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Complex Network Problems

Adjacency Spectra of Regular Trees

(a) X(4)
2 (b) X(3)
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Complex Network Problems

Eigenvalues of Regular Trees

Define two families of polynomials:

P kn (x) = xP kn−1 − (k − 1)P kn−2

with initial conditions P k0 (x) = 0, P k1 (x) = 1, and P k2 (x) = x and

Qkn(x) = xP kn (x)− kP kn−1(x).

Theorem

The roots of P ks (x) for 1 ≤ s ≤ r and Qkr (x) are precisely the eigenvalues

of the finite k-ary tree X
(k)
r .
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Complex Network Problems

Enumerative Results

Theorem

If λ is a root P kr and not a root of P km for any m < r then asymptotically

(as r −→∞), the proportion of eigenvalues of Xr
k is

(k − 2)2

(k − 1)r − 1
.

Corollary

∞∑
n=2

ϕ(n)(k − 2)2

(k − 1)n − 1
= 1.

Corollary (k = 3)

∞∑
n=1

ϕ(n)

2n − 1
= 2.
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Complex Network Problems

Tree Questions

Question

Given a graph G and an associated adjacency eigenpair (v, λ) does there exist a

subgraph H of G so that (v|H , λ) is an eigenpair for H?

Question

Is there a nice closed form for the endpoints of the Cantor–like sets:
∞∑

n=1

(k − 2)2

(k − 1)n − 1

∑
(`,n)=1
`< an

m

1 :
m ∈ N

(a,m) = 1


Question

Can we characterize the sequences of graphs G1, G2, . . . satisfying for all ε > 0 there
exists a finite set Λ ⊂ R and a N ∈ N such that for all n > N :

|{λ ∈ spec(Gn) : λ /∈ Λ}|
| spec(Gn)|

< ε.
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Complex Network Problems

Network Example

(a) Graph (b) Network
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Complex Network Problems

Multiplex Networks

Definition

A multiplex is a collection of graphs all defined on the same node set.

(a) Family (b) Colleagues (c) Facebook
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Complex Network Problems

Karnataka Village Data1

(a) Village 4 (b) Village 61

Figure : Karnataka Villages

1 A. Banerjee, A.G. Chandrasekhar, E. Duflo, and M.O. Jackson, The Diffusion of Microfinance. Science, (2013).
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Complex Network Problems

Village Layers

Layer Village 4 Village 61
Description Density Comp. Giant % Density Comp. Giant %

Borrow Money .0082 26 .8354 .0108 15 .9188
Give Advice .0077 49 .5892 .0098 34 .7377

Help Make Decisions .0076 61 .1277 .0100 24 .8562
Borrow Kerosene or Rice .0085 21 .8338 .0113 14 .9171

Lend Kerosene or Rice .0086 22 .8308 .0113 14 .9255
Lend Money .0081 14 .7908 .0107 17 .9036

Medical Advice .0075 84 .2938 .0106 14 .9306
Friends .0089 15 .9277 .0105 22 .8714

Relatives .0085 29 .7231 .0105 26 .5448
Attend Temple With .0073 117 .0462 .0089 108 .0372

Visit Their Home .0087 15 .9185 .0116 11 .9475
Visit Your Home .0088 16 .9108 .0117 11 .9492

Aggregate .0121 3 .9862 .0155 8 .9679

Table : Layer information for two of the Karnataka Villages.
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Complex Network Problems

Medical Advice

(a) Village 4 (b) Village 61



Time Series Entropy

Complex Network Problems

Medical Advice

(a) Village 4 (b) Village 61



Time Series Entropy

Complex Network Problems

Multiplex Questions

Question (How to account for layer heterogeneity?)

• Structural Consequences

• Dynamical Consequences

• Spectral Consequences

Question (How to account for node indivisibility?)

• Merge Centrality Measures

• Define Neighborhoods

• Multi–Membership Communities

Question (Data Examples)

• Social Networks

• Transportation Networks

• Economic Networks

• Paired Networks
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Patterns in Time Series

Iterated Maps

Given a function f : [0, 1]→ [0, 1] and a point x ∈ [0, 1], consider the
behavior of {x, f(x), f(f(x)), f(f(f(x))), . . .}.

Example

Let f(x) = 4x(1− x) and x0 = .2. Then, the list of values is:

[0.20, 0.64, 0.92, 0.28, 0.82, 0.58, 0.97, 0.11, 0.40, . . .].
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Iterated Example (12)
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Iterated Example (231)
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Iterated Example (231)
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Patterns in Time Series

Iterated Example (2413)
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Patterns in Time Series

Forbidden Patterns

Definition (Topological Entropy)

TE = lim
n→∞

log(|Allown(f)|)
n− 1
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Patterns in Time Series

Simple Time Series
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Complex Time Series
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Complex Time Series
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Complex Time Series
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Entropy Measures

Complexity Measures

Definition (Normalized Permutation Entropy)

NPE({Xi}) = −
1

log(N !)

