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major

Hilbert Curve 18.960 19.841 23.007 31.368

Z–Curve 24.672 23.316 26.315 37.576

Gray Code 23.762 24.076 27.973 37.863

Row Major 42.447 44.067 46.872 50.963

(c) Exponential Distribution

A3) Topology Comparison

(a) Near–Field Interactions (b) Far–Field Interactions

Figure 5 : The charts show the results of comparing different network

topologies for a) NFI and b) FFI, respectively. All experiments were

performed using 1, 000, 000 uniformly distributed particles on a 4096× 4096

spatial resolution. This plot is representative of all the experiments we

performed to evaluate the topologies. It is important to note that quadtree

structures have disproportionately large issues with contention in high volume

communications.

A4) ACD Scaling

(a) NFI (b) FFI

Figure 6 : These plots show ACD values for a) NFI, and b) FFI, as a

function of the number of processors and the SFC used. The input used was

fixed at 1,000,000 uniformly distributed particles. This demonstrates the

effect scale on processor ranking SFCs. Some of the row–major data has been

excluded from these plots because for this SFC, the ACD values at larger

processor numbers were significantly higher than the other data–points.

Analysis

Our results point towards a set of reccomendations for designers of parallel

alogorithms for scientific computing. When the scientist has full control over

both the data distribution and processor ranking, using the Hilbert Curve at

both stages gives the lowest ACD values. Unfortunately, such control is not

always feasible or desirable, in which case we present the following

reccommendation for SFC selection based on the ACD values:

{Hilbert ≈ Z} < Gray << Row-major.

Future Work and Extensions

We intend to further extend our results by considering the following

extensions:

. Adding a weighting function to evaluate dataintensive applications

. Extending our metric to consider contention based communications models

. Extending our evaluation to real world implementations and applications

other than FMM.

. Providing a closed, asymptotic expression for the ANNS of more complex

curves.

. One of the interesting notions encountered in this work is the mapping of

points from a multi–dimensional space to a 2D torus or mesh. This is

unlike the traditional SFC problem, and does not appear to have been

explored yet in theory. In this paper, we used SFCs to move from 2D to a

linear ordering back to 2D, but certainly there appears to be no restriction

on a direct mapping into the processor space. This raises theoretical

questions for further study.

. Finally, while we expect the conclusions of most of the studies conducted in

this paper to extend to 3D, further experimentation is needed to

corroborate such trends.

Conclusions

Our results empirically validate previously published theoretical results. In

addition, based on our results, we provided a list of recommendations that

could serve as benchmarks for effective use of SFCs in FMM-type

applications. Our findings suggest both theoretical avenues of inquiry for

future research and practical applications of particular SFCs, both for

distributing the input data among parallel processors, and for canonical

labeling of processors on a particular network topology, with an overall goal

of minimizing communication network usage. In particular, the ACD metric

presented here represents an important contribution to the study of SFCs

for scientific computing.
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