Computational Redistricting
Introduction

Edouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into their
prime factors and seeking out by experimentation the laws of
appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.
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Additional Materials

® More Related Papers

® Course materials for: Computational Approaches for Political
Redistricting

® Interactive Notes on Discrete MCMC (with Scrabble)
°* MGGG widgets
® GitHub Source
® VRDI Website
® VRDI materials
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Political Redistricting

What is a district?
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Permissible Districting Plans

e Contiguity

® Population Balance

e Compactness

® Communities of Interest

® Municipal Boundaries

¢ Competitiveness/Responsiveness
® Incumbency Protection
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Example: lowa

4 Congressional Districts, 100 House Districts, 50 Senate Districts
® House districts nest into Senate districts

® Congressional districts made out of counties

Independent committee with legislative approval
® No partisan data allowed
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Political Redistricting

Example: Pennsylvania

18 Congressional Districts, 203 House Districts, 50 Senate Districts
Zero—balanced population

Legislature draws congressional districts - subcommittee draws

legislative districts A“‘

® Partisan considerations allowed
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Political Redistricting

Why analyze?

® Court cases

® Detecting gerrymandering
® Evaluating proposed remedies

® Reform Efforts

® Establishing baselines
® Potential impacts of new rules

® Commissions and plan evaluation

® Unintentional gerrymandering *
® Full space of plans

1 with apologies to J. Chen and J. Rodden, Unintentional Gerry ing: Political phy and Electoral Bias in Legislatures,

Quarterly Journal of Political Science, 8, pp. 239-269, 2013.
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Gerrymandering
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Political Redistricting

Ugly Shapes
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Ugly Shapes

NC12 #1 NC12 #2 NC12 #12
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Political Redistricting

Ugly Shapes
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Measurement Problems

Theorem (Bar-Natan, Najt, and Schutzman 2019')

There is no local homeomorphism from the globe to the plane that
preserves your favorite compactness measure.

| \

Problem (Barnes and Solomon 2018%)
Geographic Compactness scores can be distorted by:
® Data resolution
® Map projection
® State borders and coastline
® Topography

1 The Gerrymandering Jumble: Map Projections Permute Districts’ Compactness Scores, arXiv:1905.03173

2 Gerrymandering and Compactness: Implementation Flexibility and Abuse, Political Analysis, to appear 2019. ‘ ‘ “‘
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Partisan Imbalance

NC16

PA TS-Proposed A“‘
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Isoperimetric Profiles
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Polsby—Popper

Theorem (lsoperimetry)

Let Q be a bounded open subset of R? with finite perimeter. Then:

4T A < P2

Definition (Polsby—Popper)

The Polsby—Popper score of a district is:
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Polsby—Popper

Theorem (lsoperimetry)

Let Q be a bounded open subset of R? with finite perimeter. Then:
4T A < P2

Definition (Polsby—Popper)

The Polsby—Popper score of a district is:

EVENG

Tz = 0.359 0.411 0.680 0.841 1““‘




Boundary Perturbation
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Multiscale Desiderata

® Disambiguate different types of “badness”
® Stability under practical constraints

® Interpolate well-studied single measures
® Continuous and discrete versions

® |nternal vs. external
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Isoperimetric Profile

Definition (Isoperimetric Inequality)

Let 2 C R™ to be a compact region whose boundary 92 C €2 is an
(n—1)-dimensional hypersurface in R™

n- vol(9)$ ~V01(B(1,0))% < area(0f2).

Meo6
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Isoperimetric Profile

Definition (Isoperimetric Inequality)

Let 2 C R™ to be a compact region whose boundary 92 C €2 is an
(n—1)-dimensional hypersurface in R™

n- vol(9)$ ~V01(B(1,0))% < area(0f2).

Definition (Isoperimetric Profile)

With  as above and t € [0, vol(€2)] we ask for the smallest surface area
needed to enclose volume t completely within :

Io(t) := min{area(9X) : ¥ C Q and vol(X) = ¢}.

