
Computational Redistricting

Introduction

Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into their
prime factors and seeking out by experimentation the laws of
appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.
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Collaborators

• Prof. Moon Duchin Tufts Math

• Prof. Justin Solomon MIT CSAIL

• Lorenzo Najt Wisconsin Math

• VRDI Students

• Complexity and Geometry of Sampling Connected Graph Partitions (with L.
Najt and J. Solomon), arXiv: 1908.08881.

• ReCombination: A family of Markov chains for redistricting (with M.
Duchin and J. Solomon), preprint.

• Competitiveness Measures for Evaluating Districting Plans (with M. Duchin
and J. Solomon), preprint.

• Redistricting Reform in Virginia: Districting Criteria in Context (with M.

Duchin), Virginia Policy Review, 12(2), 120-146, (2019).
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Additional Materials

• Computational Approaches for Political Redistricting

• Interactive Notes on Discrete MCMC (with Scrabble)

• MGGG widgets

• VRDI materials

https://people.csail.mit.edu/ddeford/CAPR.php
https://people.csail.mit.edu/ddeford/mcmc_intro.php
https://mggg.org
https://github.com/vrdi


Computational Redistricting

Introduction

MORAL #1:

Computational Redistricting is
NOT a solved problem!

/



Computational Redistricting

Introduction

MORAL #1:

Computational Redistricting is
NOT a solved problem!

/



Computational Redistricting

Introduction

MORAL #2:

Computational Redistricting is
NOT a solved problem!

,



Computational Redistricting

Introduction

MORAL #2:

Computational Redistricting is
NOT a solved problem!

,



Computational Redistricting

Introduction

MORAL #2:

Computational Redistricting is
NOT a solved problem!

,



Computational Redistricting

Political Redistricting

Arkansas Congressional Districts



Computational Redistricting

Political Redistricting

Permissible Districting Plans

• Contiguity

• Population Balance

• Compactness

• Communities of Interest

• Municipal Boundaries

• Competitiveness/Responsiveness

• Incumbency Protection

• ...
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Example: Iowa

• 4 Congressional Districts, 100 House Districts, 50 Senate Districts

• House districts nest into Senate districts

• Congressional districts made out of counties

• Independent committee with legislative approval

• No partisan data allowed
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Example: Pennsylvania

• 18 Congressional Districts, 203 House Districts, 50 Senate Districts

• Zero–balanced population

• Legislature draws congressional districts - subcommittee draws
legislative districts

• Partisan considerations allowed
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Data Availability
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Political Redistricting

Why analyze?

• Court cases
• Detecting gerrymandering
• Evaluating proposed remedies

• Reform Efforts
• Establishing baselines
• Potential impacts of new rules

• Commissions and plan evaluation
• Unintentional gerrymandering
• Full space of plans
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Gerrymandering
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Ugly Shapes

NC12 #1 NC12 #2 NC12 #12
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Political Redistricting

Measurement Problems

Theorem (Bar-Natan, Najt, and Schutzman 20191)

There is no local homeomorphism from the globe to the plane that
preserves your favorite compactness measure.

Problem (Barnes and Solomon 20182)

Geographic Compactness scores can be distorted by:

• Data resolution

• Map projection

• State borders and coastline

• Topography

• ...
1 The Gerrymandering Jumble: Map Projections Permute Districts’ Compactness Scores, arXiv:1905.03173

2 Gerrymandering and Compactness: Implementation Flexibility and Abuse, arXiv:1803.02857
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Isoperimetric Profiles

Total Variation Isoperimetric Profiles (with H. Lavenant, Z. Schutzman, and J. Solomon),

SIAM Journal on Applied Algebra and Geometry, to appear (2019).
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Partisan Imbalance

NC16

PA TS-Proposed
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MORAL:

Computational Redistricting is
NOT a solved problem!
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Discrete MCMC

Arkansas Congressional Districts

Geography Dual Graph

District # 1 District # 2 District # 3 District # 4
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Discrete MCMC

Permissible Districting Plans

We want to partition a given geography (graph), at a given scale, into k
pieces, satisfying some constraints:

• Contiguity

• Population Balance

• Compactness

• Communities of Interest

• Municipal Boundaries

• Competitiveness/Responsiveness

• Incumbency Protection

• ...
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Discrete MCMC

Ensemble Analysis

• The wide variety in rules applied to districting problems (even in the
same state) means that any single measure of gerrymandering will be
insufficient/exploitable

• Instead we want to compare to large ensembles of other feasible plans.

