
REVIEW MATERIALS FOR NETWORKS QUAL

DARYL DEFORD

Introduction

This document contains basic materials collected in preparation for the networks qual. It is certainly not
complete or exhaustive, but instead represents some of the basic definitions, concepts, and terminology of
the field. The structure is currently based on the January 2015 qual syllabus outline and includes responses
to some of the February 2015 sample questions.

1. Basic Constructions

1.1. Graphs. Graphs, or abstract collections of nodes and edges, form the main objects studied in the
theory of complex networks. These models can be classified according to many different types of topological
properties, but the underlying structures are quite simple. The general procedure for modeling with networks
is to first identify the objects of interest (nodes), the crucial relations between then (edges), and then add
more structure (such as weights or embeddings) depending on what is available in the original data.

Although there are many textbooks focusing on graph theory from a combinatorial perspective, these
resources tend to be mostly irrelevant for the study of complex networks. The problem is that in real world
settings many of the combinatorial properties and statistics are nonsensical. As an example, consider these
basic graph theory questions: how many nodes does the internet have? does your router have an even or
odd number of neighbors? what is a minimal independent set on Facebook? These are clearly ill–posed
questions, but they highlights the disparity between the two fields. It is not possible to do much precise
counting when the objects that you are studying are at best a noisy approximation to a fixed real world
scenario, and more importantly analysis of one particular instance of the network has only small practical
significance.

1.1.1. Basic Graphs.

(a) (undirected unweighted) These are the most basic abstraction underlying each of the other more complex
network models. The application is modeled as a (finite) collection V of nodes, together with a subset
E ⊆ V × V that represents some relation of interest between the objects represented by the nodes.
These relations are assumed symmetric and are referred to as edges. Examples include symmetric social
networks, symbiote relationships, and physical computer networks. The corresponding adjacency matrix
is 0− 1 and symmetric.

(b) (undirected weighted) In this case each edge is assigned a weight that represents some aspect of the
underlying system. Examples include transportation networks with the weights representing capacities
or co–authorship networks with weights representing the number of joint papers per pair of authors.
The adjacency matrix is symmetric.

(c) (directed unweighted) Here the edges are no longer assumed to be symmetric (they are viewed as ordered
pairs), so they carry more specific information. Directed edges are frequently referred to as arcs while
the networks themselves are usually called digraphs. Examples include river flow networks, citation
networks, and predation networks. The adjacency matrix need not be symmetric for directed graphs.

(d) (directed weighted) In this case the edges are both directed and weighted. An example is the WWW
with nodes representing webpages and a directed edge of weight w between two nodes a and b if there
are w links from page a to page b.

Date: March 16, 2015.

1

2 DARYL DEFORD

1.1.2. Bipartite Graphs. A graph is said to be bipartite if the set V can be partitioned into two distinguished
subsets A,B ⊂ V such that all of the edges connect a vertex in A to a vertex in B (E ⊆ A×B). Bipartite
graphs may also be weighted or directed. Graph theoretically, they are usually characterized as graphs with
no odd cycles, but in the networks setting bipartite networks are usually specifically constructed with the
sets A and B representing different types of objects. For example, networks matching actors to movies they
have acted in or matching scientists to papers they have authored. In these cases the bipartition is selected
at the beginning of the modelling process. Frequently, the networks are studied by projecting onto a single
partite set, by associating all edges in A that are attached to each node in B (or vice versa).

1.1.3. Hypergraphs. In a hypergraph edges are allowed to connect more than two nodes at a time. Although
this adds to the expressive power of the abstraction it comes at a significant practical cost. Many of the tools
that work for analyzing simple networks fail for hypergraphs. Additionally, many of the standard algebraic
techniques and algorithms for simple networks do not translate naturally to this setting.

1.1.4. Multiplex Networks. A multiplex network is a collection of different edge sets all associated to the node
set. A natural example to consider is a set of individuals and their social networking behavior, using one
collection of edges for each separate social network. Multiplex structures can also arise from disaggregation
of data, for example, splitting up trade data by the type of good that is being exchanged.

1.1.5. Trees. A tree is a network with no loops. One distinguishing property is that given any two nodes in a
tree there is a unique path connecting them. They are frequently used to model hierarchical data. Examples
include citation networks and genealogical networks.

1.2. Matrix Representations. It is common to represent a network as a matrix to try to leverage the
power of linear algebra in the study of these objects. Many of the fundamental results and algorithms of the
field are derived in this fashion, and this document contains several of these examples.

1.2.1. Adjacency Matrix. The simplest matrix representation of a network is known as the adjacency matrix
A. The entries Ai,j are defined to be one if there is an edge in the graph between nodes i and j and zero
otherwise. As mentioned in the previous sections this structure is simple to modify in order to capture the
distinctions between the various (un)directed (un)weighted networks.

1.2.2. Incidence Matrix. Another valuable matrix representation of a network is the incidence matrix N1.
This n×m matrix is formed by associating each column of the matrix to an edge and placing a one in the
entries corresponding to the nodes that are connected by the edge. A slight modification of this construction
gives the Cholesky decomposition of the graph Laplacian. We take the incidence matrix associated to a
undirected netwrok and select one positive entry in each column to be scaled by −1. Then, L = D − A =
NNT . The signs can be assigned arbitrarily, as can be seen from writing out the matrix product in full.

This construction generalizes nicely to hypergraphs, where there are possibly more than two nodes on
each edge, in a way that the adjacency matrix does not. In this case however, there is no consistent choice
of signs that will allow for a matrix product like the Laplacian. A similar construction also generalizes for
bipartite networks, such as the authorship network, where the two sets are authors and papers with edges
representing authorship. In this case the columns correspond to the papers with entries of one corresponding
to authors. Then, the node projections mentioned in 1.1.2 are NNT and NTN .

1.2.3. Biadjacency Matrices. A representation that is commonly used for bipartite networks is the Biadja-
cency matrix, B2. Since there are no nodes within the partite sets, this representation condenses the wasted
space in the standard adjacency matrix which will have a 2× 2 block form with zero blocks along the diag-
onal. In B, he rows are indexed by the elements of the first partite set and the columns are indexed by the
elements of the second, with entries representing edges as in the adjacency matrix.

1Newman and many other authors use B for this matrix, but they also use B for several other entirely unrelated matrices

such as modularity matrices. In order to “reduce” the potential for confusion I will use N throughout this document.
2At least here the B makes sense.

NETWORKS REVIEW 3

2. Taxonomies

Network models of complex systems tend to exhibit several types of distinct topological structures. The
importance and ubiquity of these features is one of the things that separates networks from standard graph
theory. The two most commonly studied of the following characterizations (small world networks (2.2) and
scale free networks (2.3)) are not perfectly formal in a mathematical sense, but have been adopted by the
networks community. It can be difficult to empirically determine whether a particular network actually falls
into one of these categories, but many broad classes of networks have been assumed to satisfy these conditions
in the networks literature. The first subsection below defines some standard graph–theoretic families that
are frequently used in the study of networks.

2.1. Graph Families. This section describes some of the most frequently studied graph families.

(1) (complete graph) A complete graph on n nodes, denoted Kn is the graph that has all possible edges.
These are also known as cliques.

(2) (complete bipartite graph) A complete bipartite graph with partite sets of m and n nodes, denoted
Km,n is the bipartite graph that has all possible edges.

(3) (cycle graph) A cycle graph on n nodes, denoted Cn, is a graph where the nodes and edges form a
cycle.

(4) (path graph) A path graph on n nodes, denoted Pn, is a graph where the nodes and edges form a
path. These are an example of a tree.

(5) (regular graph) A regular graph is one where every node has the same number of neighbors.
(6) (star graph) A star graph is a tree with one central node that is connected to some number of leaf

vertices which are only connected to the center.
(7) (planar graph) A planar graph is a graph that can be drawn in the plane without any crossing edges.

A graph is planar if and only if it does not have K5 or K3,3 as a minor.
(8) (hypercube graph) A hypercube graph is formed by taking the nodes to be all binary strings of

length n and connecting two nodes if their Hamming distance is one.
(9) (dense graph) A graph is called dense if it has O(n2) edges.