’
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Geometric Properties

Theorem (Flores and Nardulli (2016)! )

Let M™be a complete smooth Riemannian manifold with
Ricpyr > (n — 1)k, with k € R and V(B(p, 1)) > vg > 0. Then the
isoperimetric profile is continuous on [0,V (M)]

1 A. Flores and S. Nardulli: Continuity and differentiability properties of the isoperimetric profile in complete noncompact Riemannian

manifolds with bounded geometry, https://arxiv.org/abs/1404.3245.
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Geometric Properties

Theorem (Flores and Nardulli (2016)! )

Let M™be a complete smooth Riemannian manifold with
Ricyr > (n — 1)k, with k € R and V(B(p,1)) > vg > 0. Then the
isoperimetric profile is continuous on [0,V (M)]

Question

| A\

Identify a polynomial-time algorithm or NP-hardness result for computing
isoperimetric profiles. The simplest open problem is computing the
isoperimetric profile of a polygon in the plane R2.

A

1 A. Flores and S. Nardulli: Continuity and differentiability properties of the isoperimetric profile in complete noncompact Riemannian

manifolds with bounded geometry, https://arxiv.org/abs/1404.3245.
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Total Variation

Definition (Three formulations of TV)

o
sup{ [ 107 ool o € CHR" B and [l <1
(2]
[ 191l dz
e
© +oo
/0 area(d{f > s})ds
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Perimeter as Total Variation

For a region X C R™, denote its indicator function 1y via
1 ifzeX
Iz(z) := { 0 otherwise. 1)
Then, a consequence of the co-area formula is that
area(0X) = TV[1y]. (2)
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TV Relaxation

Definition (Isoperimetric Profile)

infrerimny TVI[f]
subject to  [p, f(z)dx =t
0< f<1g
f(z) €{0,1} Vz € R™.

Io(t) =

Meo6
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TV Relaxation

Definition (Isoperimetric Profile)

Infreri(gn) TVI[f]
subject to  [p, f(z)dx =t
0< f<1g
f(z) € {0,1} Vz € R™

Ta(t) =

N,

Definition (TV Profile)

IIliIlfeLl (R™) TV[f]
g i) = subject to  [o, f(x)dx =
0< f< 1.

N,
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Example: Circle

Proposition

For all (Q,t), we have IZV (t) < Iq(t).

Examples (Circle)

Suppose Q C R? is a circle of radius R, and take t = 7r? forr € (0, R).
In this case, by the isoperimetric inequality we know Iq(t) = 27r. But
2
suppose we take f(z) = — 2k By the co-area formula
2

I3V(t) < TV[f] = 27R - ﬁ =27 - E < Iq(t).

Hence, our relaxation is not tight.

AL
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Isoperimetry and Convexity

Proposition (lsoperimetry)

Suppose B C R™ is a ball whose volume matches vol(£2). Then, for all
t € [0,vol(Q)], we have IEV (t) < ISV (t), and if the equality holds for
some t > 0 then (2 is a ball.

Proposition (Convexity)

IZV(t) is a convex function of t.

Proposition (Convex Envelope)

The function I%“V is the lower convex envelope of Ig.

Meo6
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Dual Optimization

Dual Formulation:

2V () = SUPyec(Rn k) aeR AL — [ max(A = V- ¢(z),0) dx
@ subject to  [|@]leo < 1

Proof.

With the dual in hand, the convexity results follow from constructing an
auxilliary function:

h(X) = ||¢|i|130f§1 a max(A — V- ¢(z),0) dz.

and computing some Legendre transforms. O

Meo6
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Minimizer Structure

Proposition (Distinguished Solutions)

There exists a family (f;)¢cjo,1) such that:
® Foranyt € [0,1], the function f, € L*(R™) satisfies 0 < f; < 1g,
Jan fe(x)do =t and TV (f) =I5V (t).
® For anyt € [0,1], there exist vy € (0,1) such that f, takes its values
in {0, vy, 1}.
® fFor a.e. x € Q, the function t — fi(x) is increasing.

Meo6
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NC 12 # 9

(k) MGG
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NC 12 # 2
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NC 12 # 12
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Cheeger Sets

Definition (Cheeger Constant)
The Cheeger constant of €, denoted by hq(2), is defined as

D
h1(92) := inf &(?),
scae  vol(X)
and a subset 3 C ) such that h1(Q) = %&’g) is known as a Cheeger set
of €.

