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Introduction

Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into their
prime factors and seeking out by experimentation the laws of
appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.
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MORAL:

Computational Redistricting is
NOT a solved problem!
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What is a district?
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Permissible Districting Plans

• Contiguity

• Population Balance

• Compactness

• Communities of Interest

• Municipal Boundaries

• Competitiveness/Responsiveness/Symmetry

• Incumbency Protection

• ...



GerryChains

Political Redistricting

Discrete Partitioning



GerryChains

Political Redistricting

Discrete Partitioning



GerryChains

Political Redistricting

Mathematical Formulation

Given a (connected, planar) graph G = (V,E):

• A k-partition P = {V1, V2, . . . , Vk} of G is a collection of disjoint
subsets Vi ⊆ V whose union is V . The full set of k–partitions of G
will be denoted Pk(G).
• A partition P is connected if the subgraph induced by Vi is

connected for all i.

• A partition P is ε-balanced if µ(1− ε) ≤ |Vi| ≤ µ(1 + ε) for all i
where µ is the mean of the |Vi|’s
• The (context dependent) collection of constraints will be denoted
with a function Cθ : Pk(G) 7→ {True, False}. The set of permissible
partitions will be Cθ(G).
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What is Gerrymandering?
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Abstracted Problem Instances

Problem

Given a fixed G and metric of interest f : P(G) 7→ Rn.

1 Given a partition P , is it a statistical outliera with respect to f?

2 Given Cθ and Cθ′ how do the distributions f (Cθ(G)) and f (Cθ′(G))
compare?

agerrymander

Solution?

Draw (many) samples from Cθ(G)!
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Other Partition Sampling Frameworks
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Which ensembles?
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Single Node Flip Ensembles
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Slowly Mixing Graph Families

Theorem (Najt, D., and Solomon 2019)

Let G be any connected graph. Then let G(d) be the graph obtained by
replacing each edge by a doubled d-star. Then the flip walk on partitions

of family of graphs G
(d)
d≥1 is slowly mixing, in the sense the Cheeger

constant is decaying exponentially fast. More specifically:

H(Partition Graph(G(d)) = O(2−d)

Remark

There are many similar constructions that give rise to equivalent mixing
results.
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Slow Mixing Example
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Starting Partition
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Generic Partition
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Hardness Results

Uniform Sampling of Contiguous Partitions

Theorem (Najt, D., and Solomon 2019)

Suppose that C is the class of connected planar graphs and k ≥ 2. If
there is a polynomial time algorithm to sample uniformly from:

• the connected k-partitions of graphs in C ,

• or the connected, 0-balanced k-partitions of graphs in C .

then RP = NP .

Remark

This theorem has various interesting extensions, including:

• Connectivity constraints on C

• Degree bounds

• Distributions proportional to cut length

• TV distribution approximation
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Hardness Results

New Proposal: Spanning Trees

ReCombination

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Draw a spanning tree for the new super–district

4 Delete an edge leaving two population balanced districts
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Hardness Results

Tree Ensembles
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Hardness Results

Amicus Brief
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Hardness Results

The End

Thanks!
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Hardness Results

Try it at home!

• Draw your own districts with Districtr
• https://districtr.org
• Easy to generate complete districting plans in browser or on a tablet
• Measures district demographics and expected partisan performance
• Identifies communities of interest

• Generate your own ensembles with GerryChain
• https://github.com/mggg/gerrychain
• Flexible, modular software for sampling graph partitions
• Handles the geodata processing as well as the MCMC sampling
• Templates to get started:

https://github.com/drdeford/GerryChain-Templates
• Detailed documentation:

http://people.csail.mit.edu/ddeford/GerryChain_Guide.pdf

• Data is available for your favorite state!
• Census dual graphs with demographic information:
• https://people.csail.mit.edu/ddeford/dual_graphs
• Precincts with electoral results
• https://github.com/mggg-states

https://districtr.org
https://github.com/mggg/gerrychain
https://github.com/drdeford/GerryChain-Templates
http://people.csail.mit.edu/ddeford/GerryChain_Guide.pdf
https://people.csail.mit.edu/ddeford/dual_graphs
https://github.com/mggg-states