• This allows us to understand the impacts of the underlying political
and demographic geography on a wide collection of metrics.
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Which ensembles?
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Discrete MCMC

Ensembles in Practice

• The appeal of an ensemble method is that you get to control the
input data very carefully

• However, just because a particular type of data was not considered
doesn’t mean that the outcome is necessarily “fair”

• There are lots of “random” methods for constructing districting plans

• Most don’t offer any control over the distribution that you are
drawing from
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Discrete MCMC

Markov Chain Monte Carlo

• A methodology for sampling (and evaluating) complex state spaces
• Developed during the Manhattan project for statistical physics

computations
• One of the “top 10” algorithms of the 20th century
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Discrete MCMC

Geometric Probability

Question

What is the expected distance between two random points on [0, 1]?

Answer ∫ 1

0

∫ 1

0

|x− y|dxdy =
1

3

Question

What is the expected distance between two random points on [0, 1]n?

Answer ∫ 1

0

· · ·
∫ 1

0

√√√√ n∑
j=1

(xj − yj)2dx1 · · · dxndy1 · · · dyn = /
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Discrete MCMC

Random Points in the Cube

https://people.csail.mit.edu/ddeford/cube_dist
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Discrete MCMC

Properties of Monte Carlo Methods

• Draw (independent) samples from a random distribution

• Compute some measure for each draw

• Repeat lots and lots of times

• Average/aggregate the derived data

Today, we tend to take access to random numbers for granted but some of
the first applications of Monte Carlo were physical systems for generating
random numbers.
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Discrete MCMC

What is a Markov chain?

Definition (Markov Chain)

A sequence of random variables X1, X2, . . . , is called a Markov Chain if

P(Xn = xn : X1 = x1, . . . , Xn−1 = xn−1) = P(Xn = xn : Xn−1 = xn−1).

Definition (Transition Probability)

Given a finite state space X = x1, x2, . . . , xn we can specify a Markov
chain over X with transition probabilities pi,j = P(Xm = i : Xm−1 = j)
and associated transition matrix P = [pi,j ].
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Ant on a Keyboard
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Discrete MCMC

Desirable Adjectives

• Irreducible: A chain is irreducible if each state is (eventually)
reachable from every other state.

• Aperiodic: A chain is aperiodic if for each state, the GCD of the
lengths of the loops, starting and ending at that state is equal to 1.

• Steady State Distribution: A distribution π is said to be a steady
state of the chain if π = πP . For simple random walks on graphs this
is proportional to the degree of each node.
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Discrete MCMC

Key Theorem

If the chain is irreducible and aperiodic then limm→∞ Pm = 1π for a
unique π. Even better, if f is any function defined on the state space
y1, y2, . . . , ym are samples from π then,

lim
m→∞

1

m

m∑
i=1

f(yi) = E[f ]

The key idea of MCMC is to create an irreducible, aperiodic Markov chain
whose steady state distribution π is the distribution we are trying to
sample from.
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Discrete MCMC

Proportional to a distribution!?!

A common way this arises is when we have a score function or a ranking
on our state space and want to draw proportionally to these scores. Given
a score s : X → R we want to sample from the distribution where the
states appear proportional to s. That is, element y ∈ X should appear
with probability

P(y) =
s(y)∑

x∈X s(x)
.

When |X| is enormous, we don’t want to/can’t compute the denominator.
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Discrete MCMC

How does it work?

Notice that we can compute ratios of probabilities, since the denominators
cancel:

P(z)
P(y)

=

s(z)∑
x∈X s(x)

s(y)∑
x∈X s(x)

=
s(z)

s(y)
.