4

Proposition (Small t)

Let Q be compact, let hi(Q2) be the Cheeger constant of 2, and let ¥ be
a Cheeger set of ). Then for any t < vol(X), we have IV (t) = h1(Q)t,
and a solution f is given by f := VO+(Z) 1y.

Aveb
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Cheeger Proof

We start with f = #@) - 1y, which satisfies the constraints of the

problem defining I3V (¢) as soon as t < vol(X), which ensures
0 < f <1s < 1q. Hence, I3V (t) < h1(Q)t. On the other hand, using
the co-area formula, if f is any competitor then

+oo
TV(f) = /0 area(0{f > s})ds

T oy 3 o B 28D
_/O Vl({fZ})Md

>h1(Q) by definition

+oo
> hi(Q) /O vol({f > sP)ds = (@ [ fla)da = m(@)t.

Hence, for t < vol(C), we have I3V (t) = hy(Q)t. O ‘

v
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North Carolina

TP B W — P L, A=
T e S B e I e e e
3 |- / Sl
:::27 ‘2:: 1 = |
t (%) (%)
(a) 2011 districts (b) 2016 districts
e W X i ]
e e - o | [
Ll i
0 I ! I I ! I I I I 0 I I —0-\ I | I
(%) (%)

(c) Judges plan (d) Comparison A“‘



wn)
i)

O
-
4
s
()
—
—
()
(Q\]
)
=

13

12

11

District | District | District | District
10

e b o~

L IR I AN

20w & e

NIRRT

AR AL Yol R P Pl

81
=-| -
@l

=-|
g
g

Q"J PO ® (@ n (TP ™

hadhANE I S A5 30 "2 AACIR I Vi
Rl AT J0 Sh. e 30 T dh Nk P Pl

il

Meo6



wn)
i)

O
-
4
s
()
O
—
()
(Q\]
)
=

13

12

A o

11

District | District | District | District
10

al

it IR R PR L)
L adt B Rl IR R

5E ik
C 3 3 3 *
MR
171))
z° f, -~W
Llr|f (1084
" N N W
AL LG
slUoo00ne
D llll~l~l~lw
R R R R
ERCHCICRCRCNE S
o/sn B[P FR

[

Meo6



TV Isoperimetry

c
)
ol
wn
[}
o0
o
S
-/

13

12

11

District | District | District | District
10

S SR AN 2L B IR P K 1.

| A il Bt Lk dhdF Jh Ko

SN F Ry SR B R B BRI IR I
S Ay S AR K R 2 R I
@ o= Vgm0 wP e~
@ e e e VT e | O @D G~
S I AL Yl 2L AL IR ARIT JR Ko

[

Meo6



.45

ooo00edd
T ¥ X XEEEE
-------?

00000000

(]
c
RS,
(%2}
=
o
£
a
P -
o
<
.00
T




Computational Redistricting
TV Isoperimetry

Other Formulations

Definition (Population Measure)

{ minfeLl(]Rn) TV[f]

subject to  [o, f(x)dp(x) =t
0< f< 1.

min segv Z(u,w)eE |f(v) = f(w)]
V(1) = subject to Y, v, f(v) = t|Vo
Yo flv)=0Vv ¢V
f(v) €10,1] Vo e V.

Meo6
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Synthetic Cities
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Discrete Animation
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Computational Redistricting
TV Isoperimetry

Multiscale Wrapup

Open questions:

® How much can we learn about the full profile from the relaxed
version?

Can the medial axis be computed from the TV-Profile?

What is the right way to compare regions of the profiles?

Spectral Versions (i.e. how to make the heat kernel useful)
® Random walk versions (absorbing boundary nodes)

Distance based measures

Meo6
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Markov Chain Monte Carlo

Discrete Partitioning
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Markov Chain Monte Carlo

Permissible Districting Plans

We want to partition a given geography (graph), at a given scale, into k
pieces, satisfying some constraints:

e Contiguity

¢ Population Balance

e Compactness

® Communities of Interest

® Municipal Boundaries

e Competitiveness/Responsiveness
® |Incumbency Protection

Meo6



Computational Redistricting
Markov Chain Monte Carlo

Mathematical Formulation

Given a (connected, planar) graph G = (V, E):

® A k-partition P = {V},Va,...,V;.} of G is a collection of disjoint
subsets V; C V whose union is V.