(10) (sparse graph) A graph is called sparse if it has relatively few edges compared to the square of the
number of vertices.

2.2. Small World Networks. Small World networks are characterized by the property that the expected
shortest path between two arbitrary nodes in the graph is about log n. Sometimes they are also required
to have a high clustering coefficient. This leads to the network having a fat–tailed degree distribution. The
world wide web and most social networks (probably) satisfy this condition. Transportation networks with
hubs, such as airline and train networks, also satisfy these conditions. Counterexamples include things like
local transportation networks, which are too regular, or social networks that encompass a large time scale,
which vastly increases the average path length.

The name comes from Milgram’s small world experiments. The Watts–Strogatz model (see section 4a)
is one of the most frequently studied generative networks models exhibiting this behavior. Assumptions
about small world networks are used in many subjects to inform decision making. For example, small world
properties of social networks are used to market products more effectively while the robustness profile (see
section 3e) of small world networks have led to their use in technological networks.

2.3. Scale Free Networks. A network is said to have the scale free property if its distribution of node
degrees satisfies the power law, usually with parameter 2 ≤ γ ≤ 3. That is, the fraction of nodes with
degree k is asymptotically k−γ . Citation networks and other models usually assumed to form from some
amount of preferential attachment tend to satisfy this property. These networks tend to have many “hubs”
or nodes with relatively high degree and a clustering coefficient distribution that also follows a power law.
The clustering distribution implies that the low degree nodes exist in small dense sub–networks connected
by the hubs. The Albert–Barabsi model (see Section 4a) is one of the most frequently studied generative
networks models exhibiting this behavior. However, this model does not give rise to the large clustering
coefficient that is usually required of small world networks.

4 DARYL DEFORD

3. Network Statistics

This section contains descriptions of some of the basic tools used to analyze and differentiate networks.

3.1. Degrees. The simplest network statistic quantifies the number of edges per node in the network.

(a) (degree) The degree of a node is the number of edges incident to it.
(b) (weighted degree) The weighted degree of a node is the sum of the weights of each edge incident to it.
(c) (degree distribution) The degree distribution of a network is an ordered list of the degrees of each node

in the network. The Erdös–Gallai Theorem characterizes when a particular list of integers can be a
degree distribution. In network theory the distribution of the degrees is an important invariant of the
structure. An interesting facet of complex networks is that while Erdös–Renyi random graphs have a
Poisson or binormal degree distribution most observed networks have fat tailed distributions.

(i) (power laws) A degree distribution is said to satisfy a power law if the probability of a node in the
network having degree k is k−γ usually for a value of γ between two and three. These distributions
have a scale free property (see 2.2) since multiplication by a constant scales the proportion by the
constant to the γ. On a log–log plot these distributions appear linear.

(ii) (heavy tailed) A long/heavy/fat tailed distribution has more nodes with high degree than a nor-
mally/exponentially/uniformly (hopefully clear from context) distributed collection of integers.

3.2. Paths. The next important class of network statistics deals with paths in networks.

(a) (geodesics) Shortest paths in a network lead to several important statistics, both for nodes and the
entire network. Except in the case of tree networks these geodesics are rarely unique for a given choice
of vertices. Many problems dealing with enumerating particular types of paths such as Hamiltonian
(non–vertex repeating) or Eulerian (covering every edge) are of significant combinatorial interest. The
following statistics are among some of the most frequently studied in complex networks.

(I) Node Statistics:
(i) The length of the shortest path between node i and j in a network is denoted `i,j .
(ii) The eccentricity of a node is ecc(i) = maxi 6=j `i,j .

(iii) The closeness centrality of a node is gi = 1∑
i6=j `i,j

.

(iv) The number of shortest paths between i and j is σi,j .
(v) The number of shortest paths between i and j through vertex k is σi,j(k).

(II) Network Statistics:
(i) The diameter of a graph is d = maxi,j `i,j .
(ii) The average shortest path in a graph is 1

n(n−1)
∑
i,j `i,j .

(iii) The radius of a graph is mini ecc(i).
(b) (connectivity) A network is connected if there is a path between any two nodes. Since the nodes in

different connected components cannot interact we usually analyze the components individually. The
number of components in a network is given by the multiplicity of zero as an eigenvalue of the graph
Laplacian. Connectivity is further characterized by the second smallest eigenvalue of the graph Laplacian
(without multiplicities) (see Section 6 b). This is known as the Fielder value.

Connectivity is frequently used as the defining condition in robustness/fragility measures (see Section
3e). Generally a relaxed definition of connectivity is preferable in many applications to prevent trivial
solutions such as deleting a pendant edge to disconnect a network. These relaxations are directly related
to clusering, also through the graph laplacian (see Section 7 c).

3.3. Assortativity. Assortativity (homophily in the social sciences) is the characteristic of network forma-
tion that suggests that nodes are more likely to be adjacent to nodes with similar properties. For example, in
assortative networks, high degree nodes are expected to be connected to other hubs, while small degree nodes
are more likely to be connected to other low degree nodes. In disassortative networks the opposite behavior is
expected. This concept is usually studied in terms of the degrees of the nodes (because it is easier/tractable)
although other types of correlations are possible, especially when outside correlations can be computed with
respect to parameters not captured by the network abstraction itself. The most frequently used statistics
are the Pearson Correlation Coefficient which is a statistical correlation and the neighbor connectivity which
measures the average neighborhood size for nodes adjacent to nodes of fixed degree.

NETWORKS REVIEW 5

Assortativity can also be generalized to directed networks, although there are additional complications.
In this case we must distinguish between in and out degrees and connections between nodes can be studied
by pairing any combination of these, for example in degree with in degree along out edges. It can also be
computed locally by considering the amount of assorativity that is contributed by each node individually.
This consideration is used in iterative optimization algorithms that rely on maximizing assortativity by
moving nodes between partition components. The most common model for explaining why this type of
behavior is observed in many networks is described below, although there are other candidates.

(a) (preferential attachment) Preferential attachment is a model that attempts to explain the assortativity
that occurs in many real networks such as the WWW and citation networks. Reduced to a buzz phrase,
the idea is “the rich get richer.” The idea is that during the network formulation process each new
node has probability of connecting to any particular previous node proportional (in some sense) to the
degree of the previous node. The most famous method making use of this process is the Albert–Barabasi
algorithm. Given appropriate parameters, a preferential attachment process can generate a power law
degree distribution, as is seen in many real world networks.

Derive the formula for calculating the assortativity of a network.
(This first approach follows the statistical methods in Newman’s 2002 paper)
Assortativity in the network setting usually refers to the likelihood that nodes of similar degree are

connected, though it can be applied more generally. In order to complete the derivation we need to define
some notation. Let pk be the probability that a random node has degree k. The probability distribution for
the degree of a node that is selected as a neighbor of a randomly chosen node is kpk since a neighbor is likely
to have higher degree. Assortativity is traditionally computed in terms of the remaining degree of such a
node which is the distribution of the number of edges minus the one that was used to arrive at that node.

The distribution of the remaining degree qk can then be determined to be qk = (k+1)pk+1∑
j jpj

since the chosen

node actually has degree one higher and the edge that carried us to the node could have been from a node
of any degree. We further define ej,k to be the joint probability distribution that given an arbitrary edge the
incident nodes have remaining degrees j and k. Summing all the ej,k gives one, while fixing k and summing
over all j gives qk.

If there is no assortativity in the network we should expect that ej,k = qj · qj so a measure of the
assortativity can be realized as the average value over all edges of the network as:

∑
j,k jk(ej,k−qj ·qk). This

value is traditionally normalized to allow for cross network comparisons by dividing by the maximum possible
value which occurs when ej,k = qkδj,k. Substituting this simplification in we see that

∑
j,k jk(qkδj,k−qj ·qk) =∑

k k
2qk − (

∑
k kqk)

2
= σq. Together we obtain a final formula: r =

∑
j,k jk(ej,k−qj ·qk)

σq
. This is equivalent

to the Pearson Correlation Coefficient of the degrees of nodes incident to the same edge across the network.
Note that this methodology only captures possible linear correlation between the degree connections, so it
is important to be aware of other possible distributions of the correlations.

