
Computational Redistricting

Introduction

Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into their
prime factors and seeking out by experimentation the laws of
appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.
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MORAL:

Computational Redistricting is
NOT a solved problem!
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Monte Carlo

Geometric Probability

Question

What is the expected distance between two random points on [0, 1]?

Answer ∫ 1

0

∫ 1

0

|x− y|dxdy =
1

3

Question

What is the expected distance between two random points on [0, 1]n?

Answer ∫ 1

0

· · ·
∫ 1

0

√√√√ n∑
j=1

(xj − yj)2dx1 · · · dxndy1 · · · dyn = : (
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Monte Carlo

Numerical Integration

Question

What is the area “under” the curve?∫ 1

0

∫ √1−x2

0

1dxdy
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Monte Carlo

Properties of Monte Carlo Methods

• Draw (independent) samples from a random distribution

• Compute some measure for each draw

• Repeat lots and lots of times

• Average/aggregate the derived data

Today, we tend to take access to random numbers for granted but some of
the first applications of Monte Carlo were physical systems for generating
random numbers (and the modern version was invented to analyze
solitaire).
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Markov Chains

What is a Markov chain?

Definition (Markov Chain)

A sequence of random variables X1, X2, . . . , is called a Markov Chain if

P(Xn = xn : X1 = x1, . . . , Xn−1 = xn−1) = P(Xn = xn : Xn−1 = xn−1).
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Markov Chains

Markov Formalism

Given a finite state space X = x1, x2, . . . , xn we can specify a Markov
chain over X with transition probabilities pi,j = P(Xm = i : Xm−1 = j)
and associated transition matrix P = [pi,j ].

Definition (Random Walk)

We can also view a Markov chain as random walk on a directed, weighted
graph, with weights given by the pi,j .
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Markov Chains

Desirable Adjectives

• Irreducible: A chain is irreducible if each state is (eventually)
reachable from every other state.

• Aperiodic: A chain is aperiodic if for each state, the GCD of the
lengths of the loops, starting and ending at that state is equal to 1.

• Steady State Distribution: A distribution π is said to be a steady
state of the chain if π = πP .

• Reversible: A chain with steady state π is called reversible if it
satisfies the detailed balance condition:

πiPi,j = πjPj,i
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Markov Chains

Key Theorem

If the chain is irreducible and periodic then limm→∞ Pm = 1π for a
unique π. Even better, if y1, y2, . . . , ym are samples from π then,

lim
m→∞

1

m

m∑
i=1

f(yi) = E[f ]

The key idea of MCMC is to create an irreducible, aperiodic Markov chain
whose steady state distribution π is the distribution we are trying to
sample from.
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Markov Chains

Aladdin k–grams

1 ’ k,”be prw henghine ”wd.” alwe amad En mofed in tutheofurg
Chithigerex d ”I kisojep, blyimator, thr ’

2 ’ ”I warder vizie the broom the pultail his pier, boom. Thearts and of
firstrand dozen ise jewels andly chough who pull they two,” Thind
here mandsorrieve if goned to she som his enormed the gave firs. ’

3 The Sultansported threat all him all he return to see Fatima, sent a
certain the lamp. ”Build in first, terried from his son if her forted the

4 He them to that this lamp I left her at she was not having gold and
seeing each of the the city, showed to me, and her mothere which
sparkled and garden, which would only two little cotton, forgot to the
vizier and tell her next day the palace wherefore
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MCMC

What is MCMC?

In our Monte Carlo methods we just required that we sample from our
space uniformly but this isn’t always easy to do. MCMC gives us a way to
sample from a desired pre–defined distribution by forming a related Markov
chain (or walk) over our state space, with transition probabilities
determined by a multiple of the distribution that we are trying to sample
from.
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Proportional to a distribution!?!

A common way this arises is when we have a score function or a ranking
on our state space and want to draw proportionally to these scores. Given
a score s : X → R we want to sample from X with probabilities

P(Xi) =
s(Xi)∑
j Sj

When |X| is enormous, we don’t want to/can’t compute the denominator
directly. Also, uniform sampling over–prioritizes low score spaces. This is
also an advantage to local methods.
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MCMC

Terminology

State Space: The underlying set of elements we are allowed to sample.

