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Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into their
prime factors and seeking out by experimentation the laws of
appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.
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SUBTITLE:

Why insert–your–field–here’s
favorite districting method isn’t

the answer.
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• Information: gerrydata.org

2 Contact:
• Email: ddeford at mit.edu
• Website: mggg.org
• Slack channel: GerryChat.slack.com

3 Research Projects
• Math Problems: tinyurl.com/gerryprojects
• Data Problems: tinyurl.com/GerryChainProjects
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• Resources: people.csail.mit.edu/ddeford/CAPR
• Today 12-1 Graph Partitions
• 1/29 12-1 In–depth state examples
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Problem Setting

Problem

Given a fixed set of geography we wish to construct representative
examples of permissible districting plans.
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Desirable Characteristics

Example (What properties do we want?)

• Efficiency

• Parameter Variability

• Robustness

• Interpretability

• Mathematical Elegance

• All permissible plans are possible
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Legal “Requirements”

• Population Balance

• Contiguity

• Compactness

• Municipal Boundaries

• VRA Compliance

• Communities of Interest
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Toy Example: Random Assignment
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Toy Example: Random Walkers
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Toy Example: Random Lines
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Toy Example: Random Rectangles
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Activity

Take a few minutes and
partition the four graphs into

the indicated number of
districts. Think about how you

might write an algorithm
expressing your approach.
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MORAL:

Computational Redistricting is
NOT a solved problem!
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Power Diagrams

Figure: Power diagram for Florida: Balanced power diagrams for redistricting: V.
Cohen–Addad, P. Klein, and N. Young.
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Other Straight Line Methods

Figure: Split line partitioning of Wisconsin: Partisan gerrymandering with
geographically compact districts: B. Alexeev and D. Mixon

• Split Line Methods

• Pretend that everything is a grid

• (Optimization) Draw lines even within households

• Alternatively, embed all voters on a circle
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Problems?

• No clean mapping on to discrete units

• Difficult to preserve municipalities, COI, VRA, etc.

• Assumes better control over data than actually exists

• Very hard to tune to arbitrary legal constraints
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Growing Districts

• Another popular class of methods are colloquially known as flood fills

• This procedure iteratively creates districts by growing them one node
at a time

• Usually, contiguity is enforced at each step

• The process continues until the population is nearly balanced
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Flood Fill

Method

• Select a node at random

• Select a random neighbor of
the current cluster

• Alternatively, generate a list
of neighbors and append
sequentially

• Add if population allows and
doesn’t disconnect the
complement

• Repeat until population
balanced
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Path Fill

Method

• Start with an arbitrary node

• Select a node not in the
district

• Add all the nodes on a
shortest path from the new
node to the district if it
doesn’t disconnect the
complement or add too
much to the population

• Repeat until population
balanced
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Agglomerative

Method

• Start with each node in own
component

• Select an arbitrary edge
between two components

• Merge clusters if
population allows and
doesn’t disconnect the
complement

• If population doesn’t
allow, delete edge

• If merging would
disconnect the graph,
merge the smallest
population component

• Repeat until only 2 clusters
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What can go wrong?
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Problems?

• High failure rate

• No control over distribution

• Medium hard to tune to arbitrary legal constraints

• Requires separate cleaning steps
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Network Clustering
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What is a community?

• Many intra–community links

• Few inter–community links

• Any measure that allows for dimension reduction

• Depth or closeness measures

• Different type of eyeball test
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Spectral Clustering

The idea behind spectral clustering is that communities should be sparsely
connected to each other. This is usually defined in terms of an
isoperimetric ratio, expressing the difference between the size of the
boundary and the number of nodes in the community. The solution is
given in terms of the eigenvectors of the Laplacian matrix.
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Modularity

For modularity, we take the opposite definition. Now we define a
community as a group of nodes that have more connections to each other
than would be expected if we rewired the whole network. The solution is
given in terms of the eigenvectors of the Modularity matrix.