Here is a more natural3 way to view assortativity as a special case of scalar modularity. Recall that
for a partition of a network the (enumerative) modularity is defined as Q = 1

2m

∑
i,j Bi,jδ(ci, cj), where

Bi,j + Ai,j − kikj
2m and the ci represent the respective components of the vertices. Further this is compared

to the maximum possible value on the network, where the edges all lie within components so i ∼ j implies

δ(ci, cj) = 1, giving Qmax = 1
2m

∑
i,j(Ai,j −

kikj
2m). The idea is capturing the overabundance of edges in the

observed network that lie within instead of between the clusters.
Taking this idea to the case where our paritions are defined by scalar variables instead of enumerative

classes we can proceed with a similar derivation, first computing the average over the edges as

µ =

∑
i,j Ai,jxi∑
i,j Ai,j

=
1

2m

∑
j

kjxj

and then computing the covariance of the degrees across the edges. Although the following computation
is messy the underlying idea is natural and the final result is equivalent to the standard modularity for
enumerative partitions.

3less statistical

6 DARYL DEFORD

cov(ki, kj) = 1
2m (

∑
i,j Ai,j(xi − µ)(xj − µ))

= 1
2m (

∑
i,j Ai,j(xixj − µ(xi − xj + µ)))

= 1
2m (

∑
i,j Ai,jxixj − µ

∑
i,j Ai,j(xi + xj − µ))

= 1
2m (

∑
i,j Ai,jxixj − µ(

∑
i

∑
j Ai,jxi +

∑
j

∑
iAi,jxj +

∑
i

∑
j Ai,jµ))

= 1
2m (

∑
i,j Ai,jxixj − µ(

∑
i kixi +

∑
j kjxk −

∑
i,j Ai,jµ))

= 1
2m (

∑
i,j Ai,jxixj − µ(2mµ+ 2mµ− 2mµ))

= 1
2m (

∑
i,j Ai,jxixj − 2mµ2)

= 1
2m (

∑
i,j Ai,jxixj − µ2)

= 1
2m (

∑
i,j Ai,jxixj − (1

2m)2
∑
i,j kikjxixj))

= 1
2m (

∑
i,j(Ai,j −

kikj
2m)xixj)

Similarly, we consider for a perfectly assortative network the maximum value which occurs when we have
xi = xj for the coefficient of Ai,j in the definition. This then gives a perfect mixing value of

1

2m
(
∑
i,j

Ai,j(x
2
i −

kikj
2m

)xixj) =
1

2m
(
∑
i,j

(kiδ(i, j)−
kikj
2m

)xixj)

Taking the quotient of the observed and ideal values gives the assortativity coefficient:∑
i,j(Ai,j −

kikj
2m)xixj∑

i,j(kiδ(i, j)−
kikj
2m)xixj

Then, we can obtain the standard assortativity for degrees by substituting in ki for xi into the expression
above. It is easy to check that this definition agrees with the näıve notion of simply computing the covariance
of degrees across the edges of the network as in the statistical interpretation.

3.4. Centrality. One of the most common ways to analyze important nodes in a network is through mea-
sures of centrality. Broadly these are metrics that attempt to characterize nodes through their importance
to the network. The choice of importance metric determines the algebraic computations that are necessary.

(1) (degree centrality) In this metric the centrality of a degree is set equal to its number of neighbors.
This is a simple measure to compute but it does carry some first order information about the network.
Citation counts of papers and number of followers on Twitter are examples of this sort of centrality
measure.

(2) (betweeness) Betweeness centrality is a measure of how well connected a node is to the other nodes
in a network using the number of paths through the node as a proxy for centrality.

(I) Node Statistics
(i) The number of edges between neighbors of i is ei.
(ii) The clustering coefficient of i is c(i) = 2ei

deg(i)(deg(i)−1) .

(iii) The betweeness centrality of i is bi =
∑
k 6=i 6=j

σk,j(i)
σk,j

.

(II) Network Statistics
(i) The clustering coefficient of the network is 〈c〉 = 1

n

∑
i c(i).

(ii) The δ–clustering coefficient of the network is cδ = #δ

(n
3)

.

This quantity bi is measuring how often the node i lies on a geodesic between two arbitrary vertices.
For many networks this is a metric with a large range of values that clearly distinguishes between
high and low values. The geodesic assumption can be misleading for some natural kinds of network
dynamics, such as searching for information. It can also be adjusted to instead reflect the expected
number of visits of an absorbing random walk between two arbitrary nodes. Note that this definition
is no longer symmetric as can be observed by considering a pendant edge. This methodology has
the opposite assumption that there is no optimization in the “flow” across the network.

NETWORKS REVIEW 7

(3) (closeness) Closeness centrality is related to the quantity `i = 1
n

∑
j di,j , where di,j is the length of a

geodesic from i to j. This has small values when i is close to many nodes so the centrality statistic
is defined as the inverse of this number ci = 1

`i,j
. This is a metric that takes a very small range of

values across small world type networks, because of the log(n) diameter assumption and high local
clustering.

(4) (eigenvector) Eigenvector centrality ranks the centrality of nodes in the network by the size of their
corresponding entries in the leading eigenvector of the adjacency matrix. Dynamically these processes
model random walks on the network. Another technique introduced by Kleinberg is to rate authority
centrality and hub centrality separately by computing the eigenvectors corresponding to AAT and
ATA separately (note that this is only sensible for directed networks). For undirected graphs these are
the same since A is symmetric, but for undirected graphs they capture very different information. For
examples consider Twitter or the WWW, where having many incoming nodes carries very different
information than having many outgoing nodes. Similarly, the property of having arcs to/from hubs
(in the power law case) distinguishes between authoritative nodes and standard nodes.

(5) (Katz) Best technique for directed acyclic graphs where eigenvector centrality cant be measured.
The idea is to award each node some measure of centrality at each step to avoid absorbing states in
the Markov process. It can be defined as

CKatz =

∞∑
k=1

n∑
j=1

αk(Ak)i,j

for some α less than the reciprocal of the largest eigenvalue of A for a single node or

((I − αAT)−1 − I)1

for the entire network. Usually iterative methods are used to calculate these values since it is difficult
to prove convergence bounds for this type of system. Google’s PageRank algorithm is a version of
this centrality measure, with the adjacency matrix normalized to make it stochastic.

3.5. Robustness. Robustness in a network is a notion of stability. We are usually concerned with the
question “How does the perturbation of nodes or edges from the network change the network topology or
dynamics?” In general, the connectivity of the network is used as a proxy for the health of the system. This
is very natural in examples from biology or power systems, where disconnection of the network can have
severe consequences. The main dynamical technique in the literature dealing with robustness is percolation
although there are other approaches, such as in the world trade web paper.

(a) (fragility) Wildly underspecified definition ahead: A network is said to be fragile if it is easy to decompose
by deleting/perturbing few edges or nodes and robust if many must be deleted/perturbed. Currently
there is not a consistent general theory (in the mathematical sense) for what it means to be robust
although for many particular applications natural notions present themselves. For example, in a power
network connectivity is a natural measure since disconnection means there are homes without power.
Alternatively, for weighted networks there may instead a natural measure of flow with a minimal quantity
that must be preserved for the network to function.

(b) (attacks) Distinctions are usually made between different models of network degradation. Random
failures such as those that occur over time due to normal physical dynamics are usually modelled by
selecting edges or nodes with some natural distribution guided by the application and either deleting
them entirely or degrading them by a constant multiple 0 ≤ α < 1. On the other hand targeted attacks
can be very damaging to some types of networks. For example, given an adversary that knows the
abstract network structure they can select the “most important” nodes or edges, perhaps using some
centrality or betweeness measure, to degrade. This in particular is damaging to networks with bridges
or hubs that function as weak points in this analysis.

