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Complex Networks

Degree Matrix

D =



1 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 6 0 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 3


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Complex Networks

Adjacency Matrix

A =



0 0 0 1 0 0 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 0 0 0
1 1 1 0 1 1 1 0
0 1 1 1 0 1 0 1
0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1
0 1 0 0 1 0 1 0


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Complex Networks

Operators on Networks

• Adjacency

• Symmetric, binary
• Eigenvector centrality

• Laplacian

• Matrix: L = D −A
• Positive semi–definite
• Discretized version of Laplacian heat diffusion

• Random Walk

• Matrix; R = D−1A
• Always stochastic, regular if G is connected
• Transition matrix of associated Markov process
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Complex Networks

Adjacency Action

(c) Before (d) After
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Complex Networks

Diffusion Animation
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Tree Spectra

Adjacency Spectra of Regular Trees

(c) X
(4)
2 (d) X

(3)
3
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Tree Spectra

Eigenvalues of Regular Trees

Define two families of polynomials:

P kn (x) = xP kn−1 − (k − 1)P kn−2

with initial conditions P k0 (x) = 0, P k1 (x) = 1, and P k2 (x) = x and

Qkn(x) = xP kn (x)− kP kn−1(x).

Theorem

The roots of P ks (x) for 1 ≤ s ≤ r and Qkr (x) are precisely the eigenvalues
of the finite k-ary tree Xk

r .
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Tree Spectra

Enumerative Results

Theorem

If λ is a root P kr and not a root of P km for any m < r then asymptotically

(as r −→∞), the proportion of eigenvalues of Xr
k is

(k − 2)2

(k − 1)r − 1
.

Corollary

∞∑
n=2

ϕ(n)(k − 2)2

(k − 1)n − 1
= 1.

Corollary (k = 3)

∞∑
n=1

ϕ(n)

2n − 1
= 2.
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Tree Spectra

Tree Questions

Question

Given a graph G and an associated adjacency eigenpair (v, λ) does there
exist a subgraph H of G so that (v|H , λ) is an eigenpair for H?

Question

Is there a nice closed form for the endpoints of the Cantor–like set:
∞∑
n=1

(k − 2)2

(k − 1)n − 1

∑
(`,n)=1
`< an

m

1 :
m ∈ N

(a,m) = 1


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Tree Spectra

Tree Questions

Question

Can we characterize the sequences of graphs G1, G2, . . . satisfying for all
ε > 0 there exists a finite set Λ ⊂ R and a N ∈ N such that for all
n > N :

|{λ ∈ spec(Gn) : λ /∈ Λ}|
| spec(Gn)|

< ε.

Question

What similar results exist for regularly branching simplices?



Multiplex Networks

What is a Multiplex?

What is a multiplex?

Definition

A multiplex is a collection of graphs all defined on the same node set.
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What is a Multiplex?

World Trade Web1

Figure: World trade networks

1 R. Feenstra, R. Lipsey, H. Deng, A.C. Ma, and H. Mo. World Trade Flows: 1962-2000. NBER Working Paper 11040, (2005).
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What is a Multiplex?

WTW Layers

Layer Description Volume % Total Transitivity

0 Food and live animals 291554437 5.1 .82
1 Beverages and tobacco 48046852 0.9 .67
2 Crude materials 188946835 3.3 .79
3 Mineral fuels 565811660 10.0 .62
4 Animal and vegetable oils 14578671 0.3 .64
5 Chemicals 535703156 9.5 .83
6 Manufactured Goods 790582194 13.9 .87
7 Machinery 2387828874 42.1 .85
8 Miscellaneous manufacturing 736642890 13.0 .83
9 Other commodities 107685024 1.9 .56

All Aggregate Trade 5667380593 100 .93

Table: Layer information for the 2000 World Trade Web.



Multiplex Networks

What is a Multiplex?

2000 USA – SA Trade Imbalances
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What is a Multiplex?

USA and SA Commodity Imbalances

(a) US Commodities (b) SA Commodities
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What is a Multiplex?

Karnataka Village Data1

(a) Village 4 (b) Village 61

Figure: Karnataka Villages

1 A. Banerjee, A.G. Chandrasekhar, E. Duflo, and M.O. Jackson, The Diffusion of Microfinance. Science, (2013).
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What is a Multiplex?

