
Matched Products and Rearrangements

Introduction

Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into their
prime factors and seeking out by experimentation the laws of
appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.
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Graphs (G = (V,E))
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Matched Product

Multiplex Networks

Adjacency Matrix

A =



0 0 0 1 0 0 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 0 0 0
1 1 1 0 1 1 1 0
0 1 1 1 0 1 0 1
0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1
0 1 0 0 1 0 1 0
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Multiplex Networks

What is a multiplex?

Definition

A multiplex is a collection of graphs all defined on the same node set.

Formally, M = (V, (E1, E2, . . . , Ek)) where Gi = (V,Ei) is a graph for all
i.

(a) Family (b) Colleagues (c) Facebook
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Multiplex Networks

Karnataka Village Data1

(a) Village 5 (b) Village 61

Figure: Karnataka Villages

1 A. Banerjee, A.G. Chandrasekhar, E. Duflo, and M.O. Jackson, The Diffusion of

Microfinance. Science, (2013).
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Multiplex Networks

Village Layers

Layer Village 5 Village 61
Description Density Comp. Giant % Density Comp. Giant %

Borrow Money .0082 26 .8354 .0108 15 .9188
Give Advice .0077 49 .5892 .0098 34 .7377

Help Make Decisions .0076 61 .1277 .0100 24 .8562
Borrow Kerosene or Rice .0085 21 .8338 .0113 14 .9171

Lend Kerosene or Rice .0086 22 .8308 .0113 14 .9255
Lend Money .0081 14 .7908 .0107 17 .9036

Medical Advice .0075 84 .2938 .0106 14 .9306
Friends .0089 15 .9277 .0105 22 .8714

Relatives .0085 29 .7231 .0105 26 .5448
Attend Temple With .0073 117 .0462 .0089 108 .0372

Visit Their Home .0087 15 .9185 .0116 11 .9475
Visit Your Home .0088 16 .9108 .0117 11 .9492

Aggregate .0121 3 .9862 .0155 8 .9679

Table: Layer information for two of the Karnataka Villages1.

1 D. DeFord and S. Pauls, A new framework for dynamical models on multiplex

networks, Journal of Complex Networks, (2018).
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Medical Advice

(a) Village 5 (b) Village 61
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Multiplex Networks

World Trade Web1

Figure: World trade networks

1 R. Feenstra, R. Lipsey, H. Deng, A.C. Ma, and H. Mo. World Trade Flows:

1962-2000. NBER Working Paper 11040, (2005).
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Multiplex Networks

WTW Layers

Layer Description Volume % Total Transitivity

0 Food and live animals 291554437 5.1 .82
1 Beverages and tobacco 48046852 0.9 .67
2 Crude materials 188946835 3.3 .79
3 Mineral fuels 565811660 10.0 .62
4 Animal and vegetable oils 14578671 0.3 .64
5 Chemicals 535703156 9.5 .83
6 Manufactured Goods 790582194 13.9 .87
7 Machinery 2387828874 42.1 .85
8 Miscellaneous manufacturing 736642890 13.0 .83
9 Other commodities 107685024 1.9 .56

All Aggregate Trade 5667380593 100 .93

Table: Layer information for the 2000 World Trade Web1.

1 D. DeFord and S. Pauls, A new framework for dynamical models on multiplex

networks, Journal of Complex Networks, (2018).
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Multiplex Networks

Disjoint Layers

Figure: Disjoint Layers
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Multiplex Networks

Aggregate Representations

(a) Disjoint Layers (b) Aggregate
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Temporal Multiplex

(a) Disjoint Layers (b) Temporal

P. J. Mucha, T. Richardson, K. Macon, M. A. Porter and J. P. Onnela, Community

structure in time-dependent, multiscale, and multiplex networks, Science, (2010).
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Multiplex Networks

Supra–Adjacency

(a) Disjoint Layers (b) Supra–Adjacency

M. Kivelä, A. Arenas, M. Barthelemy, James P. Gleeson, Y. Moreno, M. A. Porter;

Multilayer networks, Journal of Complex Networks, (2014).
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Why Supra–Adjacency?