Attacks are frequently modeling using techniques from physics broadly classified as percolation theory.
Them main idea is that some selection (either uniform or application determined) of the nodes (site
percolation) or edges (bond percolation) are degraded or assumed to be non–functional and the properties
of the networks are examined under these assumptions. A natural motivation is disease epidemics, where
vaccinated indivudals do not interact with the disease dynamics.

8 DARYL DEFORD

(c) (taxonomies) Different types of networks have very different robustness properties. Trees for example
are very fragile since any deletion is likely to separate the nodes into disjoint components. Scale free
networks are weak to targeted attacks that destroy several nodes, but quite robust against random node
or edge failure. This is why technological networks frequently employ construction techniques modelled
on this behavior. On the other hand, Erdös–Renyi networks are quite robust against targeted attacks
because in general there are not hubs in general. On the other hand, these graphs tend to serve as a
poor model for most complex networks since usually their are underlying structural concerns such as
preferential attachment, homophily, or design that enforce the construction of more significant and hence
targetable nodes and edges.

4. Null Models

The idea behind null model analysis is to compare in a “principled” fashion a particular observed network
with an ensemble of related random networks in order to determine the features of the observed network
that are not likely to be caused by random behaviors. This is very intrinsically related to the idea that in
most cases of interest the actual network that we are operating on is only an approximation of a snapshot
of the underlying physical system. This section contains descriptions of the basic random network models
and a discussion of how to use these models to discover significance from observed networks.

4.1. Standard Random Network Constructions.

(1) (Erdös–Renyi) Inputs: The number of desired nodes n and a probability parameter p. Construct a
network on n nodes where each of the

(
n
2

)
edges independently occur with probability p. Another

standard version of this model selects an arbitrary graph from the collection of all graphs on n
vertices with m edges uniformly, although this formulation makes it more difficult to calculate some
standard network parameters since there is no assumption of independence on the edges.

(2) (Barabsi–Albert) Inputs: An initial network, a final number of nodes, and a fixed number c of edges
to add for each new node. This is an iterative process. At each step, until the final number of nodes
is reached, add a new node to the network. Connect this new node to c nodes already in the graph

with probability deg(i)∑
j deg(j) . This preferential attachment process generates scale free networks.

(3) (Watts–Strogattz) Inputs: The number of desired nodes n, a probability parameter p, and the desired
mean degree d. The construction begins with a ring lattice on n nodes where each node is connected
to its k

2 nearest neighbors. Visit the nodes sequentially and reattach each edge at that node with
probability p. Select the new target for the reattached edges uniformly. This method produces small
world graphs.

Network Type Average Degree Average Path Length Diameter Clustering Coefficient Degree Distribution

Erdös–Renyi np log(n) log(n) p Binomial

Barabsi–Albert c log(n)
log(log(n))

log(n)
log(log(n)) n−

3
4 Scale Free

Watts–Strogattz k log(n) log(n) 3
4 Poisson

(4) (configuration models) Configuration models are a generalization of the Erdös–Renyi model that
preserves the degree distribution of a network of interest. The idea is to cut each edge in the original
network in half and reattach these “edge ends” at random. Since the number of ends at each node
doesn’t change the degree distribution is preserved. This is the null model used in the definition of
modularity.

4.2. Parameter Estimation.

4.3. Significance. Null models are frequently used to determine if a computed parameter for a network of
interest is interesting. This is usually done by identifying the parameter of interest, generating many random
graphs that are structurally similar4 to the observed network and comparing the values.

4also wildly undefined

NETWORKS REVIEW 9

5. Dimension Reduction

Dimension reduction techniques broadly fall under the heading of data analysis. They are used for many
different purposes in all parts of applied mathematics. The key idea is to reduce in some fashion data
that is presented is high dimensional space to a natural embedding in a smaller dimensional space that
preserves as much of the original structure as possible. Mitigating the curse of dimensionality, providing
useful visualizations, both for exploratory and explanatory purposes, and cleaning noisy data are all parts
of dimension reduction techniques and methods. Many of these techniques and their results are intrinsically
related to problems of clustering. We also note that standard network clustering techniques can be applied
to data sets by interpreting the data as a network, perhaps by using thresholding or k nearest neighbors to
form a representative graph for the data.

5.1. Multidimensional Scaling. Multidimensional scaling (MDS) is a technique for embedding data into
a Euclidean space so that the Euclidean distance (or another metric on Rn) can be used as a “good”
approximation to a given metric on a dataset. That is, given a dataset X = {xi} and a metric5 d : X×X → R
we wish to form an embedding ϕ : X → Rk for some k together with some metric d′ on Rk so as to minimize∑
i,j |d′(ϕ(xi), ϕ(xj)) − d(xi, xj)| or some similar variant. Usually we begin with a dissimilarity matrix

Di,j = d(xi, xj) and state (and solve) the problem linear algebraically by forming a derived matrix that can
represent the new inner products.

The choice of k obviously influences the embedding process a great deal. For visualization of course, two or
three dimensions are required, or alternatively there may be some intrinsic dimensionality to the data that is
known in advance. For example, we may know or expect certain dimensions of our data are highly correlated
and subtract these superfluous quantities from k. Alternatively, if our data stems from a Euclidean metric
originally then the points can be embedded exactly using linear algebra and factoring a symmetric positive
definite matrix. This method works for all data that comes from a metric and has the additional property
of revealing the smallest dimension that provides an exact embedding as the rank of the derived matrix.

When the original measure is not a true metric it is not always possible to solve this problem exactly. One
possible approach to correct this defect is to try to convert d into a metric (or at least get it closer), such
as is done with cosine dissimilarity measure. Regardless associated to any such embedding is a measure of
stress that determines the effectiveness of an embedding at capturing the original information. These stress
measures are frequently statistical and dependent on the particular data and can be used to search for the
proper number of dimensions for an embedding.

Most of the standard software systems for data analysis (Matlab, R, Python, etc.) incorporate methods for
doing MDS. These are usually computed iteratively from a random embedding, by adjusting the positions of
the points slightly at each stage to minmize the stress function measuring the normalized difference between
the embedded distances and the original dissimilarity matrix entries. Due to the random nature of the
initialization it is possible that the software can return a local minimum instead of a global minimum, so it
is recommended to perform the operation multiple times and select the embedding that minimizes the stress
function.

Show that if D is a distance matrix giving distances between points in Rn the MDS will
recover the coordinates of the points up to a rigid motion.

Let D be a matrix whose entries represent differences between k points in Rn. That is D2
i,j = d(xi, xj).

Since the points are assumed to be Euclidean already, we can realize the distance as an inner product:
D2
i,j = ||xi − x− j|| = 〈xi− xj , xi − xj〉. If X is a n× k matrix whose columns are the entries of the xi then

the matrix A = XXT has entries Ai,j = 〈xi, xj〉. Thus, if we can construct the matrix A from D we can
recover X from the spectral decomposition of A since it is symmetric and positive definite by construction.

Looking entrywise we see that D2
i,j = 〈xi, xi〉 − 2〈xi, xj〉+ 〈xj , xj〉 = Ai,i − 2Ai,j +Aj,j . Considering the

entries of A as k2 variables we obtain a system of equations that can be solved exactly to obtain A. Since
we can obtain X from A, this gives us at least a translate of the original vectors up to a rotation since the
Euclidean distance is translation and rotationally invariant. In practice however, these problems are usually
solved with iterative approaches for a fixed dimension, using a stress measure as an objective function.

5Need not be an actual metric, but the closer it is to satisfying all of the metric properties the better results obtained from

it will be.

10 DARYL DEFORD

Another approach is to form the matrix Mi,j =
D2

1,i+D1,j−D2
i,j

2 . This is also a symmetric matrix whose
spectral decomposition gives rise to another realization of X as above. In this case we are shifting the first
element in X to the origin and then the entries of M represent the differences from x0 to each other point in
the data set. The rank of M captures the minimal dimension such that the distances can be realized exactly
in Euclidean space with the standard metric.

