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1 Networks and Applied Mathematics

At the beginning of this note I would like to express a little bit of my philosophy of applied mathematics,
noting clearly that this is simply a reflection of my preferences and thoughts and not intended as a statement
of how anyone else should “do” or think about mathematics. My main philosophy of applied problems grows
out of the modeling process, in that I think about applied mathematics as the natural result of embedding
real–world data and problems in rigid mathematical objects where we can apply the theorems and techniques
of “pure” mathematics to great effect.

There are (at least) two distinct types of problems that arise under this type of modeling. The first are
the purely mathematical problems of determining the properties of the portion of the mathematical space
that the embedding reaches. Frequently these are different than those that are usually considered as the
result of the “regular” progress of mathematics. The entire field of mathematical approaches for complex
networks is a perfect example of this type, where questions such as the power law degree distribution of
generative models or the importance of the clustering coefficient to network structure were unlikely to have
developed in the combinatorial study of graphs.

Secondly, there are questions that arise in the application of known results to the embedded data. A
relevant example to my research is graph Laplacian, most of whose properties have been developed in analogy
with the heat diffusion operator on smooth manifolds. This is a little closer to the setting of what most
people think of as traditional applied mathematics, as the mathematical techniques as the goal tends to
be developing a better understanding of the structure of the real world objects themselves rather than the
properties of the mathematical space they inhabit. I tend to view these problem types as mostly orthogonal in
the sense that they are independently interesting and fully justifiable as legitimate avenues of mathematical
inquiry (YMMV).

Finally, notice that neither of these problem types necessarily evaluates its application against a notion
of correctness with respect to real world validation. While this is a process that can lead to interesting
iterations, going back and forth tweaking modeling hypotheses and techniques, and is of course of prime
importance when considering the real–world usefulness of these methods, from my perspective this has little
bearing on the mathematical interestingness of the problems.

In addition to the question of problem selection, one of the problems facing the field of complex networks
right now is the level of rigor that is requires to establish a result. In my view this is related to the
concerns addressed above in the following way: mathematical abstractions are never completely accurate
representations of the real–world objects that are the actual interest of study. Thus, the best we can hope for
(note that this is not the best that happens – the “unreasonable effectiveness of mathematics in the sciences”
[7] is a real phenomena) is that the mathematical results we can prove provide intuition and guidelines for
how we should evaluate the results of our real–world experiments and data gathering.

This plays out time and again in the field, and indeed one of the most important skills that a researcher
can possess is the ability to construct simple mathematical models of real world data about which we can
prove results to help evaluate our intuition from the real data we encounter. In this sense, my philosophy
is a Bayesian one – mathematical examples can offer signposts to update our intuition about the objects we
encounter in data analysis. For many networks problems it is often difficult to even state a general result
that would describe a useful way to transfer facts learned about a particular example to a “generic” model
but the intuition can still be valuable for practitioners.

In this regard, my applied work is representative of the standard types of argument in the field of complex
networks, with computational results buttressed by theoretical proofs wherever possible but unafraid to
attack problems for which there do not yet exist the frameworks to describe them theoretically.
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2 Why are networks not graphs?

Network science is a highly interdisciplinary and rapidly advancing field. Frequently, results and intuition
have developed around ideas from a computational or experimental perspective that took many years to
fully justify (e.g. the power law degree distribution of the preferential attachment model [1, 2]) or have
even been overturned by more careful theoretical examinations (such as the rush to show that various
families of empirical networks obey power law degree distributions, even though this is actually quite rare
[4, 3]). Partially, this tendency is due to the fact that many of the problems do not have unique optimal
solutions or are mathematically intractable and hence approximate or heuristic solutions are necessary. This
is particularly true for problems that are motivated by solving real world problems or are attached to actual
data, where there is usually a pressing concern that can be answered for a particular case, even if there does
not appear to be a natural generalization to an entire class of objects.

Many of the graphs encountered in mathematical (combinatorial) settings are quite distinct from the ones
that we use to represent real world data and problems. In addition to the structural differences, explored
in the remainder of this section, the questions that we are interested in are usually quite different. Queries
such as: “What is the chromatic number of the internet?”, “How many perfect matchings are possible on the
FaceBook graph?”, or even something as simple as “How many nodes or edges are in the world wide web?”
are at best ill–formed questions, as these networks are constantly changing and evolving. Additionally, it is
important to note that the same is true in the other direction: “Which is the most important node in the
Peterson graph?” or “Which node controls the information flow through the Cayley graph of SL2(Z/pZ)?”
or “What is the community structure in the knight’s tour graph?” are similarly ill formed questions.

A reasonable counterargument might be that although the relevant questions are different the funda-
mental objects of study are still graphs, in the sense that they are formed of vertices and edges, and hence
networks should be considered a subfield of graph theory. In fact, this was exactly the argument that I
made as a graph theorist, with interests in enumerative problems, encountering networks for the first time.
However, discussions with knowledgeable experts and increasing familiarity with the networks literature have
added a great deal to my perspective and demonstrated why my initial argument misses the point.

Most importantly, over–identifying a real world system with a particular instance of a model and ignoring
the context in which the data arises can lead to misleading conclusions about real world processes. This is
always an issue with mathematical models but tends to be exacerbated in the setting of networks, where
the abstract objects are so simplified. Additionally, many of the systems under consideration are dynamic,
with properties that change with respect to time and measurement process. Even though generalizations
such as weighted, directed, or multiplex networks, among others, have been introduced to capture a higher
degree of resolution of the data, these are still abstractions and can even introduce their own biases and
misconceptions. With this understanding, asking and answering specific questions about fixed graphs is not
necessarily the most appropriate approach for understanding real world systems, as overgeneralizing from a
specific realization of the data as a network can lead to misleading conclusions.

The uses of randomized models between the fields also helps to highlight this difference. From a combina-
torial perspective, the Erdös–Renýı model is a beautiful construction, where the independence of edges vastly
simplifies the computation of expected properties, and whose tractability has led to many exciting results
in Ramsey theory. From a networks perspective however, this model does both a poor job of explaining the
way that networks form1 as well as capturing the topological features that are most relevant to networks
questions. Instead, networks research tends to prefer more complex models that represent a contextually
appropriate generative story as well as more practical topological features such as transitivity or community
structure. The tradeoff is again tractability and elegance with applicability and interpretability.

How then does one tell a complex network from a graph? While the author is fond of the daddy long–legs
test2 or the trivial automorphism group test3, in practice, context determines the relevant questions. Thus,
this question is similarly ill–posed. It is not the topological properties that determine which questions are
relevant but rather the modeling approach and application that determine the usefulness of a particular
nomenclature.

1A new individual in a social network is unlikely to choose their friends by a sequence of independent, weighted coin flips.
2If it looks like a spider that has been whacked with a newspaper it is probably a network...
3except for trivial leaf permutations there are rarely interesting automorphisms of networks, whereas combinatorial graphs

frequently have large automorphism groups. See [5] and [6] for further discussions of this statement.
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