Dynamics on Multiplex Networks

Daryl DeFord

Dartmouth College Department of Mathematics

Department of Mathematics University of Central Florida Orlando, FL February 8, 2018

Outline

- Introduction
- 2 Tree Spectra
- Omplex Networks
- What is a Multiplex?
- **6** Structural Models
- **6** Dynamical Models
- Applications

Adjacency Spectra of Regular Trees

Eigenvalues of (3)-trees

Figure : Eigenvalues of $X_1^{(3)}$

Eigenvalues of (3)-trees

Figure : Eigenvalues of $X_2^{(3)}$

Eigenvalues of (3)-trees

Figure : Eigenvalues of $X_3^{(3)}$

Eigenvalues of (3)-trees

Figure : Eigenvalues of $X_4^{(3)}$

Eigenvalues of (3)-trees

Figure : Eigenvalues of $X_5^{(3)}$

Eigenvalues of (3)-trees

Dartmouth

Eigenvalues of (3)-trees

Eigenvalues of (3)-trees

Eigenvalues of Regular Trees

Define two families of polynomials:

$$P_n^k(x) = xP_{n-1}^k - (k-1)P_{n-2}^k$$

with initial conditions $P_0^k(x) = 0$, $P_1^k(x) = 1$, and $P_2^k(x) = x$ and

$$Q_n^k(x) = x P_n^k(x) - k P_{n-1}^k(x).$$

Theorem

The roots of $P^k_s(x)$ for $1\leq s\leq r$ and $Q^k_r(x)$ are precisely the eigenvalues of the finite $k\text{-}{\rm ary}$ tree $X^k_r.$

Enumerative Results

Theorem

If λ is a root P_r^k and not a root of P_m^k for any m < r then asymptotically (as $r \longrightarrow \infty$), the proportion of eigenvalues of X_k^r is $\frac{(k-2)^2}{(k-1)^r - 1}$.

Corollary

$$\sum_{n=2}^{\infty} \frac{\varphi(n)(k-2)^2}{(k-1)^n - 1} = 1.$$

Corollary
$$(k = 3)$$

$$\sum_{n=1}^{\infty} \frac{\varphi(n)}{2^n - 1} = 2.$$

Tree Questions

Question

Given a graph G and an associated adjacency eigenpair (v, λ) does there exist a subgraph H of G so that $(v|_H, \lambda)$ is an eigenpair for H?

Question

Is there a nice closed form for the endpoints of the Cantor-like sets:

$$\begin{cases} \sum_{n=1}^{\infty} \frac{(k-2)^2}{(k-1)^n - 1} \sum_{\substack{(\ell,n)=1\\\ell < \frac{an}{m}}} 1: & m \in \mathbb{N} \\ a,m) = 1 \end{cases}$$

Question

Can we characterize the sequences of graphs G_1, G_2, \ldots satisfying for all $\varepsilon > 0$ there exists a finite set $\Lambda \subset \mathbb{R}$ and a $N \in \mathbb{N}$ such that for all n > N:

$$\frac{|\{\lambda \in \operatorname{spec}(G_n) : \lambda \notin \Lambda\}|}{|\operatorname{spec}(G_n)|} < \varepsilon$$

uth

Complex Networks

 $(a) \; \mathsf{Graph}$

(b) Network

(b) Network

Centrality

Centrality

Clustering

Clustering

- Adjacency
 - Symmetric, binary
 - Eigenvector centrality

- Adjacency
 - Symmetric, binary
 - Eigenvector centrality
- Laplacian
 - Matrix: L = D A
 - Positive semi-definite
 - Discretized version of Laplacian heat diffusion

- Adjacency
 - Symmetric, binary
 - Eigenvector centrality
- Laplacian
 - Matrix: L = D A
 - Positive semi-definite
 - Discretized version of Laplacian heat diffusion
- Random Walk
 - Matrix; $R = D^{-1}A$
 - Always stochastic, regular if ${\boldsymbol{G}}$ is connected
 - Transition matrix of associated Markov process

Adjacency Action

Martmouth

Diffusion Animation

Random Walk Animation

Spectral Graph Theory

Fan Chung: Spectral Graph Theory, AMS, (1997).