5.2. Principle Component Analysis. Principle component analysis (PCA) is a technique from linear
algebra for projecting a dataset of vectors onto a lower dimensional subspace in such a way as to capture
most of the variance of the original data. The idea is that we can use the spectral decomposition of the
covariance matrix of a data set (derived from the Di,j above) to suggest the most efficient vectors to project
our information onto by selecting the eigenvectors corresponding to the largest eigenvalues. Specifically, we
compute the sample covariance matrix 1

n−1 (X − X̂)(X − X̂)T and use its orthogonal decomposition.
In practice, parts of this decomposition may be done by SVD both for speed and numerical stability. The

total variance is preserved under the diagonalization, but the new random variables are clearly uncorrelated
in the change of variables. Thus, the eigenvalues, sorted descending by magnitude, describe decreasingly
small proportions of the total variance explained by projecting onto the first k eigenvectors. Note that these
projections are orthogonal since the covariance matrix is symmetric. This means that the projections can
be computed independently for the most meaningful k eigenvectors to achieve the representation in Rk that
explains the most variance possible.

6. Dynamics on Networks

In order to understand the effects of topological structure on real life systems it is frequently useful to
consider dynamics on networks. Many of the most powerful descriptive invariants of network theory are
revealed through considering the action of some operator across a network. Most commonly the operators
are assumed to be linear in some fashion so that techniques from linear algebra, such as eigenvalue analysis,
can be performed. As we shall see this leads to many fascinating results, especially in the case of the graph
Laplacian.

6.1. Markov Dynamics. The first type of dynamics we consider are those governed by Markov chains.
For our purposes a Markov process is a stochastic process where the conditional probabilities of each state
depend only on the current state. In the context of networks, we are usually interested in discrete state
Markov chains, this is a finite collection of states, together with a (sequence of) matrix(ces) whose entries
capture the transition probabilities, i.e. Ai,j is the probability of transitioning from state j to state i.6 Here
we will generally only consider time homogeneous systems with a fixed transition matrix. This matrix is
left stochastic and hence it can be shown (see next subsubsection) with Perron–Frobenius that one is the
largest eigenvalue of the matrix and the corresponding eigenvector has all positive entries and can hence be
interpreted as a probability vector (perhaps after normalizing). It is this steady state vector that we are
most interested in.

We saw an example of this already in the context of centrality scores, when we considered the matrix
AD−1. This matrix represents the transition matrix of a Markov process defined on the nodes modeling a
random walk on the network, where the edges are selected uniformly. This means that if the walker is at
node i then proceeding to the next step the walker has deg(i) choices or equivalently each edge is chosen with
probability 1

deg(i) . This is a more interesting notion in the context of directed networks, since for undirected

networks the steady state proportions are just given by D1
||D1|| .

6.1.1. Perron–Frobenius. It is a little bit of a pet peeve of mine that most sources about networks gloss over
how Perron–Frobenius actually applies to stochastic matrices so here is an outline. To begin with, Perron–
Frobenius guarantees that for certain classes of non–negative matrices there exists a unique, real maximum
eigenvalue of multiplicity one, whose corresponding eigenvector has all positive entries.7 Moreover, this is
the only eigenvector of the matrix with strictly positive entries. Before proceeding, we need to discuss which
types of matrices actually satisfy the hypotheses of this theorem.

6It is traditional in the probability/statistics literature to have stochastic matrices act on the right of column vectors. I am
not a fan of that convention.

7The theorem actually contains more content than this, including a very efficient formula for the projection onto the
corresponding eigenspace. This portion of the theorem does not apply for operators that are irreducible and imprimitive.

NETWORKS REVIEW 11

The Perron–Frobenius theorem applies directly to any matrix with strictly positive entries. In our Markov
example this means that at any time step any state may be reached from each other state. Additionally,
the theorem applies without modification to primitive non–negative matrices. A matrix is primitive if there
exists an integer m so that the mth power of the matrix has all positive entries. Primitive matrices can also
be characterized as irreducible, aperiodic matrices. A matrix is irreducible if for all i, j there exists an m
such that the mth power of the matrix has a positive entry in the i, j position. This can also be expressed
by showing that the associated digraph is strongly connected.

The period of a non–negative matrix is the greatest common divisor of the lengths of closed paths in
the associated digraph. An irreducible matrix is aperiodic and hence primitive if its period is equal to one.
Perron–Frobenius for irreducible matrices has the same eigenvalue consequences described in the previous
paragraph. Perron–Frobenius does not apply directly to reducible matrices. However, every reducible matrix
may be permuted to an upper block diagonal form whose diagonal blocks are irreducible. Since the spectrum
of the matrices must be the same sometimes information can be gleaned from this change of variables. This
is the technique sometimes used for general stochastic matrices.

Unfortunately, many stochastic matrices, especially those attached to complex networks are neither prim-
itve nor irreducible. In this case it is still true that they have leading eigenvalue one and non–negative (not
necessarily positive) eigenvector. Since the matrix is left–stochastic the all ones vector is a right eigenvector
corresponding to one. Gershogorin’s Circle Theorem guarantees that one is at least a maximal eigenvalue
in norm for the matrix. Additionally, since the matrix is non–negative we still have that every eigenvector
corresponding to one has all entries with the same sign, since A − I only has non–positive entries on the
main diagonal. In this case there is no guarantee of multiplicity one. An easy example to see this failure is
with a Markov chain that has several absorbing states8. In these cases there is an eigenvector corresponding
to the eigenvalue one for each possible absorbing state. Clearly one is still the leading eigenvalue and this
set of vectors is linearly independent of dimension equal to the number of absorbing states.

6.1.2. Basic Definitions. The transition matrix of a Markov chain can be interpreted as a weighted, directed
graph with the states as nodes and the probabilities as edge weights. This provides convenient language
for characterizing the properties of a given chain. For the remainder of this section we will not distinguish
between a Markov chain and its associated digraph. This following are some basic definitions associated to
Markov analysis.

(1) (essential) A state i in the chain is essential if for every other state that can be reached from i there
is a path returning to i.

(2) (irreducible) A Markov chain is irreducible if it is strongly connected.
(3) (primitve) A Markov chian is primitive if there exists an integer m such that any two (not necessarily

distinct) vertices in the graph can be connected by a path of length m.
(4) (steady state) A stead state of a Markov chain is an eigenvector corresponding to one. For primitive

chain this can be computed as the limit of the matrix powers. This property implies that for such a
chain the initial distribution has no consequences in the limit.

(5) (period) The period of a state is the greatest common divisor of all lengths of cycles that begin at
the state. A state is aperiodic if its period is one. Note that in bipartite graph, all periods must be
even since there areno odd cycles.

(6) (hitting time) The hitting time Ti of a state is the random variable associated to the chain counting
the minimum number of steps until the path returns to the state.

(7) (transient) A state i is transient if there is non–zero probability that a path from i never returns to
i. A non–transient state is called recurrent. If we define qni = P (Ti = n) then the state is transient
if
∑∞
n=1 qi < 1.

(8) (mean recurrence time) The mean recurrence time of a node is the expected value of the hitting time
Mi =

∑∞
n=1 n ∗ qni . If Mi is finite then i is positive recurrent.

(9) (absorbing) A state is absorbing if it is impossible to leave. This occurs when a node has no out
edges. These states are also known as sinks.

(10) (source) A state is a source if it has no in edges.
(11) (ergodic) A state is ergodic if it is aperiodic and positive recurrent.

8defined below

12 DARYL DEFORD

6.1.3. Absorbing Markov Chains. A Markov chain is said to be absorbing if it contains at least one absorbing
state and there is at least one finite path from each state to an absorbing state. We expect the steady state
solutions to these chains to distribute the probability only among the absorbing states. These chains are
usually analyzed in terms of a fundamental matrix F =

∑∞
n=1 P

n where P is the transition matrix relating
only the transient states. Using Neumann series we can realize this matrix as F = (I −P)−1. Then, we can
interpret the i, j entry of F as the expected number of times state j is visited if the initial state is i. The
variance can be computed from a matrix derived from F with the Hadamard product.

