Dynamics on Multiplex Networks

Daryl DeFord

Dartmouth College Department of Mathematics

Department of Mathematics University of San Fransisco San Fransisco, CA January 26, 2018

Outline

Introduction
Complex Networks
Tree Spectra
What is a Multiplex?

Structural Models
Dynamical Models
Time Series Entropy
Conclusion

Multiplex Networks Introduction

Complex Networks

 $(a) \; \mathsf{Graph}$

(b) Network

(b) Network

Centrality

Centrality

Degree Matrix

Multiplex Networks Complex Networks

Adjacency Matrix

- Adjacency
 - Symmetric, binary
 - Eigenvector centrality

- Adjacency
 - Symmetric, binary
 - Eigenvector centrality
- Laplacian
 - Matrix: L = D A
 - Positive semi-definite
 - Discretized version of Laplacian heat diffusion

- Adjacency
 - Symmetric, binary
 - Eigenvector centrality
- Laplacian
 - Matrix: L = D A
 - Positive semi-definite
 - Discretized version of Laplacian heat diffusion
- Random Walk
 - Matrix; $R = D^{-1}A$
 - Always stochastic, regular if ${\boldsymbol{G}}$ is connected
 - Transition matrix of associated Markov process

Adjacency Action

Martmouth

Diffusion Animation

Random Walk Animation

Adjacency Spectra of Regular Trees

Eigenvalues of Regular Trees

Define two families of polynomials:

$$P_n^k(x) = xP_{n-1}^k - (k-1)P_{n-2}^k$$

with initial conditions $P_0^k(x) = 0$, $P_1^k(x) = 1$, and $P_2^k(x) = x$ and

$$Q_n^k(x) = x P_n^k(x) - k P_{n-1}^k(x).$$

Theorem

The roots of $P^k_s(x)$ for $1\leq s\leq r$ and $Q^k_r(x)$ are precisely the eigenvalues of the finite $k\text{-}{\rm ary}$ tree $X^k_r.$

Enumerative Results

Theorem

If λ is a root P_r^k and not a root of P_m^k for any m < r then asymptotically (as $r \longrightarrow \infty$), the proportion of eigenvalues of X_k^r is $\frac{(k-2)^2}{(k-1)^r - 1}$.

Corollary

$$\sum_{n=2}^{\infty} \frac{\varphi(n)(k-2)^2}{(k-1)^n - 1} = 1.$$

Corollary
$$(k = 3)$$

$$\sum_{n=1}^{\infty} \frac{\varphi(n)}{2^n - 1} = 2.$$

Tree Questions

Question

Given a graph G and an associated adjacency eigenpair (v, λ) does there exist a subgraph H of G so that $(v|_H, \lambda)$ is an eigenpair for H?

Question

Is there a nice closed form for the endpoints of the Cantor-like set:

$$\left\{\sum_{n=1}^{\infty} \frac{(k-2)^2}{(k-1)^n - 1} \sum_{\substack{(\ell,n)=1\\\ell < \frac{an}{m}}} 1: \begin{array}{c} m \in \mathbb{N} \\ (a,m) = 1 \end{array}\right\}$$

Tree Questions

Question

Can we characterize the sequences of graphs G_1, G_2, \ldots satisfying for all $\varepsilon > 0$ there exists a finite set $\Lambda \subset \mathbb{R}$ and a $N \in \mathbb{N}$ such that for all n > N:

$$\frac{\{\lambda \in \operatorname{spec}(G_n) : \lambda \notin \Lambda\}|}{|\operatorname{spec}(G_n)|} < \varepsilon.$$

Question

What similar results exist for regularly branching simplices?

What is a multiplex?

What is a multiplex?

Definition

A *multiplex* is a collection of graphs all defined on the same node set.

What is a multiplex?

Definition

A multiplex is a collection of graphs all defined on the same node set.

World Trade Web¹

Figure: World trade networks

¹ R. Feenstra, R. Lipsey, H. Deng, A.C. Ma, and H. Mo. World Trade Flows: 1962-2000. NBER Working Paper 11040, (2005).

WTW Layers

Layer	Description	Volume	% Total	Transitivity
0	Food and live animals	291554437	5.1	.82
1	Beverages and tobacco	48046852	0.9	.67
2	Crude materials	188946835	3.3	.79
3	Mineral fuels	565811660	10.0	.62
4	Animal and vegetable oils	14578671	0.3	.64
5	Chemicals	535703156	9.5	.83
6	Manufactured Goods	790582194	13.9	.87
7	Machinery	2387828874	42.1	.85
8	Miscellaneous manufacturing	736642890	13.0	.83
9	Other commodities	107685024	1.9	.56
All	Aggregate Trade	5667380593	100	.93

Table: Layer information for the 2000 World Trade Web.