® A partition P is connected if the subgraph induced by V; is
connected for all 7.

® The cut edges of P are the edges (u,w) for which uw € V;, w € V},
and i #£ j

e A partition P is e-balanced if u(1 —¢) < |Vi| < p(1+¢) for all ¢
where p is the mean of the |V;]|'s

® An equi—partition is a 0-balanced partition

Meo6



Computational Redistricting

Markov Chain Monte Carlo

Ensemble Analysis

® The wide variety in rules applied to districting problems (even in the
same state) means that any single measure of gerrymandering will be
insufficient /exploitable

® |nstead we want to compare to large ensembles of other feasible plans.

® This allows us to understand the impacts of the underlying political
and demographic geography on a wide collection of metrics.

Meo6
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Which ensembles?




Computational Redistricting
Markov Chain Monte Carlo

Ensembles in Practice

® The appeal of an ensemble method is that you get to control the
input data very carefully

® However, just because a particular type of data was not considered
doesn’t mean that the outcome is necessarily “fair”

® There are lots of “random” methods for constructing districting plans

® Most don't offer any control over the distribution that you are
drawing from

Meo6
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MCMC on partitions

@ Set constraints to define the state space

® Start with an initial plan

© Propose a modification

@ Verify that the modification satisfies the constraints
® Accept using MH criterion

® Repeat

Meo6
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MCMC on partitions

@ Set constraints to define the state space

® Start with an initial plan

© Propose a modification

@ Verify that the modification satisfies the constraints
® Accept using MH criterion

Why?

Meo6
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Markov Chain Monte Carlo

MCMC on partitions

@ Set constraints to define the state space

® Start with an initial plan

©® Propose a modification

@ Verify that the modification satisfies the constraints
® Accept using MH criterion

Why?

® Control over sampling distribution and input data
® Possibility of local sampling

® Ergodic Theorem

Meo6
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Markov Chain Monte Carlo

MCMC on partitions

@ Set constraints to define the state space

® Start with an initial plan

©® Propose a modification

@ Verify that the modification satisfies the constraints
® Accept using MH criterion

Why?

® Control over sampling distribution and input data
® Possibility of local sampling

® Ergodic Theorem
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Markov Chain Monte Carlo
Flip Proposals

Single Edge Flip Proposals

@ Uniformly choose a cut edge

® Change one of the incident node assignments to the other

® Mattingly et al. (2017, 2018) Court cases in NC and WI.
® Pegden et al. Assessing significance in a Markov chain without

mixing, PNAS, (2017). Court case in PA.
Moo
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Markov Chain Monte Carlo
Flip Proposals

Single Edge Ensembles

Meo6



Computational Redistricting
Markov Chain Monte Carlo
Flip Proposals

PA Single Edge Flip
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Markov Chain Monte Carlo
Flip Proposals

Unconstrained Flip
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1000

Boundary Nodes
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0 20000 40000 60000 80000 100000
steps
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Markov Chain Monte Carlo
Flip Proposals

Annealing
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Flip Proposals

Annealing
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Flip Proposals

Annealing
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Flip Proposals

Annealing
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Flip Proposals

Annealing
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Flip Proposals

Annealing
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Flip Proposals

Annealing
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Markov Chain Monte Carlo
Hardness Results

Uniform Sampling of Contiguous Partitions

Theorem (Najt, D., and Solomon 2019)
Suppose that € is the class of connected planar graphs and k > 2. If
there is a polynomial time algorithm to sample uniformly from:

® the connected k-partitions of graphs in €,

® or the connected, 0-balanced k-partitions of graphs in €.
then RP = NP.

Meo6
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Markov Chain Monte Carlo
Hardness Results

Uniform Sampling of Contiguous Partitions

Theorem (Najt, D., and Solomon 2019)

Suppose that € is the class of connected planar graphs and k > 2. If
there is a polynomial time algorithm to sample uniformly from:

® the connected k-partitions of graphs in €,
® or the connected, 0-balanced k-partitions of graphs in €.
then RP = NP.