It is easy to see that the interpretation of Fi,j implies that the expected number of steps beginning at
i until the flow is absorbed is captured by F1. Furthermore, the likelihood of reaching one transient state
beginning at another is captured by [(F − I) diag(F)−1]i,j , while the probability of being absorbed by a
particular absorbing state is [FR]i,j where R is the transition matrix connecting the transient states to the
absorbing states.

6.1.4. Uses in Complex Networks. Considering Markov chains on networks we usually use the 0, 1 structure
of the adjacency matrix of the graph to determine where to assign probabilities under the assumption that
there is no possibility of flow between disconnected nodes, with the caveat that probabilities may be added
along the diagonal to capture the possibility of remaining in place. The most common Markov process on
networks uses only the information in the adjacency matrix to define the transition probabilities. This is
sometimes known as the normalized random walk Laplcian: AD−1.

This is model of a random walk on the network where the probability of moving from i to one of its
neighbors j is 1

deg(i) . This weighting assumes that each edge is taken uniformly at random. In this case

the interpretation of the steady state is as a limiting distribution of probabilities. We expect more highly
connected nodes to have higher entries in this steady state, so the magnitudes of the steady state vector are
frequently used as a measure of centrality on the network. Other probabilities on the edges can be enforced
to reflect extra structure known from the application or edge weights associated to the network. In order to
study flows across networks extra nodes can be added. For example, adding a source node to set the initial
distribution, or adding a sink node to transform the walk into an absorbing Markov process.

This interpretation also shows up in several other network contexts. For example, normalized spectral
clustering can be computed in terms of the eigenvectors of this matrix. Additionally, many other types of
Markovian dynamics are defined on networks for specific applications because in general they admit simpler
solutions than more general models, even if they are not fully representative of the actual application.

6.2. Diffusion. Diffusion on networks is modeled as a discrete version of continuous diffusion processes,
such as those governed by the heat equation. The idea is that each node is affected only by its neighbors
and that the quantities associated to each node “diffuse” or move from areas of high concentration to lower
concentration areas. We model this by assuming that for any initial distribution ϕ on the nodes of the network
the values change by a scalar multiple (the diffusion constant c) of the sum of the differences between the

value at each node and the values at each of its neighbors. Symbolically, this is dϕi

dt = c
∑
j Aijϕϕi − ϕj or

dϕ
dt = c(D −A)ϕ in matrix form.

This matrix L = D−A is called the graph Laplacian. It is one of the most important operators associated
to a given network and its eigenvalues have deep connections to the structure of the graph. Returning to
the diffusion model we see that dϕ

dt = cLϕ is a linear differential equation and since L is symmetric it
is diagonalizable with a simple solution. Since all of the eigenvalues of L are non–negative the solution
converges to a steady state in the limit that corresponds to equidistribution of the initial vector across the
network as we would expect from the continuous case. Since the solution or steady state is so simple we are
usually more interested in the rate at which the function converges for various inputs. This rate is controlled
by the eigenvalues.

6.2.1. Normalized Diffusion. The Laplacian L = D − A defined in the previous section is not entirely
standard. There are several other matrices that go by the name “graph Laplacian”, usually normalized
versions of the operator above. For example if we want the change at a node to be equal to the average of
its neighbors instead of the sum we can define L̂ = D−

1
2LD−

1
2 = I − D− 1

2AD−
1
2 . This version is usually

preferred mathematically for its relation to invariants of the graph. It also has a natural connection to the
random walk Markov matrix associated to a network which shows up in the context of clustering.

NETWORKS REVIEW 13

The second eigenvalue of this normalized Laplacian provides the solution to the normalized cut problem.
It is also (up to a change of coordinates) equivalent to a scalar perturbation the random walk Laplacian,
so depending on context we can translate eigendata between the matrices if one of the matrices is more
computationally tractable. A comparison of the bounds of the eigenvalues of this normalization and the
standard Laplacian shows that their proportions remain unchanged, but the magnitudes are compressed in
this realization.

6.2.2. Properties of the Laplacian. The graph Laplacian can be constructed as NTN where N is an incidence
matrix for the graph. This implies that the Laplacian is positive definite. It is also clear that L is symmetric
from its construction so L has several nice algebraic properties such as orthogonal diagonalizability (from
the spectral theorem). However, L is never invertible since L1 = 0. If the underlying network has k
connected components, L can be permuted into a matrix with k block diagonal components representing
these subnetworks. A similar decomposition is possible for the normalized Laplacian. A famous theorem of
Kirchoff shows that the determinant of any n− 1 minor of L is the number of spanning trees in the network.

6.2.3. Eigenalues of the Laplacian. The most interesting aspect of the graph Laplacian is that the eigenvalues
of the operator have deep connections to many of the standard graph invariants. We mention just a few of
the most common properties here, but the book “Spectral Graph Theory” by Fan Chung collects many more
applications, although most of these properties tend to be of greater mathematical than practical interest.
A gentler introduction to these topics is provided in Brualdi’s book.

(1) Since L is positive definite all eigenvalues are non–negative.
(2) The multiplicity of zero as an eigenvalue of the Laplacian is the number of connected components in

the network.
(3) The next smallest eigenvalue is known as the Fiedler value or algebraic connectivity of the network.
(4) The edge connectivity of the graph is always greater than or equal to the Fiedler value. Additionally,

the number of edges between a set of nodes U and its complement is at least the product of the

Fiedler value and |U ||V \U |n .
(5) The Fiedler value is bounded below by the inverse of the number of edges in the graph and the

diameter of the graph.
(6) The Fiedler value is also a measure of how fast the diffusion process across the network occurs.
(7) The synchronization of the network is defined to be the quotient of the largest eigenvalue of the

Laplacian and the Fiedler value. This is also a measure of the rate of diffusion across the network.

How can you use the graph Laplacian to determine the number of connected components
of the network? Can you identify the groups of nodes in each component?

The graph Laplacian is defined as D−A. It is clear that zero is an eigenvalue of this matrix since all of the
row sums are zero. Thus, L1 = 0. The number of connected components is the number of zero eigenvalues
of L. This can be seen from the fact that the restriction of 1 to the subspace spanned by the nodes in
each connected component is annihilated by L and that this collection of vectors is linearly independent. To
see that there are no more vectors with the property we can proceed by induction using the fact that if a
component is connected then the eigenvalue zero has multiplicity one. This fact can be seen by observing
that if v is a corresponding eigenvector, then 0 = vtLv =

∑
i∼j(vi − vj)

2 so vi = vj since the graph is
connected.

The components can be discovered from an arbitrary basis of the null space of L by identifying the
components in each vector that have the same values, since we know that the vectors must be expressible as
linear combinations of the characteristic vectors on the connected components. The underlying idea is the
the matrices can be rearranged to be block diagonal representations of the connected components9.

Derive the graph Laplacian and the solution for the corresponding diffusion problem.
The standard graph Laplacian can be realized in several separate ways that highlight different aspects

of its usefulness. The various normalized versions of the Laplacian add even further complexity to this
operator. Algebraically, it can be constructed as BBT where B is the incidence matrix of the network,
defined as a n ×m matrix with each column representing an edge and signs (±1) assigned to the columns
arbitrarily. This construction gives the Laplacian many of its algebraic properties, such as symmetry and
positive semi–definiteness.

9at least for A and L.