2000 USA – SA Trade Imbalances

USA and SA Commodity Imbalances

Karnataka Village Data 1

Village Layers

Layer	Village 4		Village 61			
Description	Density	Comp.	Giant %	Density	Comp.	Giant %
Borrow Money	.0082	26	.8354	.0108	15	.9188
Give Advice	.0077	49	.5892	.0098	34	.7377
Help Make Decisions	.0076	61	.1277	.0100	24	.8562
Borrow Kerosene or Rice	.0085	21	.8338	.0113	14	.9171
Lend Kerosene or Rice	.0086	22	.8308	.0113	14	.9255
Lend Money	.0081	14	.7908	.0107	17	.9036
Medical Advice	.0075	84	.2938	.0106	14	.9306
Friends	.0089	15	.9277	.0105	22	.8714
Relatives	.0085	29	.7231	.0105	26	.5448
Attend Temple With	.0073	117	.0462	.0089	108	.0372
Visit Their Home	.0087	15	.9185	.0116	11	.9475
Visit Your Home	.0088	16	.9108	.0117	11	.9492
Aggregate	.0121	3	.9862	.0155	8	.9679

Table: Layer information for two of the Karnataka Villages.

Medical Advice

(a) Village 4

(b) Village 61

Medical Advice

(a) Village 4

(b) Village 61

Disjoint Layers

Figure: Disjoint Layers

Multiplex Networks Structural Models

Aggregate Models

Dartmouth

Matched Sum

(a) Disjoint Layers

(b) Matched Sum

Algebraic Structure

We can represent the matched sum with a supra-adjacency matrix:

$\int A^1$	wI_n	•••	wI_n	wI_n
wI_n	A^2		wI_n	wI_n
:	·	•	·	÷
wI_n	wI_n		A^{k-1}	wI_n
wI_n	wI_n		wI_n	A^k

where the A^{α} are the adjacency matrices of the individual layers and w is a connection strength parameter.

Strucutral Asymptotics

As the number of layers grows, what happens to the:

- Density?
- Degree Distribution?
- Transitivity?
- Average Path Length?
- Diameter?
- Clique Number?
- ...

Strucutral Asymptotics

As the number of layers grows, what happens to the:

- Density?
- Degree Distribution?
- Transitivity?
- Average Path Length?
- Diameter?
- Clique Number?
- ...
- Dynamics?!?

Random Walk Convergence

Martmouth

Dynamics on Multiplex Networks

- Two types of interactions
 - Within the individual layers
 - Between the layers
- Effects should "pass through" nodes
- Two step iterative model

Dynamics on Multiplex Networks

- Two types of interactions
 - Within the individual layers
 - Between the layers
- Effects should "pass through" nodes
- Two step iterative model
- Symbolically:

$$\begin{split} v' &= \mathscr{D} v \\ (v')_i^\alpha &= \sum_{\beta=1}^k m_i^{\alpha,\beta} c_i^{\alpha,\beta} (Dv)_i^\beta \end{split}$$

Dynamics on Multiplex Networks

- Two types of interactions
 - Within the individual layers
 - Between the layers
- Effects should "pass through" nodes
- Two step iterative model
- Symbolically:

$$\begin{aligned} v' &= \mathscr{D} v \\ (v')_i^\alpha &= \sum_{\beta=1}^k m_i^{\alpha,\beta} c_i^{\alpha,\beta} (Dv)_i^\beta \end{aligned}$$

Matrix Realization

The matrix associated to the total operator also takes a convenient block form:

$$\begin{bmatrix} C_1D_1 & C_1D_2 & \cdots & C_1D_k \\ C_2D_1 & C_2D_2 & \cdots & C_2D_k \\ \vdots & \vdots & \vdots & \vdots \\ C_kD_1 & C_kD_2 & \cdots & C_kD_k \end{bmatrix}$$

Where the $\{D_i\}$ are the dynamical operators associated to the layers and the $\{C_i\}$ are the diagonal proportionality matrices.