Village Layers

Layer Village 4 Village 61
Description Density Comp. Giant % Density Comp. Giant %

Borrow Money .0082 26 .8354 .0108 15 .9188
Give Advice .0077 49 .5892 .0098 34 .7377

Help Make Decisions .0076 61 .1277 .0100 24 .8562
Borrow Kerosene or Rice .0085 21 .8338 .0113 14 .9171

Lend Kerosene or Rice .0086 22 .8308 .0113 14 .9255
Lend Money .0081 14 .7908 .0107 17 .9036

Medical Advice .0075 84 .2938 .0106 14 .9306
Friends .0089 15 .9277 .0105 22 .8714

Relatives .0085 29 .7231 .0105 26 .5448
Attend Temple With .0073 117 .0462 .0089 108 .0372

Visit Their Home .0087 15 .9185 .0116 11 .9475
Visit Your Home .0088 16 .9108 .0117 11 .9492

Aggregate .0121 3 .9862 .0155 8 .9679

Table: Layer information for two of the Karnataka Villages.
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What is a Multiplex?

Medical Advice

(a) Village 4 (b) Village 61
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Structural Models

Disjoint Layers

Figure: Disjoint Layers
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Structural Models

Aggregate Models

(a) Disjoint Layers (b) Aggregate
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Structural Models

Matched Sum

(a) Disjoint Layers (b) Matched Sum
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Structural Models

Algebraic Structure

We can represent the matched sum with a supra–adjacency matrix:
A1 wIn · · · wIn wIn
wIn A2 · · · wIn wIn

...
. . .

. . .
. . .

...
wIn wIn · · · Ak−1 wIn
wIn wIn · · · wIn Ak


where the Aα are the adjacency matrices of the individual layers and w is
a connection strength parameter.
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Structural Models

Strucutral Asymptotics

As the number of layers grows, what happens to the:

• Density?

• Degree Distribution?

• Transitivity?

• Average Path Length?

• Diameter?

• Clique Number?

• ...

• Dynamics?!?
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Structural Models

Random Walk Convergence

(a) Aggregate (b) Matched Sum
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Dynamical Models

Dynamics on Multiplex Networks

• Two types of interactions
• Within the individual layers
• Between the layers

• Effects should “pass through”
nodes

• Two step iterative model

• Symbolically:

v′ = Dv

(v′)αi =

k∑
β=1

mα,β
i cα,βi (Dv)βi
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Dynamical Models

Matrix Realization

The matrix associated to the total operator also takes a convenient block
form: 

C1D1 C1D2 · · · C1Dk

C2D1 C2D2 · · · C2Dk

...
...

...
...

CkD1 CkD2 · · · CkDk


Where the {Di} are the dynamical operators associated to the layers and
the {Ci} are the diagonal proportionality matrices.
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Dynamical Models

Choice of Coefficients

• Equidistribution
• cα,βi = 1

k

• Cα,β = 1
k
I

• Starting Point

• Ranked Layers
• cα,βi = cα

• Cα,β = cαI
• Villages

• Unified Node

• cα,βi = cαi
• Cα,β = Cα

• WTW

• General Model

• cα,βi = cα,βi
• Anything goes
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Dynamical Models

Multiplex Random Walks

Figure: Comparison of random walk convergence for multiplex models.



Multiplex Networks

Dynamical Models

Laplacian Dynamics

Under our dynamical model, where effects pass through node copies to
other layers, the heat diffusion interpretation of the Laplacian can be
derived from first principles:

dvαi
dt

= −K
k∑

β=1

cα,βi
∑

nβi ∼n
β
j

(vβi − v
β
j ).

dvαi
dt

= −K
k∑

β=1

cα,βi (Lv)βi ,
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Dynamical Models

Laplacian Eigenvalue Bounds

Let {λi} be the eigenvalues of D and {λαi } be the eigenvalues of the
α–layer Laplacian Dα. We have the following bounds for ranked layers
model:

• Fiedler Value:

maxα(λαF ) ≤ kλF ≤ λmF +
∑
β 6=m

λβ1

• Leading Value:

maxi(λ
i
1) ≤ kλ1 ≤

∑
i

λi1

• General Form:

maxi(λ
i
n−j) ≤ kλn−j ≤ min

J`n+k−(j+1)

(
min
σ∈Sn

(
k∑

α=1

λ
σ(α)
jα

))
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Dynamical Models

Centrality Comparison
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Centrality Comparison
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Dynamical Models
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Complex Time Series
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Complex Time Series
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Time Series Entropy

Simple Time Series
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Time Series Entropy

Complexity Measures

Definition (Normalized Permutation Entropy)

NPE({Xi}) = − 1

log(N !)