14 DARYL DEFORD

On the other hand, the Laplacian arises quite naturally in the context of studying diffusion on graphs, as
well as in the clustering case discussed in Problem 2, where the Laplacian arose as the constraints matrix for
the relaxed cut problems. For diffusion, we consider a vector of values representing quantities on the nodes
that spread along edges in the network proportionally to the difference between the values at the incident
edges. This is a discretization of the continuous heat flow model that is solved by the standard Laplacian10.
Letting ϕ represent our vector function of interest, this gives the following system of differential equations:

dϕi
dt

= −c
∑
j

Ai,j(ϕi − ϕj)

Where c is the proportionality constant and the minus sign is for historical (in)convenience.
Distributing this expression, we obtain

dϕi
dt

= −cϕi deg(i) +c
∑
j

Ai,jϕj = −c
∑
j

(δi(j) deg(i)−Ai,j)ϕj

Rewriting this expression in matrix form for the entire vector at once gives

dϕ

dt
= −k(D −A)ϕ = −cLϕ,

which is exactly the form that we wanted. To solve this linear differential equation, we note that since L is
symmetric it is orthogonally diagonalizable so we can write ϕ(0) =

∑n
k=1 ckvk, where the vk are eigenvectors

of L. Then, substituting into our matrix expression we have:

0 =
d
∑n

k=1 ckvk
dt + cL

∑n
k=1 ckvk

=
∑n
k=1

dckvk
dt + cckλkvk

Since the vk are linearly independent, this implies that we have dci
dt + cλici = 0 for all i. The solution to each

of these linear equations is ci(t) = ci(0)e−cλit. We proved above that L is positive semi–definite, so the λi
are all non–negative and hence the final solution for ϕ converges to a steady vector in the limit, determined
by coefficients of the components of the kernel of L. Furthermore, on each component of the graph the
values of ϕ converge to the average of the original values on that component since that is the limit of the
projection onto the kernel, which is 1 times the projection onto each component.

A more general case can be considered if we allow forcing terms to act on our nodes. In this case we
are allowing for the existence of constant sources or sinks across the network. This modifies the equations
derived above by transforming the linear system to an affine one. We can still make use of the orthogonality
of the eigenvectors of L to obtain componentwise relations ci(t) = ci(0)e−cλit + γi

λit
where the γi is the ith

coordinate of the forcing vector in the eigenvector coordinates.

6.3. Epidemic Models. One of the main uses of network dynamics is modeling the flow of some quantity
(information or disease) across a network. These models have much in common with both the Markov and
diffusion models. The simplest model is the SI model which is simply a reinterpretation of the standard
diffusion model with an initial distribution consisting of point masses. Generally in this model the outcomes
at each node are assumed to be binary or probabilistic. The most commonly used model is the SIR model
(susceptible, infected, recovered) in which each node in the network is labelled with one of the properties at
each stage and a Markov process probabilistically updates the labels. The main concerns of this model are
the basic reproduction number and the threshold number, which represent the spreading rate of the disease
and the rate at which the disease is expected to die out respectively. Many tweaks of this model are possible,
each leading to a different (longer) acronym.

Another type of model is a contagion (or information) flow model. This is closely related to the diffusive
model discussed above. Percolation techniques are also used to study the flow of diseases across networks. In
general, for epidemic dynamics, the main concerns are understanding the equilibrium behavior of the model
in terms of the proportion of infected individuals as well as the cyclic behaviors associated to the disease.
The basic reproduction number is defined to be the expected number of new cases generated by a single
infected individual in an entirely healthy population.

10hence the name

NETWORKS REVIEW 15

7. Clustering and Partitions

One of the fundamental problems in network analysis (and more broadly all of data analysis) is revealing
meaningful substructures from large networks. This approach is complementary to dimension reduction since
our goal is to associate individual nodes that are similar in some fashion into larger clusters that represent
more homogeneous components of our data. Thus, we are attempting to minimize the number of relevant
data points instead of minimizing the number of dimensions associated to each point. Some techniques such
as k−means and linkage apply to data analysis more broadly, while spectral methods and modularity rely
on the algebraic and graph theoretic structure of an underlying network.

However, there are ways to move in between these interpretations. For example, geodesic difference
provides a metric on the graph. Conversely, if we use a dimension reduction technique to map arbitrary data
into Rn we can use radial connections or nearest neighbor connections to form graphs from the embedding.

7.1. Thresholding. Thresholding is a basic technique from data analysis for grouping data given with
some application derived similarity metric. If no such metric is given some of the embedding techniques
from dimension reduction can be employed to endow the data with a Euclidean structure. To perform
clustering by thresholding an initial threshold t is selected. Then, two points i and j are then put into the
same cluster if Si,j > t. This is a simple operation to perform, but can be very sensitive to the choice of t.

In general, proportionally high thresholds lead to more meaningful groupings while low thresholds tend
to identify many more relationships but without obvious interpretability. Thus, determining an application
appropriate threshold value (or collection of threshold values is essential to obtaining interesting information
using thresholding. One option for selecting an appropriate threshold is to compute a histogram or proportion
plot of threshold values and try thresholds at gaps or steady states respectively. Alternatively, since these
groupings are efficient to compute a range of threshold values can be tested and interpreted individually.

7.2. Linkage. Linkage is a hierarchical clustering method similar to thresholding. It is an iterative approach
where at each step we combine the clusters that are the most similar. These iterations define a hierarchical
structure, where clusters formed at earlier steps are more homogeneous than the connections made at later
steps. There are several types of linkage grouping, but the basic outline of the iterative process is as follows,
with the initialization placing each node into a separate cluster:

(1) Determine which pair of clusters has the highest similarity value
(2) Merge these identified clusters and reindex the cluster list
(3) Update the similarity values to incorporate the new conjoined cluster
(4) Repeat until there is only a single cluster

Obviously there are several details that must be specified before implementing this algorithm. For example,
what if multiple pairs of clusters in step (1) have the same similarity score (usually one pair is chosen
randomly, but this can lead to slightly perturbed results). Additionally, in step (3) there are several different
methods that are used to compute the new similarity values:

• (single linkage) In single linkage the new similarity value between cluster a and cluster b is the
maximum over all pairwise similarity scores between nodes in a and nodes in b.

• (complete linkage) In complete linkage the new similarity value between cluster a and cluster b is
the minimum over all pairwise similarity scores between nodes in a and nodes in b.

• (average linkage) In average linkage the new similarity score is computed as the average over all pairs
of nodes between the clusters.

Clearly, these different methods can have significant impacts on the final clustering results. Again, this is an
efficient technique from a computational perspective and comparing the results from different versions of the
method can yield interesting insights. Particularly, the distinction between results from single and complete
linkage since depending on the underlying similarity distribution they can return quite different results.

7.3. k-means. The k–means method is another iterative clustering approach from data analysis that relies
on embedding the nodes in Rn. In this approach we are attempting to determine a set of canonical represen-
tatives such that each data point can be associated to a representative while minimizing the total distance
between points and representatives. To begin this process, the number of clusters, k, to be obtained must
be specified in advance. Usually this is guided by some intrinsic knowledge about the data, but also may be
experimented with numerically. The method then initializes with a random selection of k points in Rn.

16 DARYL DEFORD

Each node is then assigned to the cluster corresponding to the initial point that it is closest to. Each step
of the algorithm then replaces the previous representative points with the centroid of each cluster from the
previous step. The nodes are reassigned clusters based on distance to the newly computed centroids, and
this updating continues until the clusters converge. At that point, the centroids and clusters are no longer
changing, so the centroids are taken as representative elements, and the clusters are defined by this steady
state.

Although for a given initial set of points this process is deterministic, the initial selection of points can
lead to very differing results. Thus, in practice the algorithm is run many times on different selections of
initial points, with the final results being given as the output with the smallest total distance between the
points and centroids in the steady state. It is often valuable to examine the histogram of total distance
values as each run of the algorithm finds a local minimum. Thus, modal data in the distance values may
represent different types of clustering behavior. As the k value must be set in advance, this is important
because it may suggest a may appropriate value or highlight other features of the data.

7.4. Spectral Clustering. Spectral clustering is an algebraic method that applies directly to networks.
The goal of spectral clustering is to find a partition of the nodes into k sets such that the number of edges
between the sets is minimized. This can be thought of as minimizing the amount of damage to the entire
network if the clusters were disconnected from each other. However, solving this problem directly is NP–
hard so the problem for large networks is traditionally relaxed to allow for an elegant solution in terms of
eigenvalues.

We begin by describing the case where we wish to partition the network into two components. In this
case we wish to find a vector v with entries of ±1 representing the two clusters that minimizes the dis-
connection damage. Some simple algebraic manipulations after reformulating this expression in terms of
the adjacency matrix, show that we are interesting in minimizing vtLV , where L is the graph Laplacian
introduced previously. Unfortunately, this problem is still NP–hard.

