
Multiplex Dynamics

Introduction

Eugene Wigner [4]:

The miracle of the appropriateness of the language of
mathematics for the formulation of the laws of physics is a
wonderful gift which we neither understand nor deserve. We
should be grateful for it and hope that it will remain valid in
future research and that it will extend, for better or for worse,
to our pleasure, even though perhaps also to our bafflement, to
wide branches of learning.1

1E. Wigner: The unreasonable effectiveness of mathematics
in the natural sciences, Communications in Pure and Applied
Mathematics, XIII, (1960), 1–14.
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Abstract

Analyzing combinatorially motivated dynamics on graphs leads to
some of the most important tools and invariants in complex
networks. In this talk we present an algebraic method for extending
these techniques to multiplex networks, in terms of an operator that
connects the endogenous and exogenous dynamics on the graph. We
will provide a thorough analysis of the derived operators, including
eigenvalue bounds, for the most commonly studied families of
dynamics, such as random walks and diffusion via the graph
Laplacian, and show how this method can be applied in economics,
transportation, and social networks.
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Background

Key Idea

Spectral graph theory studies invariants of graphs using the spectral
structure of associated matrices.

Process:

• Structural Representation

• Dynamical Interpretation

• Spectral Analysis
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Spectral Graph Theory

Background

Tools

• Linear Algebra
• Orthogonal Diagonalization
• Perron–Frobenius
• Spectral Analysis

• Analysis
• Matrix Calculus
• Perturbation Theory

• Riemannian Geometry
• Cheeger Inequalities
• Flows
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Spectral Graph Theory

Matrices

Degree Matrix

D =



1 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 6 0 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 3


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Matrices

Adjacency Matrix

A =



0 0 0 1 0 0 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 0 0 0
1 1 1 0 1 1 1 0
0 1 1 1 0 1 0 1
0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1
0 1 0 0 1 0 1 0


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Matrices

Incidence Matrix

N =



−1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 −1 −1 −1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 1 −1 −1 0 0
0 0 1 0 0 0 0 0 0 1 0 0 1 −1 −1
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 1 0 1 0


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Spectral Graph Theory

Matrices

Laplacian

L =



5 0 0 −1 −1 −1 −1 −1
0 2 0 −1 −1 0 0 0
0 0 1 −1 0 0 0 0

−1 −1 −1 6 −1 −1 −1 0
−1 −1 0 −1 5 −1 0 −1
−1 0 0 −1 −1 5 −1 −1
−1 0 0 −1 0 −1 3 0
−1 0 0 0 −1 −1 0 3


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Spectral Graph Theory

Dyanmical Interpretations

Dynamics on Networks

These representative structural matrices have dynamical interpretations
as well:

• Adjacency Matrix
• vi =

∑
i∼j vj =

∑
j Ai,jvj

• Flows across edges
• Normalized (AD−1) leads to random walks

• Laplacian
• Heat flow
• Isoperimetric clustering

• Random walks AD−1 = D− 1
2 (I −D− 1

2LD− 1
2 )D

1
2
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Dyanmical Interpretations

Clustering
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Spectral Graph Theory

Classical Results

Fan Chung [1]

Roughly speaking, half of the main problems of spectral theory
lie in deriving bounds on the distributions of eigenvalues. The
other half concern the impact and consequences of the
eigenvalue bounds as well as their applications.2

2F. Chung: Spectral Graph Theory, AMS, (1997).
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Classical Results

Spectral Results34

• Adjacency Matrix
• Number of closed walks of length k is Trace(Ak)

• 1

n
(
∑n

i=1 di) ≤ λ1(A) ≤ maxi(di)

• |{λi(A)}| ≥ diam(G)
• α(G) ≤ n−max(|{λi(A) > 0}|, |{λi(A) < 0}|
• ...

• Laplacian
• The multiplicity of 0 as an eigenvalue of L is the number of

connected components of G
• Algebraic connectivity µ(G) = λn−1(L)
• µ(G) ≤ ν(G) ≤ ε(G)
• µ(G) ≥ 1

diam(G) vol(G)
• ...