• Dynamical Properties 1

• Generalizing Network Measures 2

• Perturbation theory 3

1 S. Gómez, A. D́ıaz-Guilera, J. Gómez-Gardeñes, C. J. Pérez-Vicente, Y. Moreno, and

A. Arenas, Diffusion dynamics on multiplex networks, Physical Review Letters 110

(2013), 2, 028701.
2M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M. A. Porter, S.

Gómez, and A. Arenas, Mathematical formulation of multilayer networks, Physical

Review X 3 (2013), 4, 041022.
3 D. Taylor, S. A. Myers, A. Clauset, M. A. Porter and P. J. Mucha, Eigenvector-based

centrality measures for temporal networks, Multiscale Modeling and Simulation 15,

537-574 (2017)
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Matched Product

Definition (Matched Product)

Let G1, G2, . . . , Gk be an ordered list of graphs, each with n nodes and a
common labeling of the nodes and let C be a graph with k ordered nodes.

The matched product C (G1, G2, . . . , Gk) is the graph with node set⋃
Vi and two nodes vαi and vβj in C (G1, G2, . . . , Gk) are connected if

and only if either

1 cα ∼ cβ and i = j

2 α = β and vαi ∼ vαj
where cα and cβ are nodes in C and vαi represents the copy of node i in
Gα.
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Matched Product

Example: Grid Graphs

Figure: P3 (P6, P6, P6, P6)
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Matched Product

Example: Hypercubes

Figure:

P2

(
P2

(
P2 (P2, P2), P2 (P2, P2)

)
, P2

(
P2 (P2, P2), P2 (P2, P2)

))
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Relationship to Other Graph Products

Theorem (D. 2017)

There are labelings of the graphs below such that the following hold:

1 The cartesian product of G and H can be represented by

H (G,G, . . . , G)

2 The rooted product of G and H can be represented by

H (G,En, En, . . . , En)

3 The hierarchical product of G and H with subset {ai} ⊂ H can be

represented by H (G1, G2, . . . , Gk) where

Gi =

{
G if i ∈ {ai}
En otherwise

.



Matched Products and Rearrangements

Matched Product
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Product Proofs

Proof.

1 Two vertices (u, v) and (w, x) in the Cartesian product are connected

if and only if u ∼ w or v ∼ x. This is H (G,G, . . . , G): we note
that the Cartesian condition is equivalent to construction |G| copies
of H and connecting all copies of a given label according to the
topology of G.

2 The rooted product is constructed by fixing a root node in H and
considering |G| copies of H with the roots connected according to the

topology of G. In H (G,En, En, . . . , En) we have a single copy of
G and then n copies of H joined at the root by the topology of G
exactly as desired. In general, filling the list (G1, G2, . . . , Gk) with
copies of En simply gives that many disjoint copies of the graph H.
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Matched Product

Product Proof Continued

Proof.

3 The hierarchical product is a more recent invention, introduced in 1

and studied as a network model in 2. Here the product is taken with
respect to two graphs G and H, as well as a subset of the nodes of
H. The construction begins with the rooted product of G and H but
the copies of H that are associated to the subset are connected with
the topology of G, instead of remaining empty. This is exactly the
construction stated in the theorem in terms of the matched product.

1 L. Barrièrea, C. Dalfóa, M. A. Fiola, M. Mitjanab, The generalized hierarchical

product of graphs, Discrete Mathematics, (2009).
2 P. S. Skardal and K. Wash, Spectral properties of the hierarchical product of graphs,

Physical Review E, (2016).
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Layer Properties

Cycle Properties

Proposition

1 Let G1, G2, . . . , Gk and C be Eulerian graphs then any labeling of

C (G1, G2, . . . , Gk) is Eulerian.