∑
π∈Sn

pπ log(pπ)

Definition (Uniform KL Divergence)

DKL({Xi}||uniform) =
∑
π∈Sn

pπ log

(
pπ
1
n!

)

Observation

1−NPE({Xi}) =
1

log(N !)
DKL({Xi}||uniform)
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Entropy Measures

Stock Data (Closing Prices)
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Stock Data (n=3)
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Stock Data (n=4)
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Stock Data (n=5)
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Stock Data (n=6)
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Entropy Measures

Random Walk Null Models

Definition (Random Walk)

Let {Xi} be a set of I.I.D. continuous random variables and define the

“random walk” {Zi} by Zj =
∑j
i=0Xj .

Proposition (No Forbidden Patterns)

If {Zi} are defined as above then every permutation occurs with some
positive probability.

Proposition (No Uniform Distribution)

If {Zi} are defined as above and n ≥ 3 then the expected distribution of
permutations is not uniform.
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Uniform Steps CCE
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Entropy Measures

New Complexity Measure

Definition (Null Model KL Divergence)

DKLn(X) := DKLn(X||Z) =
∑
π∈Sn

pπ log

(
pπ
qπ

)
,

where pπ is the relative frequency of π in X and qπ is the relative
frequency of π in Z.
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Entropy Measures

Hyperplanes

Example (Uniformly distributed steps)

In order for the pattern 1342 to appear in the random walk time series we
need the following inequalities to hold:

• X1 > 0

• X2 > 0

• X3 < 0

• X3 > X2

• X3 < X1 +X2
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Entropy Measures

Integration Regions

123

321

312

213

231 132

Y1
b

Y2

0
b−1

b−1

b

0

(a) (b)

Figure : The regions of integration for patterns in uniform random walks for (a)
n = 3 and (b) n = 4, sketched here for b = 0.65.
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Entropy Measures

Null Distributions (n = 3)

Pattern Normal: µ = 0 Uniform: µ = 0 Uniform: P(Y > 0) = b

{123} 1/4 1/4 b2

{132, 213} 1/8 1/8 (1/2)(1− b)2

{231, 312} 1/8 1/8 (1/2)(b2 + 2b− 1)

{321} 1/4 1/4 (1− b)2
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Entropy Measures

Null Distributions (n = 4)

Pattern Normal: µ = 0 Uniform: µ = 0 Uniform: P(Y > 0) = b

{1234} 0.1250 1/8 b3

{1243, 2134} 0.0625 1/16 (1/2)b(1 − b)(3b − 1)

{1324} 0.0417 1/24 (1/3)(1 − b)(7b2 − 5b + 1)

{1342, 3124} 0.0208 1/24 (1/6)(1 − b)2(4b − 1)

{1423, 2314} 0.0355 1/48 (1/6)(1 − b)2(5b − 2)

{1432, 2143, 3214} 0.0270 1/48

{
(1/6)(2 − 24b + 48b2 − 15b3) if b ≤ 2/3

(b − 1)2(2b − 1) if b > 2/3

{2341, 3412, 4123} 0.0270 1/48 (1/6)(1 − b)3

{2413} 0.0146 1/48 (1/6)(1 − b)3

{2431, 4213} 0.0208 1/24

(1/6)(24b3 − 45b2 + 27b − 5) if b ≤ 2/3

(1/2)(1 − b)3 if b > 2/3

{3142} 0.0146 1/48

{
(1/6)(25b3 − 48b2 + 30b − 6) if b ≤ 2/3

(1/3)(1 − b)3 if b > 2/3

{3241, 4132} 0.0355 1/48 (1/6)(1 − b)3

{3421, 4312} 0.0625 1/16 (1/2)(1 − b)3

{4231} 0.0417 1/24 (1/3)(1 − b)3

{4321} 0.1250 1/8 (1 − b)3
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Uniform Steps S&P 500
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Entropy Measures

Data Comparisons
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Stock Market Example
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Entropy Measures

Time Series Questions

Question (Random Walk Applications)

• Can we identify other interesting economic events?

• Medical Data?

• Climate Data?

Question (Periodic Null Models)

• What is the right null model or probability distribution for periodic
data?

• Higher order Markov models?

• Iterated functions plus noise?

Question (Walks on Sn)

How does the steady state of the Markov process on the patterns
themselves compare to the probabilistic null models?
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Conclusion

That’s all..

Thank You!
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