"Roughly speaking, half of the main problems of spectral theory lie in deriving bounds on the distributions of eigenvalues. The other half concern the impact and consequences of the eigenvalue bounds as well as their applications."

What is a multiplex?

What is a multiplex?

Definition

A *multiplex* is a collection of graphs all defined on the same node set.

What is a multiplex?

Definition

A multiplex is a collection of graphs all defined on the same node set.

World Trade Web¹

Figure : World trade networks

¹ R. Feenstra, R. Lipsey, H. Deng, A.C. Ma, and H. Mo. World Trade Flows: 1962-2000. NBER Working Paper 11040, (2005).

WTW Layers

Layer	Description	Volume	% Total	Transitivity
0	Food and live animals	291554437	5.1	.82
1	Beverages and tobacco	48046852	0.9	.67
2	Crude materials	188946835	3.3	.79
3	Mineral fuels	565811660	10.0	.62
4	Animal and vegetable oils	14578671	0.3	.64
5	Chemicals	535703156	9.5	.83
6	Manufactured Goods	790582194	13.9	.87
7	Machinery	2387828874	42.1	.85
8	Miscellaneous manufacturing	736642890	13.0	.83
9	Other commodities	107685024	1.9	.56
All	Aggregate Trade	5667380593	100	.93

Table : Layer information for the 2000 World Trade Web.

2000 USA – SA Trade Imbalances

USA and SA Commodity Imbalances

Karnataka Village Data 1

Village Layers

Layer	Village 4			Village 61		
Description	Density	Comp.	Giant %	Density	Comp.	Giant %
Borrow Money	.0082	26	.8354	.0108	15	.9188
Give Advice	.0077	49	.5892	.0098	34	.7377
Help Make Decisions	.0076	61	.1277	.0100	24	.8562
Borrow Kerosene or Rice	.0085	21	.8338	.0113	14	.9171
Lend Kerosene or Rice	.0086	22	.8308	.0113	14	.9255
Lend Money	.0081	14	.7908	.0107	17	.9036
Medical Advice	.0075	84	.2938	.0106	14	.9306
Friends	.0089	15	.9277	.0105	22	.8714
Relatives	.0085	29	.7231	.0105	26	.5448
Attend Temple With	.0073	117	.0462	.0089	108	.0372
Visit Their Home	.0087	15	.9185	.0116	11	.9475
Visit Your Home	.0088	16	.9108	.0117	11	.9492
Aggregate	.0121	3	.9862	.0155	8	.9679

Table : Layer information for two of the Karnataka Villages.

Medical Advice

(a) Village 4

(b) Village 61

Medical Advice

(a) Village 4

(b) Village 61

Disjoint Layers

Figure : Disjoint Layers

Multiplex Networks Structural Models

Aggregate Models

Dartmouth

Matched Sum

(a) Disjoint Layers

(b) Matched Sum

Algebraic Structure

We can represent the matched sum with a supra-adjacency matrix:

$\int A^1$	wI_n	•••	wI_n	wI_n
wI_n	A^2		wI_n	wI_n
:	·	•	·	÷
wI_n	wI_n		A^{k-1}	wI_n
wI_n	wI_n		wI_n	A^k

where the A^{α} are the adjacency matrices of the individual layers and w is a connection strength parameter.

Strucutral Asymptotics

As the number of layers grows, what happens to the:

- Density?
- Degree Distribution?
- Transitivity?
- Average Path Length?
- Diameter?
- Clique Number?
- ...

Strucutral Asymptotics

As the number of layers grows, what happens to the:

- Density?
- Degree Distribution?
- Transitivity?
- Average Path Length?
- Diameter?
- Clique Number?
- ...
- Dynamics?!?