2 Let (G1, G2, . . . , Gk) and C have Hamiltonian cycles. Then

C (G1, G2, . . . , Gk) is Hamiltonian.

Proof.

1 A graph is Eulerian if each vertex has even degree. Since the Gi and
C are Eulerian each vertex in the product has even degree.

2 Label the nodes in (G1, G2, . . . , Gk) arbitrarily and let
(a1, a2, . . . , ak) be a Hamiltonian cycle in C. Starting at an arbitrary
vertex in Ga1 traverse the cycle in Ga1 and then travel along the
edge to Ga2 . The hypotheses guarantee that we can continue to
traverse each layer, ending at a copy of the original node on Gak .
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Layer Properties

Labeling Matters!

(a) Cylinder Graph (b) Petersen Graph

Figure: Two labelings of P2 (C5, C5)
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Layer Properties

Planarity Result

Proposition (Planarity)

Let G and H be connected graphs on n nodes. There exists a labeling so

that of P2 (G,H) is planar if and only if G and H are outerplanar.

Lemma

Let G and H be connected, planar graphs. If P2 (G,H) is planar then
all vertices of G must lie within a single face of H and vice versa.

Proof of Lemma.

In order to obtain a contradiction, assume that two vertices u and v of G
lie in different faces of H. Since G is connected there is a path connecting
u and v but this path must pass through an edge of H which contradicts

the assumption that P2 (G,H) is planar.
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Layer Properties

Planarity Proof Continued

Proof.

By the Lemma, if P2 (G,H) is planar, each graph must have an
embedding where each vertex lies on a single face, which is the definition
of outerplanar1.
The argument above shows that it is necessary for the graphs to be
outerplanar, so it suffices to show that a compatible labeling exists. Since
G and H are outerplanar, their vertices may be arranged at the vertices of
a regular polygon in the plane, say with G centered at (−1, 0) and H
centered at (1, 0) both inscribed in circles of radius 1

2 . To construct a
planar labeling we choose a vertex arbitrarily from each graph and rotate
the embeddings so that these are the two closest vertices. Pair these
vertices and proceed along the ordering given by the polygon clockwise
along the H and counterclockwise along G.

1 G. Chartrand, and F. Harary, Planar permutation graphs , Annales de l’Institut Henri

Poincaré B, (1967).
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Planar Path Labelings

Figure: A labeling of P2 (P5, P5) that is not planar.
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Permutations of Pn

Theorem (D. 2018)

Let π ∈ Sn. Then P2 (Pn, Pn) with labelings (1, 2, 3, . . . , n) and

(π(1), π(2), π(3), . . . , π(n)) is planar if and only if π is a square
permutation. There are 2(n+ 2)4n−2 − 4(2n− 5)

(
2n−6
n−3

)
such

permutations.

Proof sketch.

A permutation is square if its consecutive–minima polygon has at most 4
sides. If π is square construct directly from diagram. If π is not square,
there exists a vertex 2 < k < n− 1 such that contracting the edges
between 1, . . . , k − 1 and k + 1, . . . , n is isomorphic to K3,3.
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Vertex Labelling

Permutation Examples

Figure: (3,1,4,5,2) Figure: (5,2,3,4,1)
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Original Problem (Honsberger)

Question

A classroom has 5 rows of 5 desks per row. The teacher requires that each
pupil to change his seat by going either to the seat in front, the one
behind, the one to his left, or the one to his right (of course not all these
options are possible to all students). In how many ways can the students
rearrange themselves?

Answer

Zero.
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Original Problem Solution
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More interesting problem

Question

A classroom has 5 rows of 5 desks per row. The teacher allows each pupil
to change his seat by going either to the seat in front, the one behind, the
one to his left, or the one to his right or to remain in place. In how
many ways can the students rearrange themselves?

