
Multiplex Dynamics

Introduction

Dynamics on Multiplex Networks

Daryl DeFord

Dartmouth College
Department of Mathematics

Department of Mathematics and Computer Science
Providence College
January 24, 2018



Multiplex Dynamics

Introduction

Outline

1 Introduction

2 Complex Networks

3 Dynamics on Networks

4 Multiplex Networks

5 Structural Models

6 Dynamical Models

7 Conclusion



Multiplex Dynamics

Introduction

Philosophy

Data

Math Objects

Math Objects

Build Model

M
ath

Predicition

M
ath



Multiplex Dynamics

Introduction

Philosophy

Data

Math Objects

Math Objects

Build Model

M
ath

Predicition

M
ath



Multiplex Dynamics

Introduction

Philosophy

Data Math Objects

Math Objects

Build Model

M
ath

Predicition

M
ath



Multiplex Dynamics

Introduction

Philosophy

Data Math Objects

Math Objects

Build Model

M
ath

Predicition

M
ath



Multiplex Dynamics

Introduction

Philosophy

Data Math Objects

Math Objects

Build Model

M
ath

Predicition

M
ath



Multiplex Dynamics

Introduction

Philosophy

Data Math Objects

Math Objects

Build Model

M
ath

Predicition

M
ath



Multiplex Dynamics

Introduction

Complex Networks



Multiplex Dynamics

Complex Networks

Examples

(a) Graph (b) Network



Multiplex Dynamics

Complex Networks

Examples

(a) Graph (b) Network



Multiplex Dynamics

Complex Networks

Examples

(a) Graph (b) Network



Multiplex Dynamics

Complex Networks

Centrality



Multiplex Dynamics

Complex Networks

Centrality



Multiplex Dynamics

Complex Networks

Clustering



Multiplex Dynamics

Complex Networks

Clustering



Multiplex Dynamics

Complex Networks

Clustering



Multiplex Dynamics

Complex Networks

Degree Matrix

D =



1 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 6 0 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 3
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Complex Networks

Adjacency Matrix

A =



0 0 0 1 0 0 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 0 0 0
1 1 1 0 1 1 1 0
0 1 1 1 0 1 0 1
0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1
0 1 0 0 1 0 1 0
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Complex Networks

Laplacian Matrix

L =



1 0 0 −1 0 0 0 0
0 5 0 −1 −1 −1 −1 −1
0 0 2 −1 −1 0 0 0
−1 −1 −1 6 −1 −1 −1 0

0 −1 −1 −1 5 −1 0 −1
0 −1 0 −1 −1 4 −1 0
0 −1 0 −1 0 −1 4 −1
0 −1 0 0 −1 0 −1 3
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Dynamics on Networks

Spectral Graph Theory

Fan Chung: Spectral Graph Theory, AMS, (1997).

“Roughly speaking, half of the main problems of spectral theory lie in
deriving bounds on the distributions of eigenvalues. The other half
concern the impact and consequences of the eigenvalue bounds as well as
their applications.”
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What is a multiplex?

Definition

A multiplex is a collection of graphs all defined on the same node set.

(a) Family (b) Colleagues (c) Facebook
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Multiplex Networks

What is a multiplex?

Definition

A multiplex is a collection of graphs all defined on the same node set.

(a) Buses (b) Trains (c) Airplanes
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Multiplex Networks

World Trade Web1

Figure: World trade networks

1 R. Feenstra, R. Lipsey, H. Deng, A.C. Ma, and H. Mo. World Trade Flows: 1962-2000. NBER Working Paper 11040, (2005).
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Multiplex Networks

WTW Layers

Layer Description Volume % Total Transitivity

0 Food and live animals 291554437 5.1 .82
1 Beverages and tobacco 48046852 0.9 .67
2 Crude materials 188946835 3.3 .79
3 Mineral fuels 565811660 10.0 .62
4 Animal and vegetable oils 14578671 0.3 .64
5 Chemicals 535703156 9.5 .83
6 Manufactured Goods 790582194 13.9 .87
7 Machinery 2387828874 42.1 .85
8 Miscellaneous manufacturing 736642890 13.0 .83
9 Other commodities 107685024 1.9 .56

All Aggregate Trade 5667380593 100 .93

Table: Layer information for the 2000 World Trade Web.
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Multiplex Networks

Karnataka Village Data1

(a) Village 5 (b) Village 61

Figure: Karnataka Villages

1 A. Banerjee, A.G. Chandrasekhar, E. Duflo, and M.O. Jackson, The Diffusion of Microfinance. Science, (2013).
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Village Layers