However, if we relax the restriction that the entries of v be ±1 and instead require that |v| = 1 and v ⊥ 1
then Lagrange multipliers show that the solution is given by the eigenvector corresponding to the smallest
non–zero eigenvalue of L. Then, we can use either the signs or median of the entries of this eigenvector to
partition our network. Sometimes, eigenvectors of other versions of the Laplacian are used instead, including
the normalized Laplacian and the random walk matrix. The results obtained from these matrices are usually
equivalent to those obtained from L. To partition the nodes into k clusters, we usually use k eigenvectors
corresponding to the smallest k non–zero eigenvalues and perform k–means on the associated node values.

Derive the formula for the three spectral clustering methods.
The ideas behind the three basic spectral clustering methods are that we wish to partition the network

into two pieces such that if we disconnect the two components we do a minimal amount of “damage” to
the network as a whole. The definition of the damage function is what distinguishes the various methods.
The most näıve method uses the Cut formulation. In this case, we wish to minimize the number of edges
that must be removed to disconnect the two components. Unfortunately, solving this optimization problem
for the components is NP–hard, although it can be computed exhaustively for small networks. Instead, we
approach a relaxed version of the problem. We begin by constructing a vector v to represent the desired
partition, with entries of 1 assigned to nodes in one component and entries of −1 assigned to the other
component. This gives that vivj = 1 if and only if i and j are in the same component. We can now
formulate the damage condition algebraically as

damage(v) =
1

2

∑
i,j

1

2
(1− vivj)Ai,j .

Proceeding by algebraic manipulation, we can reduce this expression to

1

2

∑
i,j

1

2
(1− vivj)Ai,j = 1

4 (
∑
i,j Ai,j − vivjAi,j)

= 1
4

∑
i,j vi deg(i)vjδi,j − viAi,jvj)

= 1
4v
TDv − vTAv

= 1
4v
TLv

NETWORKS REVIEW 17

Now we have reduced our problem to minimizing this bilinear form over all vectors v ∈ {±1}n. Unfortu-
nately, this is still an NP–hard problem so we relax our constraints to minimize over all real vectors of norm
one, where the norm condition rules out trivial minimization solutions. We further require that v ⊥ 1 since
1 is in the kernel of L and carries no information for our clustering. The theory of Lagrange multipliers then
gives that the solution vector to our minimization problem is the eigenvector corresponding to the Fiedler
value of L. We can assign nodes to components by separating the positive values and negative values.

The problem with the direct cut formulation is that it says nothing about the relative sizes of the partition.
In order to rule out trivialities, such as disconnecting a pendant edge, two other types of damage metrics are
frequently used in the literature. These are the RatioCut which scales the damage by the number of vertices
in the subsets and the NormalizedCut which scales the damage by the number of edges in the subsets.
Symbolically, these are

RatioCut(A,B) =
1

2
(
E(A,B)

|A|
+
E(A,B)

|B|
)

and

NormalizedCut(A,B) =
1

2
(
E(A,B)

vol(A)
+
E(A,B)

vol(B)
).

The RatioCut derivation leads to a very similar optimization structure as the (relaxed) Cut problem. In
this case we assume that there is again a vector v representing the partition, but this time the entries in

v are proportional to the size of the component that the vertex is selected from: v =

√
|B|
|A| i ∈ A

−
√
|A|
|B| i ∈ B

.

We can simply compute that vTLv again gives exactly the cut value and that ||v||2 = vtv is exactly the

denominator that appears in the definition of the RatioCut. Thus, we are minimizing the expression vTLv
vT v

which is the Rayleigh quotient associated to L. Since v1 = 0 by construction this expression is minimized
by the second eigenvalue of L as in the previous case. Thus, we again take the second eigenvector of L to
form our partition.

If we proceed as in the standard case for the NormalizedCut, we can again imagine a partition vector v,
with vi = 1

vol(A) if i ∈ A and vi = −1
vol(B) if i ∈ B. Then, we see that vTLv = E(A,B)(1

vol(A) + 1
vol(B)), while

vTDv = 1
vol(A) + 1

vol(B) . Thus, the normalized cut corresponding to v is the ratio of these two values. That

is we wish to minimize vTLv
vTDv

. Using the substitution D−
1
2w = v this becomes wTD−

1
2 LD−

1
2W

wTw
which is the

Rayleigh quotient for the normalized Laplacian I − D− 1
2AD−

1
2 . Minimizing this expression is equivalent

to finding the second eigenvector of this normalized Laplacian and we may partition the network with this
vector as above.

Interestingly, the stochastic matrix AD−1 can be used to solve the NormalizedCut problem. In this
case if λ, v are an eigenpair of AD−1 then (1 − λ), v are an eigenpair for the normalized Laplacian. This

relationship is more clear when we note that AD−1 = D−
1
2 (I −D− 1

2LD−
1
2)D

1
2 . The NormalizedCut value

of a partition Q can be realized in the random walk setting as NormalizedCut(Q,Q) = P (Q|Q) + P (Q|Q)
which provides some intuition for the relationship. Thus, finding the second largest eigenvalue of AD−1 and
its corresponding eigenvector also gives a solution of the NormalizedCut problem on a network.

7.5. Modularity. Modularity is a measure of the proportion of connectivity with clusters to connectivity
between clusters. Given a partition of the network into clusters, the modularity is defined as the difference
between the number of edges that occur within each cluster and the number of edges that would be expected
if the edges were distributed randomly between the nodes while keeping the same degree distribution. Other
variants of the random edge distribution are possible, and can be adjusted based on the application. In
general, the probability that two arbitrary nodes in the network are connected in a random network preserving

degree distribution is approximately deg(i)·deg(j)
2m for large networks, where m is the total number of edges in

the network.
This is an example of a null model analysis with the configuration model providing the null model. Al-

though there are many similarities between modularity and spectral clustering, the focus on density is a
distinguishing feature because spectral clustering does not account (except incidentally) for the interconnec-
tivity within the clusters it discovers.

18 DARYL DEFORD

This can be formulated and computed linear algebraically, by forming the modularity matrix B from

the adjacency matrix A as bi,j = ai,j − deg(i)·deg(j)
2m . Then, we form a matrix C representing the clusters

whose entries are ci,j =

{
1 if node i is in cluster j

0 otherwise
. This allows us to compute the modularity value

of the partition as 1
2m trace(CtBC). Recasting this problem as an optimization problem as in spectral

clustering allows us to attempt to determine the appropriate clusters for the network. In this case we are
maximizing stBs and so the eigenvector corresponding to the leading eigenvalue is usually used to construct
the initial clusters. Several algorithms such as simulated annealing, have been applied to give solutions to
this optimization problem. This can also be recast as a spectral problem in terms of the modularity matrix
B. A complete derivation of modularity for scalar characteristics can be found in the section describing
assortativity above.

How does modularity use a null model to determine communities in the network?
The modularity of a network is a function that maps a partition of the network to a value measuring the

proportion of connectivity that occurs within the clusters compared to the edges between clusters. Given a
partition of the network into clusters, the modularity is computed as the difference between the number of
edges that lie within the observed clusters to the number of edges that would occur if the edges had been
distributed uniformly with the same degree distribution. This is usually normalized by the maximal value
obtainable from the configuration model.

This is an example of a null model because the you are comparing the observed network to a theoretical
model, of a network with same degree distribution and randomly placed edges, in order to determine the
significance of the observed data. This particular model is formed by splitting each edge in half and reat-
taching the edge ends at random. Subtracting off the amount of clustering that appears in the null model
leaves behind the extra (or deficient) amount of clustering that appears in the observed network.

The definition of modularity is also frequently extended to cover scalar partitions where each cluster is
assigned a relative value. In this case the modularity can be interpreted as a covariance of the partition
labels. Specifically, the notion of assortativity is a scalar modularity with the partitions defined by the
degrees of the nodes.

Department of Mathematics, Dartmouth College
E-mail address: ddeford@math.dartmouth.edu