Remark

| A\

This theorem has various interesting extensions, including:
® Connectivity constraints on €
® Degree bounds

® Distributions proportional to cut length

TV distribution approximation
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Markov Chain Monte Carlo
Hardness Results

Stronger Version Example

Theorem (Najt, D., and Solomon 2019)

Let € be the class of cubic, planar 3-connected graphs, with face degree
bounded by C' = 60. Let j1,(G) be the probability measure on Py(G) such
that a partition P is drawn with probability proportional to z“*(F) Fix
some x > 1/4/2, ¢ >0 and a < 1. Suppose that there was an algorithm
to sample from P5(G) according to a distribution v(G), such that

llva — 1 (G)||rv < «, which runs polynomial time on all G € €. Then
RP = NP.

Meo6
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Markov Chain Monte Carlo
Hardness Results

Proof Outline Sketch

Following technique of Jerrum, Valiant, and Vazirani'.

@ Show that uniformly sampling simple cycles is hard on some class &

@ Choose a gadget that respects 4" and allows us to concentrate
probability on long cycles

® Count the proportion of cycles as a function of length

© Reduce to Hamiltonian path on the graph class

® Show closure of class under planar dual
@ ldentify partitions with cut edges — simple cycles (via planar duality)

© Conclude that sampling partitions would allow you to sample from
cycles which would allow you to find Hamiltonian cycles

O

4

L'M. Jerrum, L. Valiant, and V. Vazirani, Random generation of
combinatorial structures from a uniform distribution, Theoretical Computer

Science, 43 (1986), 169-188. yyas
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Markov Chain Monte Carlo
Hardness Results

Proof Sketch — Planar 2—Partitions

Still following technique of Jerrum, Valiant, and Vazirani.

@ Let € be the planar connected graphs

@ Replace the edges with chains of dipoles
® Hamiltonian hardness for € given by L

® % closed under planar duals
@ |dentify partitions with cut edges (via planar duality)
O

v

LM, Garey, D. Johnson, and R. Tarjan, The Planar Hamiltonian Circuit
Problem is NP-Complete, SIAM Journal on Computing, 5, (1976),
704-714.
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Markov Chain Monte Carlo
Hardness Results

Slowly Mixing Graph Families

Theorem (Najt, D., and Solomon 2019)

Let G be any connected graph. Then let G\¥) be the graph obtained by
replacing each edge by a doubled d-star. Then the flip walk on partitions
of family of graphs G((1d>)1 is slowly mixing, in the sense the Cheeger

constant is decaying exponentially fast. More specifically:

H(Partition Graph(G?) = 0(27%)

Meo6
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Hardness Results

Slowly Mixing Graph Families

Theorem (Najt, D., and Solomon 2019)

Let G be any connected graph. Then let G\¥) be the graph obtained by
replacing each edge by a doubled d-star. Then the flip walk on partitions

of family of graphs G((zd>)1 is slowly mixing, in the sense the Cheeger
constant is decaying exponentially fast. More specifically:

H(Partition Graph(G?) = 0(27%)

Remark

| \

There are many similar constructions that give rise to equivalent mixing
results.

Meo6
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Markov Chain Monte Carlo
Hardness Results

Slow Mixing Example
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Markov Chain Monte Carlo
Tree Based Methods

Tree based methods

-93 925 92 915 -93 925 92 915

District Spanning Tree

Meo6
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Tree Based Methods

Tree Seeds Ensemble

38.00 A

37.75 A

37.50 A

37.25 A

37.00 A

36.75

36.50

T T T T T T T T
-785 -780 -775 -770 -765 -76.0 -755 -75.0
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Tree Based Methods

Recombination Steps

@ At each step, select two adjacent districts

® Merge the subunits of those two districts

® Draw a spanning tree for the new super—district

O Delete an edge leaving two population balanced districts
©® Repeat

Meo6
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Tree Based Methods

Recombination Step Example
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Tree Based Methods

Recombination Step Example
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Tree Based Methods

Recombination Step Example
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Tree Based Methods

Recombination Step Example
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Tree Based Methods

Recombination Step Example
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Tree Based Methods
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Computational Redistricting
Markov Chain Monte Carlo
Tree Based Methods

Tree Partitioning Questions

® Characterizing the distribution on partitions defined by cutting trees!
® How bad is the best cut?
® Criteria for determining when a tree is € cuttable?

® Criteria for determining when all spanning trees of a graph are
cuttable?

® How hard is it to find the mininum & for which a cut exists?
® As a function of € what proportion of spanning trees are cuttable?