This is the trick that turns out to allow us to draw samples according to s
without having to compute the denominator directly.
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Discrete MCMC

Metropolis Procedure

Given that we have a given score function, proposal distribution, metric,
and initial state X0, at each step of the Metropolis–Hastings chain
X1, X2, . . . we follow this sequence of steps, assuming that we are
currently at state Xk = y:

1 Generating a proposed state ŷ according to Qy,ŷ.

2 Compute the acceptance probability:

α = min

(
1,
s(ŷ)

s(y)

Qŷ,y

Qy,ŷ

)
3 Pick a number β uniformly on [0, 1]

4 Set

Xk+1 =

{
ŷ if β < α

y otherwise.
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Discrete MCMC

MCMC on partitions

1 Set constraints to define the state space

2 Start with an initial plan

3 Propose a modification

4 Verify that the modification satisfies the constraints

5 Accept using MH criterion

6 Repeat

Why?
• Control over sampling distribution and input data

• Possibility of local sampling

• Ergodic Theorem
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Flip Proposals

Single Edge Flip Proposals

1 Uniformly choose a cut edge

2 Change one of the incident node assignments to the other

• Mattingly et al. (2017, 2018) Court cases in NC and WI.

• Pegden et al. Assessing significance in a Markov chain without
mixing, PNAS, (2017). Court case in PA.
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Flip Proposals

Single Edge Ensembles
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Flip Proposals

PA Single Edge Flip
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Flip Proposals

Unconstrained Flip
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Flip Proposals

Constrained Flip
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Flip Proposals

Annealing
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Flip Proposals

Uniform Sampling of Contiguous Partitions

Theorem (Najt, D., and Solomon 2019)

Suppose that C is the class of connected planar graphs and k ≥ 2. If
there is a polynomial time algorithm to sample uniformly from:

• the connected k-partitions of graphs in C ,

• or the connected, 0-balanced k-partitions of graphs in C .

then RP = NP .

Theorem (Najt, D., and Solomon 2019)

Let G be any connected graph. Then let G(d) be the graph obtained by
replacing each edge by a doubled d-star. Then the flip walk on partitions

of family of graphs G
(d)
d≥1 is slowly mixing, in the sense the Cheeger

constant is decaying exponentially fast. More specifically:

H(Partition Graph(G(d)) = O(2−d)
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Flip Proposals

Proof Outline Sketch

Following technique of Jerrum, Valiant, and Vazirani1.

1 Show that uniformly sampling simple cycles is hard on some class C

1 Choose a gadget that respects C and allows us to concentrate
probability on long cycles

2 Count the proportion of cycles as a function of length
3 Reduce to Hamiltonian path on the graph class

2 Show closure of class under planar dual

3 Identify partitions with cut edges 7→ simple cycles (via planar duality)

4 Conclude that sampling partitions would allow you to sample from
cycles which would allow you to find Hamiltonian cycles

1 M. Jerrum, L. Valiant, and V. Vazirani, Random generation of
combinatorial structures from a uniform distribution, Theoretical Computer
Science, 43 (1986), 169–188.



Computational Redistricting

Markov Chain Monte Carlo

Flip Proposals

Proof Sketch – Planar 2–Partitions

Still following technique of Jerrum, Valiant, and Vazirani.

1 Let C be the planar connected graphs

1 Replace the edges with chains of dipoles
2 Hamiltonian hardness for C given by 1

2 C closed under planar duals

3 Identify partitions with cut edges (via planar duality)

1 M. Garey, D. Johnson, and R. Tarjan, The Planar Hamiltonian Circuit
Problem is NP-Complete, SIAM Journal on Computing, 5, (1976),
704–714.
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Slow Mixing Example
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Tree based methods

District Spanning Tree
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Tree Based Methods

Tree Seeds Ensemble
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Tree Based Methods

Recombination Steps

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Draw a spanning tree for the new super–district

4 Delete an edge leaving two population balanced districts

5 Repeat
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Recombination Step Example
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Tree Based Methods

AR Ensembles
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Tree Based Methods

PA Recombination Steps
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Initial Seeds

Initial



Computational Redistricting

Applied Ensemble Analysis

Boundary Flip Mixing – Seeds

10,000,000 Flip Steps
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Recombination Mixing – Seeds

20,000 Recombination Steps
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Boundary Flip Mixing – Length
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Recombination Mixing – Length

20,000 Recombination Steps
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Applications
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Outlier Example: NC
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Outlier Example: VA
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Outlier Example: VA
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Baseline Example: VA

Mean–Median Efficiency Gap
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Baseline Example: PA

Mean–Median Efficiency Gap
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Reform Example: Competitiveness

UT GA WI

VA MA
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MORAL:

Computational Redistricting is
NOT a solved problem!
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Try it at home!