Random Walk Convergence

Martmouth

Dynamics on Multiplex Networks

- Two types of interactions
 - Within the individual layers
 - Between the layers
- Effects should "pass through" nodes
- Two step iterative model

Dynamics on Multiplex Networks

- Two types of interactions
 - Within the individual layers
 - Between the layers
- Effects should "pass through" nodes
- Two step iterative model
- Symbolically:

$$\begin{split} v' &= \mathscr{D} v \\ (v')_i^\alpha &= \sum_{\beta=1}^k m_i^{\alpha,\beta} c_i^{\alpha,\beta} (Dv)_i^\beta \end{split}$$

Dynamics on Multiplex Networks

- Two types of interactions
 - Within the individual layers
 - Between the layers
- Effects should "pass through" nodes
- Two step iterative model
- Symbolically:

$$\begin{aligned} v' &= \mathscr{D} v \\ (v')_i^\alpha &= \sum_{\beta=1}^k m_i^{\alpha,\beta} c_i^{\alpha,\beta} (Dv)_i^\beta \end{aligned}$$

Matrix Realization

The matrix associated to the total operator also takes a convenient block form:

$$\begin{bmatrix} C_1D_1 & C_1D_2 & \cdots & C_1D_k \\ C_2D_1 & C_2D_2 & \cdots & C_2D_k \\ \vdots & \vdots & \vdots & \vdots \\ C_kD_1 & C_kD_2 & \cdots & C_kD_k \end{bmatrix}$$

Where the $\{D_i\}$ are the dynamical operators associated to the layers and the $\{C_i\}$ are the diagonal proportionality matrices.

• Equidistribution

•
$$c_i^{\alpha,\beta} = \frac{1}{k}$$

•
$$C^{\alpha,\beta} = \frac{1}{k}I$$

• Starting Point/Aggregate

• Equidistribution

•
$$c_i^{\alpha,\beta} = \frac{1}{k}$$

•
$$C^{\alpha,\beta} = \frac{1}{k}I$$

- Starting Point/Aggregate
- Ranked Layers

•
$$c_i^{\alpha,\beta} = c^{\alpha}$$

•
$$C^{\alpha,\beta} = c^{\alpha}I$$

Villages

• Equidistribution

•
$$c_i^{\alpha,\beta} = \frac{1}{k}$$

•
$$C^{\alpha,\beta} = \frac{1}{k}I$$

- Starting Point/Aggregate
- Ranked Layers

•
$$c_i^{\alpha,\beta} = c^{\alpha}$$

•
$$C^{\alpha,\beta} = c^{\alpha}I$$

Villages

• Unified Node

•
$$c_i^{\alpha,\beta} = c_i^{\alpha}$$

•
$$C^{\alpha,\beta} = C^{\alpha}$$

• WTW

• Equidistribution

•
$$c_i^{\alpha,\beta} = \frac{1}{k}$$

•
$$C^{\alpha,\beta} = \frac{1}{k}I$$

- Starting Point/Aggregate
- Ranked Layers

•
$$c_i^{\alpha,\beta} = c^{\alpha}$$

•
$$C^{\alpha,\beta} = c^{\alpha}I$$

Villages

Unified Node

•
$$c_i^{\alpha,\beta} = c_i^{\alpha}$$

•
$$C^{\alpha,\beta} = C^{\alpha}$$

- WTW
- General Model

•
$$c_i^{\alpha,\beta} = c_i^{\alpha,\beta}$$

 Anything goes/Matched Sum

Multiplex Random Walks

Figure : Comparison of random walk convergence for multiplex models.

Centrality Comparison

Centrality Comparison

Global Aggregate Rankings

Year	1970	1980	1990	2000
1	US	US	US	US
2	Germany	Germany	Germany	Germany
3	Canada	Japan	Japan	Japan
4	UK	UK	France	China
5	Japan	France	UK	UK
6	France	Saudi Arabia	Italy	France

Table : RWBC values for the aggregate WTW.

Full Multiplex RWBC

Ranking	Country	Layer
1	US	7
2	Germany	7
3	China	7
4	UK	7
5	Japan	7
6	US	8
7	Canada	7
8	France	7
9	Japan	3
10	US	6
12	US	3
13	Netherlands	7
14	Germany	6
15	Italy	7

Table : Multiplex RWBC values for the 2000 WTW.