	Introduction
	Political Redistricting
	MCMC on Graph Partitions
	Hardness Results


	anm3: 
	3.98: 
	3.97: 
	3.96: 
	3.95: 
	3.94: 
	3.93: 
	3.92: 
	3.91: 
	3.90: 
	3.89: 
	3.88: 
	3.87: 
	3.86: 
	3.85: 
	3.84: 
	3.83: 
	3.82: 
	3.81: 
	3.80: 
	3.79: 
	3.78: 
	3.77: 
	3.76: 
	3.75: 
	3.74: 
	3.73: 
	3.72: 
	3.71: 
	3.70: 
	3.69: 
	3.68: 
	3.67: 
	3.66: 
	3.65: 
	3.64: 
	3.63: 
	3.62: 
	3.61: 
	3.60: 
	3.59: 
	3.58: 
	3.57: 
	3.56: 
	3.55: 
	3.54: 
	3.53: 
	3.52: 
	3.51: 
	3.50: 
	3.49: 
	3.48: 
	3.47: 
	3.46: 
	3.45: 
	3.44: 
	3.43: 
	3.42: 
	3.41: 
	3.40: 
	3.39: 
	3.38: 
	3.37: 
	3.36: 
	3.35: 
	3.34: 
	3.33: 
	3.32: 
	3.31: 
	3.30: 
	3.29: 
	3.28: 
	3.27: 
	3.26: 
	3.25: 
	3.24: 
	3.23: 
	3.22: 
	3.21: 
	3.20: 
	3.19: 
	3.18: 
	3.17: 
	3.16: 
	3.15: 
	3.14: 
	3.13: 
	3.12: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	fd@rm@4: 
	fd@rm@3: 
	fd@rm@2: 
	anm2: 
	2.98: 
	2.97: 
	2.96: 
	2.95: 
	2.94: 
	2.93: 
	2.92: 
	2.91: 
	2.90: 
	2.89: 
	2.88: 
	2.87: 
	2.86: 
	2.85: 
	2.84: 
	2.83: 
	2.82: 
	2.81: 
	2.80: 
	2.79: 
	2.78: 
	2.77: 
	2.76: 
	2.75: 
	2.74: 
	2.73: 
	2.72: 
	2.71: 
	2.70: 
	2.69: 
	2.68: 
	2.67: 
	2.66: 
	2.65: 
	2.64: 
	2.63: 
	2.62: 
	2.61: 
	2.60: 
	2.59: 
	2.58: 
	2.57: 
	2.56: 
	2.55: 
	2.54: 
	2.53: 
	2.52: 
	2.51: 
	2.50: 
	2.49: 
	2.48: 
	2.47: 
	2.46: 
	2.45: 
	2.44: 
	2.43: 
	2.42: 
	2.41: 
	2.40: 
	2.39: 
	2.38: 
	2.37: 
	2.36: 
	2.35: 
	2.34: 
	2.33: 
	2.32: 
	2.31: 
	2.30: 
	2.29: 
	2.28: 
	2.27: 
	2.26: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.98: 
	1.97: 
	1.96: 
	1.95: 
	1.94: 
	1.93: 
	1.92: 
	1.91: 
	1.90: 
	1.89: 
	1.88: 
	1.87: 
	1.86: 
	1.85: 
	1.84: 
	1.83: 
	1.82: 
	1.81: 
	1.80: 
	1.79: 
	1.78: 
	1.77: 
	1.76: 
	1.75: 
	1.74: 
	1.73: 
	1.72: 
	1.71: 
	1.70: 
	1.69: 
	1.68: 
	1.67: 
	1.66: 
	1.65: 
	1.64: 
	1.63: 
	1.62: 
	1.61: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 
	fd@rm@1: 
	fd@rm@0: 