Computational Redistricting

Network Methods



Computational Redistricting

Network Methods

Min Cut

Method

• Select random source and
sink nodes

• Weight the edges in the
graph by 10min distance−3

• Compute the min cut

• Repeat until population
balanced
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Tree Partitions

Method

• Generate a uniform spanning
tree

• Cut an edge that leaves
population balanced
components
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Problems?

• The underlying assumption for all of these methods is that the graph
structure contains all of the relevant information for defining
communities.

• However, for our setting, the useful information is usually annotations,
not the nodes/edges themselves.

• For example, spectral clustering and modularity perform quite poorly
on dual graphs that are very grid like

• Hard to optimize for many different functions at once
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Potential Solution

• Although the naive version of the network approaches seems poorly
tuned for our setting there is some hope:

• These methods permit weighted generalizations that allow us to
encode some measures of similarity between nodes

• Demographics
• Shared Geography
• COI
• Municipal Boundaries

• These weighted versions can then be interpreted as maximizing
similarity within/minimizing similarity without and used to find larger
partitions.

• Some success already, still a long way to go!
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Recursive Constructions

• Choose a methods for constructing a single (contiguous, population
balanced, etc. ) a district

• Create one and repeat

• In general, bipartitioning, even in the unbalanced setting, is easier
than k-partitioning

• Particularly true for many of the network methods, which tend to be
significantly more stable for 2–partitions.
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Initial Seeds

• One use for these randomly drawn plans is as initial seeds for MCMC

• This provides a good heuristic check for convergence

• This can also solve data issues!
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Single Edge Flip Proposals

1 Uniformly choose an edge between districts

2 Change one of the incident node assignments to match the other

• Mattingly et al. (2017, 2018) Court cases in NC and WI.

• Pegden et al. Assessing significance in a Markov chain without
mixing, PNAS, (2017). Court case in PA.
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Single Edge Ensembles
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Boundary Flip Distribution

(a) Compactness (b) 11996 cut edges



Computational Redistricting

MCMC Proposal Distributions

Boundary Flip Mixing

(a) Initial (b) 10,000,000 Flip Steps
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Booundary Flip Mixing

(b) 10,000,000 Flip Steps
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Boundary Flip Mean–Median

(a) Flip Seed31 (b) Flip Seed99 (c) Flip Enacted
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Local Variants

• Chunk Flips

• Flip every district

• Snake flips

• Flip whole boundary

• Random walk flips

• ...
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Recombination Steps

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Draw a new district using your favorite bipartitioning method.

4 Repeat
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Recombination Steps

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Draw a spanning tree for the new super–district

4 Delete an edge leaving two population balanced districts

5 Repeat

6 (Optional) Mix with single edge flips
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Recombination Step Example
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Recombination Step Example
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Recombination Step Example
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AR Ensembles



Computational Redistricting

MCMC Proposal Distributions

PA Recombination Steps


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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General Tree Proposals

1 Form the induced subgraph on the complement of the cut edges

2 Add some subset of the cut edges

3 Uniformly select a maximal spanning forest

4 Apply a Markov chain on trees

5 Partition the spanning forest into k population balanced pieces
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Special Cases

• Uniform Trees: Add all cut edges

• k–edges: Uniformly add k cut edges

• Recombination: Add all cut edges between one pair of districts.

• Super-Recombination: Take a maximal matching on the dual graph
to the districts and add all cut edges between matched districts.

• Bounce Walk: Add a single cut edge between enough pairs of districts
to make a tree in the dual graph of districts.
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Tree Partitioning Questions

• Characterizing the distribution on partitions defined by cutting trees!

• How bad is the best cut?

• Criteria for determining when a tree is ε cuttable?

• Criteria for determining when all spanning trees of a graph are ε
cuttable?

• How hard is it to find the mininum ε for which a cut exists?

• As a function of ε what proportion of spanning trees are cuttable?

• As a function of ε what proportion of edges in a given tree are
cuttable?

• What is the fastest way to sample uniformly from k − 1 balanced cut
edges?
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The End

Thanks!
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