Commodity Appearance

Layer	Ranking	Country
0	22	Japan
1	199	Germany
2	47	China
3	9	Japan
4	184	Australia
5	23	Germany
6	10	US
7	1	US
8	6	US
9	39	US

Table : First appearance of each layer in the rankings.

Ranking Movement

Layer 7 Ranking	Country	Multiplex Ranking
1	USA	1
2	Japan	5
3	Germany	2
4	China	3
5	France	8
6	UK	4
7	South Korea	18
8	Canada	7
9	Malaysia	16
10	Mexico	20

 $\mathsf{Table}:\mathsf{Comparison}$ of the relative rankings of the RWBC on Layer 7 versus the multiplex RWBC.

Laplacian Dynamics

Under our dynamical model, where effects pass through node copies to other layers, the heat diffusion interpretation of the Laplacian can be derived from first principles:

$$\frac{dv_i^{\alpha}}{dt} = -K \sum_{\beta=1}^k c_i^{\alpha,\beta} \sum_{\substack{n_i^{\beta} \sim n_j^{\beta} \\ n_i^{\alpha} \sim n_j^{\beta}}} (v_i^{\beta} - v_j^{\beta}).$$
$$\frac{dv_i^{\alpha}}{dt} = -K \sum_{\beta=1}^k c_i^{\alpha,\beta} (Lv)_i^{\beta},$$

Laplacian Eigenvalue Bounds

Let $\{\lambda_i\}$ be the eigenvalues of \mathscr{D} and $\{\lambda_i^{\alpha}\}$ be the eigenvalues of the α -layer Laplacian D^{α} . We have the following bounds for ranked layers model:

• Fiedler Value:

$$\max_{\alpha}(\lambda_F^{\alpha}) \le k\lambda_F \le \lambda_F^m + \sum_{\beta \ne m} \lambda_1^{\beta}$$

• Leading Value:

$$\max_i(\lambda_1^i) \le k\lambda_1 \le \sum_i \lambda_1^i$$

• General Form:

$$\max_{i}(\lambda_{n-j}^{i}) \le k\lambda_{n-j} \le \min_{J \vdash n+k-(j+1)} \left(\min_{\sigma \in S_n} \left(\sum_{\alpha=1}^{k} \lambda_{j_{\alpha}}^{\sigma(\alpha)} \right) \right)$$

Bounds Example

Dartmouth
Social Diffusion

Martmouth

Multiplex Networks Applications

s

Network Clustering Formulation

$$\begin{split} s(i) &= \begin{cases} 1 & \text{if} i \in \mathscr{B} \\ -1 & \text{if} i \in \mathscr{C} \end{cases} \\ cut(\mathscr{B}, \mathscr{C}) &= \sum_{p,q=1} A_{pq} \\ &= \sum_{p,q=1}^{n} A_{pq} \frac{1}{2} (1 - s(p)s(q)) \\ &= \frac{1}{2} \left(\sum_{i=1}^{n} deg(i) - \frac{1}{2} \sum_{i,j=1}^{n} s(i)(A_{ij} + A_{ji})s(j) \right) \\ &= \frac{1}{2} \left(\sum_{i,j=1}^{n} s(i)deg(i)s(j)\delta_{ij} - \frac{1}{2} \sum_{i,j=1}^{n} s(i)(A_{ij} + A_{ji})s(j) \right) \\ &= \frac{1}{2} (s^T Ds - \frac{1}{2} s^T (A + A^T)s) = \frac{1}{2} s^T Ls \end{split}$$

Multiplex Cut Formulations

In order to generalize this approach to the multiplex setting we have to address several questions:

- Must copies of the same node cluster together?
- How much should we weight the interlayer edges?
- How should the weight asymmetry affect the outcome?

For both models we have analogues of the adjacency and Laplacian matrices but the resulting clustering optimization is much more complicated.