Answer

19,114,420
Definition (Graph Factorial)

The factorial of a graph G is the number of ways to decompose the
vertices of G into a collection of disjoint cycles.
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Example

(a) Original (b) Cycle Decomposition
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Stirling Numbers of the first kind

Definition (Stirling Numbers)

The Stirling numbers of the first kind
[
n
k

]
count the number of π ∈ Sn

composed of exactly k disjoint cycles. Since there are n! elements of Sn
we have:

n! =
∑
k

[
n

k

]
.

Definition (Stirling Numbers for Graphs1)

The Stirling numbers of the first kind
[
G
k

]
count the number of ways to

decompose the vertices of G into exactly k disjoint cycles and hence

G! =
∑
k

[
G

k

]
.

1A. Barghi, Stirling Numbers of the First Kind for Graphs,

Australasian Journal of Combinatorics, (2018).
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Chess Moves

Question

A classroom has m rows of n desks per row. The teacher allows each
pupil to change his seat by going either moving like a given set of chess
pieces or to remain in place. In how many ways can the students
rearrange themselves?
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8× 8 Rook Graph
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8× 8 Knight Graph
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8× 8 Bishop Graph
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Knight Rearrangements
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Knight’s Tour

• 8× 8 Knight’s Tour (Hamiltonian Cycles)

• 26,534,728,821,064 1,2

• 8× 8 Knight’s Graph Factorial

• 8,121,130,233,753,702,400

1 M. Löbbing and I. Wegener, The Number of Knight’s Tours Equals
33,439,123,484,294 — Counting with Binary Decision Diagrams, Electronic Journal of
Combinatorics, (1996).
2 B. McKay, Knight’s Tours on an 8× 8 Chessboard, Technical Report TR-CS-97-03,

Australian National University, (1997).
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Matrix Permanents

Definition

The permanent of an n× n matrix, M , is defined by:

per(M) =
∑
π∈Sn

n∏
i=1

Mi,π(i).

When M = A is an adjacency matrix, this is exactly the number of cycle
covers of the graph, that is:

per(A+ In) = G!.

When M = B is a bi–adjacency matrix, this is exactly the number of
perfect matchings in the bipartite graph.
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Convertible Graphs

Definition

A graph is called convertible if we can scale the entries of the adjacency
matrix by units to obtain a new matrix B such that:

per(A) = det(B).

• Posed by Pólya

• Planar bi–adjacency case by FKT

• Characterization as Pfaffian orientable bi–adjacency graphs 1

• Polynomial Time Algorithm 2

1 C. H. Little, A characterization of convertible (0, 1)-matrices, Journal of
Combinatorial Theory, Series B, (1975).
2 N. Robertson, P.D. Seymour, and R. Thomas, Permanents, Pfaffian orientations, and

even directed circuits, Annals of Mathematics, (1999).
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Example: Hosoya Index of Trees

Theorem (D. 2013)

Let T be a tree with adjacency matrix A(T ). Then the Hosoya index of T
is equal to

det(iA(T ) + In).

If G has exactly one k cycle Ck, then:

G! = det(iA(G) + In) + 2(−i)k(det(iA(G \ C) + In−k).

Proof.

Since T is a tree there is a bijection between cycle covers and matchings.

det(iA + In) =
∑

π∈Sn
sgn(π)

∏
i

(iA + In)i,π(i)

=
∑

π∈Sn
sgn(π)

2 ∏
i

(A + In)i,π(i)

=
∑

π∈Sn

∏
i

(A + In)i,π(i)

=per(A + In) = T !
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Chessboard Theorem

Theorem (D. 2014)

Let M be a set of adjacency moves on a chessboard with bounded
horizontal displacement and let {Gi} be a sequence of graphs with Vi
representing the squares of an m× i grid and Ei defined by the moves in
M . Then, the sequence G1!, G2!, G3!, . . . satisfies a linear, homogeneous,
constant–coefficient recurrence relation.

Example

Let M be the bishop move and m = 2. Then, Gn! = f2n
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Graph Family Factorials

Gn Gn!

Pn fn

Cn fn + fn−2 + 2

Kn n!