Choice of Coefficients

Equidistribution

•
$$c_i^{\alpha,\beta} = \frac{1}{k}$$

•
$$C^{\alpha,\beta} = \frac{1}{k}I$$

- Starting Point
- Ranked Layers

•
$$c_i^{\alpha,\beta} = c^{\alpha}$$

•
$$C^{\alpha,\beta} = c^{\alpha}I$$

Villages

• Unified Node

•
$$c_i^{\alpha,\beta} = c_i^{\alpha}$$

•
$$C^{\alpha,\beta} = C^{\alpha}$$

- WTW
- General Model

•
$$c_i^{\alpha,\beta} = c_i^{\alpha,\beta}$$

Anything goes

Multiplex Random Walks

Figure: Comparison of random walk convergence for multiplex models.

Laplacian Dynamics

Under our dynamical model, where effects pass through node copies to other layers, the heat diffusion interpretation of the Laplacian can be derived from first principles:

$$\frac{dv_i^{\alpha}}{dt} = -K \sum_{\beta=1}^k c_i^{\alpha,\beta} \sum_{\substack{n_i^{\beta} \sim n_j^{\beta} \\ n_i^{\beta} \sim n_j^{\beta}}} (v_i^{\beta} - v_j^{\beta}).$$
$$\frac{dv_i^{\alpha}}{dt} = -K \sum_{\beta=1}^k c_i^{\alpha,\beta} (Lv)_i^{\beta},$$

Laplacian Eigenvalue Bounds

Let $\{\lambda_i\}$ be the eigenvalues of \mathscr{D} and $\{\lambda_i^{\alpha}\}$ be the eigenvalues of the α -layer Laplacian D^{α} . We have the following bounds for ranked layers model:

• Fiedler Value:

$$\max_{\alpha}(\lambda_F^{\alpha}) \le k\lambda_F \le \lambda_F^m + \sum_{\beta \ne m} \lambda_1^{\beta}$$

• Leading Value:

$$\max_i(\lambda_1^i) \le k\lambda_1 \le \sum_i \lambda_1^i$$

• General Form:

$$\max_{i}(\lambda_{n-j}^{i}) \le k\lambda_{n-j} \le \min_{J \vdash n+k-(j+1)} \left(\min_{\sigma \in S_{n}} \left(\sum_{\alpha=1}^{k} \lambda_{j_{\alpha}}^{\sigma(\alpha)} \right) \right)$$

Multiplex Networks Dynamical Models

Centrality Comparison

Multiplex Networks Dynamical Models

Centrality Comparison

Multiplex References

- M. KIVELA, A. ARENAS, M. BARTHELEMY, J. GLEESON, Y. MORENO, AND M. PORTER: *Multilayer Networks*, Journal of Complex Networks, 1–69, (2014).
- D. DEFORD AND S. PAULS: A New Framework for Dynamical Models on Multiplex Networks, Journal of Complex Networks, to appear, (2017), 29 pages.
- D. DEFORD AND S. PAULS: Spectral Clustering Methods for Multiplex Networks, submitted, arXiv:1703.05355, (2017), 22 pages.
- D. DEFORD: *Multiplex Dynamics on the World Trade Web*, Proc. 6th International Conference on Complex Networks and Applications, Studies in Computational Intelligence, Springer, 1111–1123, (2018).

Complex Time Series

Complex Time Series

Complex Time Series

Simple Time Series

Martmouth

Complexity Measures

Definition (Normalized Permutation Entropy)

$$NPE(\{X_i\}) = -\frac{1}{\log(N!)} \sum_{\pi \in S_n} p_{\pi} \log(p_{\pi})$$

Complexity Measures

Definition (Normalized Permutation Entropy)

$$NPE(\{X_i\}) = -\frac{1}{\log(N!)} \sum_{\pi \in S_n} p_{\pi} \log(p_{\pi})$$

Definition (Uniform KL Divergence)

$$D_{KL}(\{X_i\}||\text{uniform}) = \sum_{\pi \in S_n} p_{\pi} \log\left(\frac{p_{\pi}}{\frac{1}{n!}}\right)$$

Complexity Measures

Definition (Normalized Permutation Entropy)

$$NPE(\{X_i\}) = -\frac{1}{\log(N!)} \sum_{\pi \in S_n} p_{\pi} \log(p_{\pi})$$

Definition (Uniform KL Divergence)

$$D_{KL}(\{X_i\}||\text{uniform}) = \sum_{\pi \in S_n} p_{\pi} \log\left(\frac{p_{\pi}}{\frac{1}{n!}}\right)$$

Observation

$$1 - NPE(\{X_i\}) = \frac{1}{\log(N!)} D_{KL}(\{X_i\} || uniform)$$

Stock Data (Closing Prices)

Stock Data (n=3)

Dartmouth

Stock Data (n=4)

Stock Data (n=5)

Stock Data (n=6)

Random Walk Null Models

Definition (Random Walk)

Let $\{X_i\}$ be a set of I.I.D. random variables and define $\{Z_i\}$ by $Z_j = \sum_{i=0}^j X_j.$

Lemma

If $\{Z_i\}$ are defined as above then either 123...n or n(n-1)(n-2)...1 occurs with the highest probability.