Layer Village 4 Village 61
Description Density Comp. Giant % Density Comp. Giant %

Borrow Money .0082 26 .8354 .0108 15 .9188
Give Advice .0077 49 .5892 .0098 34 .7377

Help Make Decisions .0076 61 .1277 .0100 24 .8562
Borrow Kerosene or Rice .0085 21 .8338 .0113 14 .9171

Lend Kerosene or Rice .0086 22 .8308 .0113 14 .9255
Lend Money .0081 14 .7908 .0107 17 .9036

Medical Advice .0075 84 .2938 .0106 14 .9306
Friends .0089 15 .9277 .0105 22 .8714

Relatives .0085 29 .7231 .0105 26 .5448
Attend Temple With .0073 117 .0462 .0089 108 .0372

Visit Their Home .0087 15 .9185 .0116 11 .9475
Visit Your Home .0088 16 .9108 .0117 11 .9492

Aggregate .0121 3 .9862 .0155 8 .9679

Table: Layer information for two of the Karnataka Villages.
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(a) Village 5 (b) Village 61
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Structural Models

Disjoint Layers

Figure: Disjoint Layers
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Aggregate Models

(a) Disjoint Layers (b) Aggregate
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Structural Models

Matched Sum

(a) Disjoint Layers (b) Matched Sum
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Structural Models

Algebraic Structure

We can represent the matched sum with a supra–adjacency matrix:
A1 wIn · · · wIn wIn
wIn A2 · · · wIn wIn

...
. . .

. . .
. . .

...
wIn wIn · · · Ak−1 wIn
wIn wIn · · · wIn Ak


where the Aα are the adjacency matrices of the individual layers and w is
a connection strength parameter.
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Structural Asymptotics

As the number of layers grows, what happens to the:

• Density?

• Degree Distribution?

• Transitivity?

• Average Path Length?

• Diameter?

• Clique Number?

• ...

• Dynamics!
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Structural Models

Random Walk Convergence

(a) Aggregate (b) Matched Sum
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Dynamics on Multiplex Networks

• Two types of interactions
• Within the individual layers
• Between the layers

• Effects should “pass through”
nodes

• Two step iterative model
• Symbolically:

v′ = Dv

(v′)αi =
k∑

β=1

mα,β
i cα,βi (Dv)βi
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Dynamical Models

Matrix Realization

The matrix associated to the total operator also takes a convenient block
form: 

C1D1 C1D2 · · · C1Dk

C2D1 C2D2 · · · C2Dk

...
...

...
...

CkD1 CkD2 · · · CkDk


Where the {Di} are the dynamical operators associated to the layers and
the {Ci} are the diagonal proportionality matrices.
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Dynamical Models

Preserved Properties

If the dynamics on each layer are assumed to have certain properties, we
can prove that those properties are preserved in our operator:

• Stochasticity

• Irreducibility

• Primitivity

• Positive (negative) (semi)–definiteness
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Dynamical Models

Multiplex Random Walks

Figure: Comparison of random walk convergence for multiplex models.

D. DeFord and S. Pauls: A new Framework for Dynamical Models on Multiplex Networks, Journal of Complex Networks, (2017).



Multiplex Dynamics

Dynamical Models

Laplacian Dynamics

Under our dynamical model, where effects pass through node copies to
other layers, the heat diffusion interpretation of the Laplacian can be
derived from first principles:

dvαi
dt

= −K
k∑

β=1

cα,βi
∑

nβi ∼n
β
j

(vβi − v
β
j ).

dvαi
dt

= −K
k∑

β=1

cα,βi (Lv)βi ,
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Dynamical Models

Laplacian Eigenvalue Bounds

Let {λi} be the eigenvalues of D and {λαi } be the eigenvalues of the
α–layer Laplacian Dα. We have the following bounds:

• Fiedler Value:

maxα(λαF ) ≤ kλF ≤ λmF +
∑
β 6=m

λβ1

• Leading Value:

maxi(λ
i
1) ≤ kλ1 ≤

∑
i

λi1

• General Form:

maxi(λ
i
n−j) ≤ kλn−j ≤ min

J`n+k−(j+1)

(
min
σ∈Sn

(
k∑

α=1

λ
σ(α)
jα

))
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Dynamical Models

Social Diffusion

(a) Synthetic (b) Villages
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Dynamical Models