∑
π∈Sn

pπ log(pπ)

Definition (Uniform KL Divergence)

DKL({Xi}||uniform) =
∑
π∈Sn

pπ log

(
pπ
1
n!

)

Observation

1−NPE({Xi}) =
1

log(N !)
DKL({Xi}||uniform)
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Time Series Entropy
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Time Series Entropy

Stock Data (Closing Prices)
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Stock Data (n=3)
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Stock Data (n=4)



Multiplex Networks

Time Series Entropy

Stock Data (n=5)
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Stock Data (n=6)
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Time Series Entropy

Random Walk Null Models

Definition (Random Walk)

Let {Xi} be a set of I.I.D. random variables and define {Zi} by

Zj =
∑j
i=0Xj .

Lemma

If {Zi} are defined as above then either 123 . . . n or n(n− 1)(n− 2) . . . 1
occurs with the highest probability.

Corollary

If {Zi} are defined as above and n ≥ 3 then the expected distribution of
permutations is not uniform.
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Time Series Entropy

New Complexity Measure

Definition (Null Model KL Divergence)

DKLn(X) := DKLn(X||Z) =
∑
π∈Sn

pπ log

(
pπ
qπ

)
,

where pπ is the relative frequency of π in X and qπ is the relative
frequency of π in Z.
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Time Series Entropy

Hyperplanes

Example

In order for the pattern 1342 to appear in the random walk time series we
need the following inequalities to hold:

• X1 > 0

• X2 > 0

• X3 < 0

• X3 > X2

• X3 < X1 +X2



Multiplex Networks

Time Series Entropy

Integration Regions

123

321

312

213

231 132

Y1
b

Y2

0
b−1

b−1

b

0

(a) (b)

Figure: The regions of integration for patterns in uniform random walks for (a)
n = 3 and (b) n = 4, sketched here for b = 0.65.
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Time Series Entropy

Null Distributions (n = 3)

Pattern Normal: µ = 0 Uniform: µ = 0 Uniform: P(Y > 0) = b

{123} 1/4 1/4 b2

{132, 213} 1/8 1/8 (1/2)(1− b)2

{231, 312} 1/8 1/8 (1/2)(b2 + 2b− 1)

{321} 1/4 1/4 (1− b)2
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Time Series Entropy

Null Distributions (n = 4)

Pattern Normal: µ = 0 Uniform: µ = 0 Uniform: P(Y > 0) = b

{1234} 0.1250 1/8 b3

{1243, 2134} 0.0625 1/16 (1/2)b(1 − b)(3b − 1)

{1324} 0.0417 1/24 (1/3)(1 − b)(7b2 − 5b + 1)

{1342, 3124} 0.0208 1/24 (1/6)(1 − b)2(4b − 1)

{1423, 2314} 0.0355 1/48 (1/6)(1 − b)2(5b − 2)

{1432, 2143, 3214} 0.0270 1/48

{
(1/6)(2 − 24b + 48b2 − 15b3) if b ≤ 2/3

(b − 1)2(2b − 1) if b > 2/3

{2341, 3412, 4123} 0.0270 1/48 (1/6)(1 − b)3

{2413} 0.0146 1/48 (1/6)(1 − b)3

{2431, 4213} 0.0208 1/24

(1/6)(24b3 − 45b2 + 27b − 5) if b ≤ 2/3

(1/2)(1 − b)3 if b > 2/3

{3142} 0.0146 1/48

{
(1/6)(25b3 − 48b2 + 30b − 6) if b ≤ 2/3

(1/3)(1 − b)3 if b > 2/3

{3241, 4132} 0.0355 1/48 (1/6)(1 − b)3

{3421, 4312} 0.0625 1/16 (1/2)(1 − b)3

{4231} 0.0417 1/24 (1/3)(1 − b)3

{4321} 0.1250 1/8 (1 − b)3
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Time Series Entropy

Uniform Steps CCE
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Time Series Entropy

Uniform Steps S&P 500
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Time Series Entropy

Data Comparisons
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Time Series Entropy

Stock Market Example
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Conclusion
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Conclusion

That’s all...

Thank You!
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