• Draw your own districts with Districtr
• https://districtr.org
• Easy to generate complete districting plans in browser or on a tablet
• Measures district demographics and expected partisan performance
• Identifies communities of interest

• Generate your own ensembles with GerryChain1

• https://github.com/mggg/gerrychain
• Flexible, modular software for sampling graph partitions
• Handles the geodata processing as well as the MCMC sampling
• Current support for a
• Successfully applied in VA, NC, PA, etc.

• Data is available for your favorite state!
• Census dual graphs with demographic information:
• https://people.csail.mit.edu/ddeford/dual_graphs
• Precincts with electoral results
• https://github.com/mggg-states

1Originally RunDMCMC

https://districtr.org
https://github.com/mggg/gerrychain
https://people.csail.mit.edu/ddeford/dual_graphs
https://github.com/mggg-states
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The End

Thanks!
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General Tree Proposals

1 Form the induced subgraph on the complement of the cut edges

2 Add some subset of the cut edges

3 Uniformly select a maximal spanning forest

4 Apply a Markov chain on trees

5 Partition the spanning forest into k population balanced pieces
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Special Cases

• Uniform Trees: Add all cut edges

• k–edges: Uniformly add k cut edges

• Recombination: Add all cut edges between one pair of districts.

• Super-Recombination: Take a maximal matching on the dual graph
to the districts and add all cut edges between matched districts.

• Bounce Walk: Add a single cut edge between enough pairs of districts
to make a tree in the dual graph of districts.

Question

What are the steady state distributions (and mixing times) of these walks?
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Tree Partitioning Questions

• Characterizing the distribution on partitions defined by cutting trees!

• How bad is the best cut?

• Criteria for determining when a tree is ε cuttable?

• Criteria for determining when all spanning trees of a graph are ε
cuttable?

• How hard is it to find the mininum ε for which a cut exists?

• As a function of ε what proportion of spanning trees are cuttable?

• As a function of ε what proportion of edges in a given tree are
cuttable?

• What is the fastest way to sample uniformly from k − 1 balanced cut
edges?
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General Merge Proposals

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Bipartition the new super–district

4 Repeat

5 (Optional) Mix with single edge flips

Before During After
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Bipartitioning Methods

• Trees!

• Flood Fills

• Path Fills

• Agglomerative/Hierarchical

• Spectral

• Min Cut

More details (and colorful figures) at:
https://www.overleaf.com/read/zpmyzqmpvmnx

https://www.overleaf.com/read/zpmyzqmpvmnx
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Ensemble Example: NC
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Ensemble Example: NC



Computational Redistricting

Applied Ensemble Analysis

Ensemble Example: PA
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Ensemble Example: PA


	Introduction
	Political Redistricting
	Markov Chain Monte Carlo
	Discrete MCMC
	Flip Proposals
	Tree Based Methods