Score: A function s : X → R≥0 that determines our target distribution.

Proposal Distribution: A Markov chain Q over X.

Metric: Another function f : X → R that is our quantity of interest for
the distribution.
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MCMC

Metropolis Procedure

Given that we have a given score function, proposal distribution, metric,
and initial graph g0 we generate new graphs gn by:

1 Generating ĝ according to the proposal distribution Q(ĝ : gi).

2 Compute the acceptance probability: α = min

(
1,
s(ĝ)

s(gi)

Q(gi|ĝ)
Q(ĝ|gi)

)
3 Pick a number γ uniformly on [0, 1]

4 Set

gi+1 =

{
ĝ if γ < α

gi otherwise/
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Example: Scrabble scores from uniform

• State space: 5 letter words

• Proposal: Change a uniform letter uniformly

• Score: Scrabble Score

• Example:

1 Start at ’aaaaa’
2 Propose ’aaaza’
3 Compute:

α = min(1,
14

5
)

4 Accept!
5 Propose ’aaaya’
6 Compute:

α = min(1,
8

14
)

7 Reject!
8 etc.
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MCMC

Scrabble Scores from Text

• State space: Letters

• Proposal: Aladdin text

• Score: Scrabble Score

1 Start at m
2 Propose a
3 a→ m is 3.96%
4 m→ a is 18.41%
5 Compute: (

1

2

)(
.0396

.1841

)
≈ .1

• Accept?
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MCMC on partitions

1 Set constraints to define the state space

2 Start with an initial plan

3 Propose a modification

4 Verify that the modification satisfies the constraints

5 Accept using MH criterion

6 Repeat

Why?
• Control over sampling distribution and input data

• Possibility of local sampling

• Ergodic Theorem
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MCMC

Election Counterfactuals

We are actually evaluating the question: What might have happened if the
districts looked like this?

• Data

• No time travel

• Hypothesis testing

• Landscapes
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Single Edge Flip Proposals

1 Uniformly choose an edge between districts

2 Change one of the incident node assignments to match the other

• Mattingly et al. (2017, 2018) Court cases in NC and WI.

• Pegden et al. Assessing significance in a Markov chain without
mixing, PNAS, (2017). Court case in PA.
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Tree based methods

(a) District (b) Spanning Tree
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MCMC

Tree Seeds Ensemble
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MCMC

Recombination Steps

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Draw a spanning tree for the new super–district

4 Delete an edge leaving two population balanced districts

5 Repeat

6 (Optional) Mix with single edge flips
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MCMC

Recombination Step Example
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Recombination Step Example
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Single Edge Ensembles
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Pennsylvania Single Edge Flip
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Pennsylvania Recombination Steps


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Energy Functions

• Weight plans proportional to e−β
∑
wiscores(Di)

• Varying β controls the strictness of the constraints

• Varying wi changes the relative strengths of the scores

• Exploit vs. Explore

Examples

If our two considerations are population balance and compactness we
might use something like:

e−β(17·Population Deviation +132·Total Perimeter)
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Winnowing (Individual Districts)

• Strict 1% population bound

• Strict compactness bound

• Strict VRA bounds

• No triply split counties
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GerryChain

Creativity!

• Scores
• Compactness
• Aggregating measures
• Hard vs. Soft constraints
• ...

• Proposals
• Boundary Flip
• Tree Methods
• Your favorite graph method here
• ...

• Metrics
• Sorted vote percentage vector
• Partisan Metrics
• Competitiveness?
• ...
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MORAL:

Computational Redistricting is
NOT a solved problem!
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GerryChain

GerryChain Components

• Inputs:
• Dual Graph
• Population Data
• Vote Data

• Initialize
• Updaters
• Scores
• Initial Plan

• Proposals
• Input: Current state
• Output: New state

• Validators
• Input: Proposed state
• Output: Binary – Pass/Fail

• MH Acceptance function
• Input: Proposed state
• Outpit: Binary – Accept/Reeject

• Output
• Partitions
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GerryChain

The End

Thanks!
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