Centrality Comparison

Figure: Comparison of multiplex eigenvector centrality scores. Varying the
weighting scheme allows us to control how much mixing of centrality occurs
between layers, while the matched sum model is just a linear transformation of
the original rankings.
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Figure: Comparison of multiplex eigenvector centrality scores. Varying the
weighting scheme allows us to control how much mixing of centrality occurs
between layers, while the matched sum model is just a linear transformation of
the original rankings.
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Clustering Comparison

(a) Matched Sum (c) Aggregate
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Clustering Comparison

(a) Matched Sum (b) Dynamical Model (c) Aggregate
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A random network, parameterized to match some features of a given
network, used to compare “expected” network measures.
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Erdos–Renyi

(d) Graph Example (e) Degree Distribution



Multiplex Dynamics

Conclusion

Erdos–Renyi

(f) Graph Example (g) Degree Distribution
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Barabasi–Albert (Centrality)

(h) Graph Example (i) Degree Distribution
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Barabasi–Albert (Centrality)

(j) Graph Example (k) Degree Distribution
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Watts–Strogatz (Local Clustering)

(l) Graph Example (m) Degree Distribution
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Watts–Strogatz (Local Clustering)

(n) Graph Example (o) Degree Distribution
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Stochastic Block Model (Global Clustering)

(p) Graph Example (q) Degree Distribution
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Stochastic Block Model (Global Clustering)

(r) Graph Example (s) Degree Distribution



Multiplex Dynamics

Conclusion

RDPM

• Associate each node to a vector in Rn

• Place an edge between two nodes with probability proportional to
〈x, y〉.

• Since each node is associated to a vector, it is natural to try and
interpret the properties of the node from the vector

• 〈x, y〉 = ||x|| · ||y|| cos(x, y)

• Angle – Community assignment

• Magnitude – Centrality
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Angle – Community Assignment

(t) Vectors (u) Graph
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Example: Uniform Noise

(v) Community 1 Vectors (w) Community 2 Vectors (x) Community 3 Vectors

(y) All Vectors

Figure
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Example: Uniform Noise

(a) Dot Products (b) WRDPM Network
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Magnitude – Centrality

(c) Vectors (d) Graph
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Example: Multiresolution Communities

(e) Community 1 Vectors (f) Community 2 Vectors (g) Community 3 Vectors

(h) All Vectors
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Example: Multiresolution Communities

(i) Dot Products (j) WRDPM Network
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Edge Parameterized Models

Theorem

Let n be a fixed positive integer. For each pair (i, j) with 1 ≤ i < j ≤ n
let ai,j = aj,i ∈ R. Then there exist n real numbers a`,` for 1 ≤ ` ≤ n
such that the matrix Ai,j = ai,j is positive definite.

Corollary

Any generative network model, on a fixed number of nodes n, where the
edge weight between each pair of nodes is drawn independently from a
fixed probability distribution, possibly with different parameters for each
pair, can be realized under the WRDPM.

D. DeFord and D. Rockmore, A Random Dot Product Model for Weighted Networks, with D. Rockmore, arXiv:1611.02530, (2016).
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Unweighted Collaboration Network

(k) Collaboration
Network

(l) Unweighted 2–Embedding (m) Unweighted 3–Embedding

V. Batagelj and A. Mrvar: Pajek datasets, (2006).
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Weighted Collaboration Network

(n) Collaboration
Network

(o) Weighted 2–Embedding (p) Weighted 3–Embedding

V. Batagelj and A. Mrvar: Pajek datasets, (2006).
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Voting Data

J. Lewis and K. Poole: Roll Call Data,

voteview.com/dwnl.html.
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Thank You!
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Dimension Selection

Since the dimension of the embedding is intrinsically related to the
realized community structure it is natural to try and make use of this
relationship to determine the right choice of d. Motivated by the case of
disjoint communities, where if we have an effective, normalized
embedding we should have

〈Xi, Xj〉 =

{
1 i and j belong to the same community

0 i and j belong to different communities

Thus, the sum of intra–community dot products should be
∑`
i=1

(
z`
2

)
.

Similarly, the sum of the inter–community dot products should be 0. we
define a stress function s depending on the community assignments after
embedding.

s(d) =

d∑
i=1

(
zi
2

)
− sintra(d) + sinter(d)
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Dimension Example

(q) Weighted Network (r) 2-Embedding (s) 3-Embedding

(t) Stress Function

Figure: Comparison of WRDPN embeddings of a weighted network (a) as the
dimension of the embedding varies. As expected, the minimum value occurs at
d = 3, matching the correct structure.
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Coauthorship Revisited

Figure: Comparison of stress values for the computational geometry
coauthorship network between the weighted and unweighted realizations. The
weighted embedding significantly outperforms the binarized model.
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