	Applied Ensemble Analysis

	fd@rm@6: 
	anm6: 
	6.98: 
	6.97: 
	6.96: 
	6.95: 
	6.94: 
	6.93: 
	6.92: 
	6.91: 
	6.90: 
	6.89: 
	6.88: 
	6.87: 
	6.86: 
	6.85: 
	6.84: 
	6.83: 
	6.82: 
	6.81: 
	6.80: 
	6.79: 
	6.78: 
	6.77: 
	6.76: 
	6.75: 
	6.74: 
	6.73: 
	6.72: 
	6.71: 
	6.70: 
	6.69: 
	6.68: 
	6.67: 
	6.66: 
	6.65: 
	6.64: 
	6.63: 
	6.62: 
	6.61: 
	6.60: 
	6.59: 
	6.58: 
	6.57: 
	6.56: 
	6.55: 
	6.54: 
	6.53: 
	6.52: 
	6.51: 
	6.50: 
	6.49: 
	6.48: 
	6.47: 
	6.46: 
	6.45: 
	6.44: 
	6.43: 
	6.42: 
	6.41: 
	6.40: 
	6.39: 
	6.38: 
	6.37: 
	6.36: 
	6.35: 
	6.34: 
	6.33: 
	6.32: 
	6.31: 
	6.30: 
	6.29: 
	6.28: 
	6.27: 
	6.26: 
	6.25: 
	6.24: 
	6.23: 
	6.22: 
	6.21: 
	6.20: 
	6.19: 
	6.18: 
	6.17: 
	6.16: 
	6.15: 
	6.14: 
	6.13: 
	6.12: 
	6.11: 
	6.10: 
	6.9: 
	6.8: 
	6.7: 
	6.6: 
	6.5: 
	6.4: 
	6.3: 
	6.2: 
	6.1: 
	6.0: 
	anm5: 
	5.98: 
	5.97: 
	5.96: 
	5.95: 
	5.94: 
	5.93: 
	5.92: 
	5.91: 
	5.90: 
	5.89: 
	5.88: 
	5.87: 
	5.86: 
	5.85: 
	5.84: 
	5.83: 
	5.82: 
	5.81: 
	5.80: 
	5.79: 
	5.78: 
	5.77: 
	5.76: 
	5.75: 
	5.74: 
	5.73: 
	5.72: 
	5.71: 
	5.70: 
	5.69: 
	5.68: 
	5.67: 
	5.66: 
	5.65: 
	5.64: 
	5.63: 
	5.62: 
	5.61: 
	5.60: 
	5.59: 
	5.58: 
	5.57: 
	5.56: 
	5.55: 
	5.54: 
	5.53: 
	5.52: 
	5.51: 
	5.50: 
	5.49: 
	5.48: 
	5.47: 
	5.46: 
	5.45: 
	5.44: 
	5.43: 
	5.42: 
	5.41: 
	5.40: 
	5.39: 
	5.38: 
	5.37: 
	5.36: 
	5.35: 
	5.34: 
	5.33: 
	5.32: 
	5.31: 
	5.30: 
	5.29: 
	5.28: 
	5.27: 
	5.26: 
	5.25: 
	5.24: 
	5.23: 
	5.22: 
	5.21: 
	5.20: 
	5.19: 
	5.18: 
	5.17: 
	5.16: 
	5.15: 
	5.14: 
	5.13: 
	5.12: 
	5.11: 
	5.10: 
	5.9: 
	5.8: 
	5.7: 
	5.6: 
	5.5: 
	5.4: 
	5.3: 
	5.2: 
	5.1: 
	5.0: 
	fd@rm@5: 
	anm4: 
	4.98: 
	4.97: 
	4.96: 
	4.95: 
	4.94: 
	4.93: 
	4.92: 
	4.91: 
	4.90: 
	4.89: 
	4.88: 
	4.87: 
	4.86: 
	4.85: 
	4.84: 
	4.83: 
	4.82: 
	4.81: 
	4.80: 
	4.79: 
	4.78: 
	4.77: 
	4.76: 
	4.75: 
	4.74: 
	4.73: 
	4.72: 
	4.71: 
	4.70: 
	4.69: 
	4.68: 
	4.67: 
	4.66: 
	4.65: 
	4.64: 
	4.63: 
	4.62: 
	4.61: 
	4.60: 
	4.59: 
	4.58: 
	4.57: 
	4.56: 
	4.55: 
	4.54: 
	4.53: 
	4.52: 
	4.51: 
	4.50: 
	4.49: 
	4.48: 
	4.47: 
	4.46: 
	4.45: 
	4.44: 
	4.43: 
	4.42: 
	4.41: 
	4.40: 
	4.39: 