® As a function of € what proportion of edges in a given tree are
cuttable?

® What is the fastest way to sample uniformly from k& — 1 balanced cut
edges?
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Boundary Flip Mixing — Seeds
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Boundary Flip Mixing — Length
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Try it at home!

® Draw your own districts with Districtr

® https://districtr.org
Easy to generate complete districting plans in browser or on a tablet
Measures district demographics and expected partisan performance
Identifies communities of interest

® Generate your own ensembles with GerryChain'

® https://github.com/mggg/gerrychain
Flexible, modular software for sampling graph partitions
Handles the geodata processing as well as the MCMC sampling
Current support for a
Successfully applied in VA, NC, PA, etc.

® Data is available for your favorite state!

® Census dual graphs with demographic information:
https://people.csail.mit.edu/ddeford/dual_graphs

Precincts with electoral results

https://github.com/mggg-states

1Originally RunDMCMC


https://districtr.org
https://github.com/mggg/gerrychain
https://people.csail.mit.edu/ddeford/dual_graphs
https://github.com/mggg-states
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Applications

Nos. 18-422, 18-726

INTHE
Supreme Court of the Wnited States

ROBERT A. RUCHO, ET AL.,
Appellants,

COMMON CAUSE, ET AL.,
Appellees.

On Appeal from the United States District Court
for the Middle District of North Carolina

LINDA H. LAMONE, ET AL.,
Appellants,

v.
0. JOHN BENISEK, ET AL.,
Appellees.

On Appeal from the United States District Court
for the District of Maryland

AMICUS BRIEF OF MATHEMATICIANS,
LAW PROFESSORS, AND STUDENTS IN SUPPORT
OF APPELLEES AND AFFIRMANCE
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Outlier Example:
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Outlier Example: NC
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Baseline Example:
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Baseline Example: PA
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Reform Example: Competitiveness
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The End

Thanks!
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General Tree Proposals

@ Form the induced subgraph on the complement of the cut edges
® Add some subset of the cut edges

® Uniformly select a maximal spanning forest

O Apply a Markov chain on trees

@ Partition the spanning forest into k£ population balanced pieces

Meo6
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Special Cases

® Uniform Trees: Add all cut edges
® k—edges: Uniformly add & cut edges
® Recombination: Add all cut edges between one pair of districts.

® Super-Recombination: Take a maximal matching on the dual graph
to the districts and add all cut edges between matched districts.

® Bounce Walk: Add a single cut edge between enough pairs of districts
to make a tree in the dual graph of districts.

Meo6
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Special Cases

® Uniform Trees: Add all cut edges
® k—edges: Uniformly add & cut edges
® Recombination: Add all cut edges between one pair of districts.

® Super-Recombination: Take a maximal matching on the dual graph
to the districts and add all cut edges between matched districts.

® Bounce Walk: Add a single cut edge between enough pairs of districts
to make a tree in the dual graph of districts.

What are the steady state distributions (and mixing times) of these walks? I
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Tree Partitioning Questions

® Characterizing the distribution on partitions defined by cutting trees!
® How bad is the best cut?
® Criteria for determining when a tree is € cuttable?

® Criteria for determining when all spanning trees of a graph are
cuttable?

® How hard is it to find the mininum & for which a cut exists?
® As a function of € what proportion of spanning trees are cuttable?

® As a function of € what proportion of edges in a given tree are
cuttable?

® What is the fastest way to sample uniformly from k& — 1 balanced cut
edges?
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General Merge Proposals

@ At each step, select two adjacent districts
® Merge the subunits of those two districts
© Bipartition the new super—district

O Repeat

@ (Optional) Mix with single edge flips
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General Merge Proposals

@ At each step, select two adjacent districts
® Merge the subunits of those two districts
© Bipartition the new super—district

O Repeat

@ (Optional) Mix with single edge flips

Before During After
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Bipartitioning Methods

® Trees!
Flood Fills
Path Fills

Agglomerative/Hierarchical

® Spectral
® Min Cut

More details (and colorful figures) at:
https://www.overleaf.com/read/zpmyzgmpvmnx

Meo6
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Ensemble Example:
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Ensemble Example: NC
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Ensemble Example: PA
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Ensemble Example: PA
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