Km,n

∑m
i=0(m)i(n)i

Starn n+ 1

Wheeln nfn+2 + fn + fn−2 − 2n+ 2

Dutch Windmillmn (fn−1)
m + 2(fn−2 + 1)(fn−1)

m−1

Flower Graphkn 2 + `(k−2)n + nf(k−2)n−1 + 2nf(n−2)k−(n−1)+

2n
∑k−2
i=1 f(k−2(n−i−1)−1
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Comb Graph Factorials

Gn Gn!

P2 (En, En) 2n

P2 (Pn, En) Ln

P2 (Sn, En) 2n+1 + n2n

P2 (Cn, En) 2Ln−1 + 2Ln−2 + 4

P2 (Kn, En)
∑
`

(
n
`

)
(n− `)!

The Pell numbers, Ln, are defined by L0 = 1, L1 = 2, and Ln = 2Ln−1 + Ln−2.
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Comb Graph Factorials

Gn Gn!

P2 (En, En) 2n

P2 (Pn, En) Ln

P2 (Sn, En) 2n+1 + n2n

P2 (Cn, En) 2Ln−1 + 2Ln−2 + 4

P2 (Kn, En)
∑
`

(
n
`

)
(n− `)!

P2 (Cn, Cn) 6 + 4(−1)n +
(
2 +
√
3
)n

+
(
2−
√
3
)n

+
(
1 +
√
2
)n

+
(
1−
√
2
)n

The Pell numbers, Ln, are defined by L0 = 1, L1 = 2, and Ln = 2Ln−1 + Ln−2.
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P2 (S9, P9)
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P2 (Sn, Pn)

Example

P2 (Sn, Pn)! =2Ln+1 + (Lj−1 + Lj−2)Ln−j−1

+

n∑
j=1

[Lj−1 + 2Lj−2 + Ln−3]Ln−j

+2

 n∑
j=1

Ln−j +

n−1∑
j=1

[Lj−1 + Lj−2]

n∑
m=j+1

Ln−m
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Extensions

• Expected enumeration over relabelings:
• Planar
• Factorial
• Chromatic Number
• etc.

• Products that are plan for all labelings

P2 (Sn, Pn) and P2 (Sn, Sn)

• Products that are isomorphic for all labelings

P2 (Kn, G) and P2 (Sn, Cn)

• Products that are never isomorphic for all labelings



Matched Products and Rearrangements

Political Redistricting

Political Partitioning

(a) Geography (b) Dual Graph



Matched Products and Rearrangements

Political Redistricting

Districting Plans

We want to partition a given geography (graph), at a given scale, into k
pieces, satisfying some constraints:

• Contiguity

• Population Balance

• Compactness

• Communities of Interest

• Municipal Boundaries

• Competitiveness/Responsiveness

• Incumbency Protection

• ...
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Nesting Rules

(a) Iowa Counties (b) Congressional Districts

Figure: Still quintillions of possibilities...
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Perfect Matchings
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Figure: 100 House districts paired to make 50 Senate districts.
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Matching Advantages

Approximately 8 states require this type of matching and two states (OH
and WI) have a three house districts to one senate district matching.

• Matchings are contiguous

• Population balance is automatic

• Compactness is less relevant

• ...

Even better, for graphs of this size and type we can construct all of the
possible matchings. This lets us evaluate whether or not a given matching
is a partisan outlier and make statements about the actual space of
possibilities.
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(VRDI) Alaska

Figure: Histogram of expected Democratic senate seats across all matchings.

Analysis by Caldera, Duchin, Elhai, Gutekunst,

Harris, Kelling, Khan, and Nix
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Extensions

• How bad can it get in practice?

• Can we efficiently generate the set of “triple pairings” on graphs of
this size?

• How does perturbing the smaller districts change the matching
properties?

• If we instead started with Senate districts and bipartition them into
house districts, what can we say about the distributions?

• Is there a general, multiscale approach that could be applied to
sample plans, even when the state doesn’t require pairing?
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The end!

Thanks!
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