Corollary

If $\{Z_i\}$ are defined as above and $n \ge 3$ then the expected distribution of permutations is not uniform.

New Complexity Measure

Definition (Null Model KL Divergence)

$$\mathsf{D}_{\mathsf{KL}n}(X) := \mathsf{D}_{\mathsf{KL}n}(X||Z) = \sum_{\pi \in \mathcal{S}_n} p_{\pi} \log\left(\frac{p_{\pi}}{q_{\pi}}\right),$$

where p_{π} is the relative frequency of π in X and q_{π} is the relative frequency of π in Z.

Hyperplanes

Example

In order for the pattern 1342 to appear in the random walk time series we need the following inequalities to hold:

- $X_1 > 0$
- $X_2 > 0$
- $X_3 < 0$
- $X_3 > X_2$
- $X_3 < X_1 + X_2$

Integration Regions

Figure: The regions of integration for patterns in uniform random walks for (a) n = 3 and (b) n = 4, sketched here for b = 0.65.

Null Distributions (n = 3)

Pattern	Normal: $\mu = 0$	Uniform: $\mu = 0$	Uniform: $\mathbb{P}(Y > 0) = b$
{123}	1/4	1/4	b^2
{132, 213}	1/8	1/8	$(1/2)(1-b)^2$
{231, 312}	1/8	1/8	$(1/2)(b^2 + 2b - 1)$
{321}	1/4	1/4	$(1-b)^2$

Null Distributions (n = 4)

Pattern	Normal: $\mu = 0$	Uniform: $\mu = 0$	Uniform: $\mathbb{P}(Y > 0) = b$
{1234}	0.1250	1/8	b^{3}
{1243, 2134}	0.0625	1/16	(1/2)b(1-b)(3b-1)
{1324}	0.0417	1/24	$(1/3)(1-b)(7b^2-5b+1)$
{1342, 3124}	0.0208	1/24	$(1/6)(1-b)^2(4b-1)$
{1423, 2314}	0.0355	1/48	$(1/6)(1-b)^2(5b-2)$
{1432, 2143, 3214}	0.0270	1/48	$\begin{cases} (1/6)(2 - 24b + 48b^2 - 15b^3) & \text{if } b \le 2/3 \\ (b - 1)^2(2b - 1) & \text{if } b > 2/3 \end{cases}$
{2341, 3412, 4123}	0.0270	1/48	$(1/6)(1-b)^3$
{2413}	0.0146	1/48	$(1/6)(1-b)^3$
{2431, 4213}	0.0208	1/24	$\begin{cases} \frac{(1/6)(24b^3 - 45b^2 + 27b - 5)}{2} & \text{if } b \le 2/3 \end{cases}$
			$((1/2)(1-b)^3)$ if $b > 2/3$
{3142}	0.0146	1/48	$\begin{cases} (1/6)(25b^3 - 48b^2 + 30b - 6) & \text{if } b \le 2/3 \\ (1/3)(1-b)^3 & \text{if } b > 2/3 \end{cases}$
{3241, 4132}	0.0355	1/48	$(1/6)(1-b)^3$
{3421, 4312}	0.0625	1/16	$(1/2)(1-b)^3$
{4231}	0.0417	1/24	$(1/3)(1-b)^3$
{4321}	0.1250	1/8	(1 - b) ³ 🔮 Dartm

Uniform Steps CCE

Uniform Steps S&P 500

Data Comparisons

Dartmouth

Stock Market Example

Martmouth

Time Series References

- C. BANDT: *Permutation Entropy and Order Patterns in Long Time Series*, Time Series Analysis and Forecsting, Springer, 2016.
- D. DEFORD AND K. MOORE: Random Walk Null Models for Time Series Data, Entropy, 19(11), 615, 2017.
- M. ZANIN: Forbidden patterns in financial time series, Chaos 18 (2008) 013119.
- M. ZANIN, L. ZUNINO, O.A. ROSSO, AND D. PAPO : Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review, Entropy 2012, 14, 1553-1577.

Multiplex Networks Conclusion

Thank You!