	4.38: 
	4.37: 
	4.36: 
	4.35: 
	4.34: 
	4.33: 
	4.32: 
	4.31: 
	4.30: 
	4.29: 
	4.28: 
	4.27: 
	4.26: 
	4.25: 
	4.24: 
	4.23: 
	4.22: 
	4.21: 
	4.20: 
	4.19: 
	4.18: 
	4.17: 
	4.16: 
	4.15: 
	4.14: 
	4.13: 
	4.12: 
	4.11: 
	4.10: 
	4.9: 
	4.8: 
	4.7: 
	4.6: 
	4.5: 
	4.4: 
	4.3: 
	4.2: 
	4.1: 
	4.0: 
	anm3: 
	3.98: 
	3.97: 
	3.96: 
	3.95: 
	3.94: 
	3.93: 
	3.92: 
	3.91: 
	3.90: 
	3.89: 
	3.88: 
	3.87: 
	3.86: 
	3.85: 
	3.84: 
	3.83: 
	3.82: 
	3.81: 
	3.80: 
	3.79: 
	3.78: 
	3.77: 
	3.76: 
	3.75: 
	3.74: 
	3.73: 
	3.72: 
	3.71: 
	3.70: 
	3.69: 
	3.68: 
	3.67: 
	3.66: 
	3.65: 
	3.64: 
	3.63: 
	3.62: 
	3.61: 
	3.60: 
	3.59: 
	3.58: 
	3.57: 
	3.56: 
	3.55: 
	3.54: 
	3.53: 
	3.52: 
	3.51: 
	3.50: 
	3.49: 
	3.48: 
	3.47: 
	3.46: 
	3.45: 
	3.44: 
	3.43: 
	3.42: 
	3.41: 
	3.40: 
	3.39: 
	3.38: 
	3.37: 
	3.36: 
	3.35: 
	3.34: 
	3.33: 
	3.32: 
	3.31: 
	3.30: 
	3.29: 
	3.28: 
	3.27: 
	3.26: 
	3.25: 
	3.24: 
	3.23: 
	3.22: 
	3.21: 
	3.20: 
	3.19: 
	3.18: 
	3.17: 
	3.16: 
	3.15: 
	3.14: 
	3.13: 
	3.12: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.98: 
	2.97: 
	2.96: 
	2.95: 
	2.94: 
	2.93: 
	2.92: 
	2.91: 
	2.90: 
	2.89: 
	2.88: 
	2.87: 
	2.86: 
	2.85: 
	2.84: 
	2.83: 
	2.82: 
	2.81: 
	2.80: 
	2.79: 
	2.78: 
	2.77: 
	2.76: 
	2.75: 
	2.74: 
	2.73: 
	2.72: 
	2.71: 
	2.70: 
	2.69: 
	2.68: 
	2.67: 
	2.66: 
	2.65: 
	2.64: 
	2.63: 
	2.62: 
	2.61: 
	2.60: 
	2.59: 
	2.58: 
	2.57: 
	2.56: 
	2.55: 
	2.54: 
	2.53: 
	2.52: 
	2.51: 
	2.50: 
	2.49: 
	2.48: 
	2.47: 
	2.46: 
	2.45: 
	2.44: 
	2.43: 
	2.42: 
	2.41: 
	2.40: 
	2.39: 
	2.38: 
	2.37: 
	2.36: 
	2.35: 
	2.34: 
	2.33: 
	2.32: 
	2.31: 
	2.30: 
	2.29: 
	2.28: 
	2.27: 
	2.26: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	fd@rm@4: 
	anm1: 
	1.98: 
	1.97: 
	1.96: 
	1.95: 
	1.94: 
	1.93: 
	1.92: 
	1.91: 
	1.90: 
	1.89: 
	1.88: 
	1.87: 
	1.86: 
	1.85: 
	1.84: 
	1.83: 
	1.82: 
	1.81: 
	1.80: 
	1.79: 
	1.78: 
	1.77: 
	1.76: 
	1.75: 
	1.74: 
	1.73: 
	1.72: 
	1.71: 
	1.70: 
	1.69: 
	1.68: 
	1.67: 
	1.66: 
	1.65: 
	1.64: 
	1.63: 
	1.62: 
	1.61: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 
	fd@rm@3: 
	fd@rm@2: 
	fd@rm@1: 
	fd@rm@0: 