3F. Chung: Spectral Graph Theory, AMS, (1997)
4R. Brualdi: The Mutually Beneficial Relationship of Graphs and

Matrices, AMS, (2011).
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Multiplex Definition

Definition

A multiplex is a collection of graphs all defined on the same node set.

The motivations for studying these objects are mostly practical:

• Trade networks

• Social networks

• Neural networks

• Anonymity networks



Multiplex Dynamics

Multiplex Networks

Multiplex Definition

Definition

A multiplex is a collection of graphs all defined on the same node set.

The motivations for studying these objects are mostly practical:

• Trade networks

• Social networks

• Neural networks

• Anonymity networks



Multiplex Dynamics

Multiplex Networks

Multiplex Example

(a) Layer 1 (b) Layer 2 (c) Layer 3

Figure : Three layers of a World Trade Web model
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Multiplex Networks

Motivation

Many of these structures have intrinsic dynamics that distinguish
between connections between distinct nodes and connections between
copies of the same node. Early approaches to studying graph problems in
this context tried to address this problem from a structural perspective5

(summing matrices or adding edges between copies). These approaches
tend to distort the metrics of interest by conflating the intra and inter
relationships.

5 S. Gomez, A. Diaz-Guilera, J. Gomez-Gardenes,
C.J. Perez-Vicente, Y. Moreno, and A. Arenas:
Diffusion Dynamics on Multiplex Networks, Physical
Review Letters, 110, (2013).
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Algebraic Approach

Instead of trying to add new structural components we connect the
dynamics using a collection of scaled orthogonal projections. To each
node, we associate a projection operator Pn that gathers the information
stored at each node and proportionally redistributes it among the copies.
This allows us to respect the independence of the endogenous dynamics.



Multiplex Dynamics

Multiplex Dynamics

Linear Case

In this linear case this is particularly convenient. Given a collection of
operators Di on our layers, this is equivalent to constructing the new
operator:

M =


α1,1C1D1 α1,2C1D2 · · · α1,kC1Dk

α2,1C2D1 α2,2C2D2 · · · α2,kC2Dk

...
...

...
...

αk,1CkD1 αk,2CkD2 · · · αk,kCkDk



where the Ci = diag(ci,1, ci,2 . . . , ci,`) represent the coefficients for the
node projections with the condition that

∑
j ci,j = 1 for all i.



Multiplex Dynamics

Multiplex Dynamics

Interpretation

This construction gives us an operator to study, instead of a structural
representation, that captures both types of dynamics in a natural way.
The next step is to relate the spectrum of this operator to the graph
invariants.
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Results

Algebraic Properties

Preserved Properties

The types of questions we are interested in depend on the initial
properties of the dynamics, like positive definiteness or stochasticity. In
order to interpret the results about our operator it must share these
properties.

Theorem (Condensed)

If the original dynamics are
{Irreducible, Primitive, Stochastic, Positive(negative) (semi–)Definite}
then M is
{Irreducible, Primitive, Stochastic, Positive(negative) (semi–)Definite}.
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Algebraic Properties

Eigenvalue Relations

Theorem (Simplest Case)

If ci,j =
1
k for all i, j then the non–zero eigenvalues of M are the

eigenvalues of a
∑k

`=1D`.

Theorem (General Case)

If ci,j 6= 0 for all i, j then the non–zero eigenvalues of M are the

eigenvalues of C1(
∑k

`=1D`C`)C
−1
1 .
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Laplacian Bounds

Laplacian Eigenvalue Bounds

In the case where the individual layer dynamics are the respective
Laplacians, more can be said about the eigenvalues of interest:

• Fiedler Value: maxi(λ
i
f ) ≤ λf ≤ mini(λ

i
1) +

∑
j 6=` λ

j
f

• Leading Value: mini(λ
i
1) ≤ λ1 ≤

∑
i λ

i
1

• Synchronization: Directly computed as the quotient of the previous
two bounds
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That’s all...

Thank You!
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