Matched Sum

$$\begin{split} \bar{s}^T \mathcal{L}_{\mathfrak{A}} \bar{s} \\ &= \bar{s}^T \begin{pmatrix} \mathcal{L}_{\frac{1}{2}(A^1 + (A^1)^T)} + (k-1)I\mathfrak{w} & \dots & -\mathfrak{w}I \\ &\vdots & \ddots & \vdots \\ -\mathfrak{w}I & \dots & \mathcal{L}_{\frac{1}{2}(A^k + (A^k)^T)} - (k-1)I \end{pmatrix} \bar{s} \\ &= \sum_{\alpha=1}^k \left(s_\alpha^T \mathcal{L}_{\frac{1}{2}(A^\alpha + (A^\alpha)^T)} s_\alpha + (k-1)\mathfrak{w} s_\alpha^T s_\alpha \right) - \sum_{\alpha=1}^k \sum_{\beta\neq\alpha} \mathfrak{w} s_\alpha^T s_\beta \\ &= \sum_{\alpha=1}^k s_\alpha^T \mathcal{L}_{\frac{1}{2}(A^\alpha + (A^\alpha)^T)} s_\alpha + k^2 n \mathfrak{w} - \mathfrak{w} \sum_{\alpha,\beta=1}^k s_\alpha^T s_\beta. \end{split}$$

Dynamical Model

$$\begin{split} \bar{s}^{T} \mathcal{L}_{\mathfrak{A}} \bar{s} &= \sum_{\alpha,\beta=1}^{k} s_{\alpha}^{T} (\mathfrak{D}^{\alpha,\beta} - B^{\alpha,\beta}) s_{\beta} \\ &= \sum_{\alpha}^{k} s_{\alpha}^{T} \mathfrak{D}^{\alpha,\alpha} s_{\alpha} - \sum_{\alpha,\beta=1}^{k} s_{\alpha}^{T} B^{\alpha,\beta} s_{\beta} \\ &= \sum_{\alpha} s_{\alpha}^{T} \mathcal{L}_{B^{\alpha,\alpha}} s_{\alpha} + \frac{1}{2} \sum_{\alpha \neq \beta} s_{\alpha}^{T} (deg_{in}^{\alpha,\beta} + deg_{out}^{\alpha,\beta}) s_{\alpha} - \sum_{\alpha \neq \beta} s_{\alpha}^{T} B^{\alpha,\beta} s_{\beta} \\ &= \sum_{\alpha} s_{\alpha}^{T} \mathcal{L}_{B^{\alpha,\alpha}} s_{\alpha} + \sum_{\alpha \neq \beta} \left(M^{\alpha,\beta} - s_{\alpha}^{T} B^{\alpha,\beta} s_{\beta} \right), \end{split}$$

Multiplex Networks Applications

Experiment Models

Multiplex Networks Applications

Erdos-Renyi Layers

Dartmouth

SBM Layers

Clustering Comparison

(a) Matched Sum

(c) Aggregate

Clustering Comparison

Dartmouth

Multiplex Questions

Question (Data Examples)

- Social Networks
- Transportation Networks
- Paired Networks

Question (How to account for layer heterogeneity?)

- Structural Consequences
- Dynamical Consequences
- Spectral Consequences

Question (How to account for node indivisibility?)

uth

- Merge Centrality Measures
- Define Neighborhoods
- Multi-Membership Communities

Multiplex References

- M. KIVELA, A. ARENAS, M. BARTHELEMY, J. GLEESON, Y. MORENO, AND M. PORTER: *Multilayer Networks*, Journal of Complex Networks, 1–69, (2014).
- D. DEFORD AND S. PAULS: A New Framework for Dynamical Models on Multiplex Networks, Journal of Complex Networks, to appear, (2017), 29 pages.
- D. DEFORD AND S. PAULS: Spectral Clustering Methods for Multiplex Networks, submitted, arXiv:1703.05355, (2017), 22 pages.
- D. DEFORD: *Multiplex Dynamics on the World Trade Web*, Proc. 6th International Conference on Complex Networks and Applications, Studies in Computational Intelligence, Springer, 1111–1123, (2018).

Multiplex Networks Applications

Thank You!

