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Introduction

Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into their
prime factors and seeking out by experimentation the laws of
appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.



Computational Redistricting

Introduction

Preview


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}




Computational Redistricting

Introduction

Hardness results for sampling connected graph
partitions with applications to redistricting

Daryl DeFord

MIT – CSAIL
Geometric Data Processing Group

Topology, Geometry and Data Seminar
The Ohio State University

September 26, 2019



Computational Redistricting

Introduction

Outline

1 Introduction

2 Political Redistricting

3 TV Isoperimetry

4 Markov Chain Monte Carlo
Flip Proposals
Hardness Results
Tree Based Methods

5 Applied Ensemble Analysis



Computational Redistricting

Introduction

Collaborators

• Prof. Moon Duchin Tufts Math

• Prof. Justin Solomon MIT CSAIL

• Lorenzo Najt Wisconsin Math

• Hugo Lavenant Universitè Paris–Sud Math
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Additional Materials

• More Related Papers

• Course materials for: Computational Approaches for Political
Redistricting

• Interactive Notes on Discrete MCMC (with Scrabble)

• MGGG widgets

• GitHub Source

• VRDI Website

• VRDI materials

https://people.csail.mit.edu/ddeford/reseach.php
https://people.csail.mit.edu/ddeford/CAPR.php
https://people.csail.mit.edu/ddeford/CAPR.php
https://people.csail.mit.edu/ddeford/mcmc_intro.php
https://mggg.org/distflow/
https://github.com/mggg
https://gerrydata.org
https://github.com/vrdi
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What is a district?
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Permissible Districting Plans

• Contiguity

• Population Balance

• Compactness

• Communities of Interest

• Municipal Boundaries

• Competitiveness/Responsiveness

• Incumbency Protection

• ...
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Example: Iowa

• 4 Congressional Districts, 100 House Districts, 50 Senate Districts

• House districts nest into Senate districts

• Congressional districts made out of counties

• Independent committee with legislative approval

• No partisan data allowed
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Example: Pennsylvania

• 18 Congressional Districts, 203 House Districts, 50 Senate Districts

• Zero–balanced population

• Legislature draws congressional districts - subcommittee draws
legislative districts

• Partisan considerations allowed



Computational Redistricting

Political Redistricting

Why analyze?

• Court cases
• Detecting gerrymandering
• Evaluating proposed remedies

• Reform Efforts
• Establishing baselines
• Potential impacts of new rules

• Commissions and plan evaluation
• Unintentional gerrymandering 1

• Full space of plans

1 with apologies to J. Chen and J. Rodden, Unintentional Gerrymandering: Political Geography and Electoral Bias in Legislatures,

Quarterly Journal of Political Science, 8, pp. 239–269, 2013.
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Gerrymandering
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Ugly Shapes
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Ugly Shapes

NC12 #1 NC12 #2 NC12 #12
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Ugly Shapes
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Measurement Problems

Theorem (Bar-Natan, Najt, and Schutzman 20191)

There is no local homeomorphism from the globe to the plane that
preserves your favorite compactness measure.

Problem (Barnes and Solomon 20182)

Geographic Compactness scores can be distorted by:

• Data resolution

• Map projection

• State borders and coastline

• Topography

• ...
1 The Gerrymandering Jumble: Map Projections Permute Districts’ Compactness Scores, arXiv:1905.03173

2 Gerrymandering and Compactness: Implementation Flexibility and Abuse, Political Analysis, to appear 2019.
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Partisan Imbalance

NC16

PA TS-Proposed
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Isoperimetric Profiles
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Polsby–Popper

Theorem (Isoperimetry)

Let Ω be a bounded open subset of R2 with finite perimeter. Then:

4πA ≤ P 2.

Definition (Polsby–Popper)

The Polsby–Popper score of a district is:

PP (Ω) =
4πA

P 2

4πA

L2
= 0.359 0.411 0.680 0.841 1.000
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Boundary Perturbation

4πA

L2
= 0.004

4πA

L2
= 0.359
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Multiscale Desiderata

• Disambiguate different types of “badness”

• Stability under practical constraints

• Interpolate well–studied single measures

• Continuous and discrete versions

• Internal vs. external
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Isoperimetric Profile

Definition (Isoperimetric Inequality)

Let Ω ⊆ Rn to be a compact region whose boundary ∂Ω ⊆ Ω is an
(n−1)-dimensional hypersurface in Rn

n · vol(Ω)
(n−1)

n · vol(B(1,0))
1
n ≤ area(∂Ω).

Definition (Isoperimetric Profile)

With Ω as above and t ∈ [0, vol(Ω)] we ask for the smallest surface area
needed to enclose volume t completely within Ω:

IΩ(t) := min{area(∂Σ) : Σ ⊆ Ω and vol(Σ) = t}.
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Geometric Properties

Theorem (Flores and Nardulli (2016)1 )

Let Mnbe a complete smooth Riemannian manifold with
RicM ≥ (n− 1)k, with k ∈ R and V (B(p, 1)) ≥ v0 > 0. Then the
isoperimetric profile is continuous on [0, V (M)[

Question

Identify a polynomial-time algorithm or NP-hardness result for computing
isoperimetric profiles. The simplest open problem is computing the
isoperimetric profile of a polygon in the plane R2.

1 A. Flores and S. Nardulli: Continuity and differentiability properties of the isoperimetric profile in complete noncompact Riemannian

manifolds with bounded geometry, https://arxiv.org/abs/1404.3245.
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Total Variation

Definition (Three formulations of TV)

TV[f ] =

1

sup

{∫
Rn

[f(x)∇ · φ(x)] dx : φ ∈ C1
c (Rn → Rn) and ‖φ‖∞ ≤ 1

}
2 ∫

Rn

‖∇f‖2 dx

3 ∫ +∞

0

area(∂{f ≥ s})ds
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Perimeter as Total Variation

Definition

For a region Σ ⊆ Rn, denote its indicator function 1Σ via

1Σ(x) :=

{
1 if x ∈ Σ
0 otherwise.

(1)

Then, a consequence of the co-area formula is that

area(∂Σ) = TV[1Σ]. (2)
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TV Relaxation

Definition (Isoperimetric Profile)

IΩ(t) =


inff∈L1(Rn) TV[f ]
subject to

∫
Rn f(x) dx = t

0 ≤ f ≤ 1Ω

f(x) ∈ {0, 1} ∀x ∈ Rn.

Definition (TV Profile)

ITV
Ω (t) :=

 minf∈L1(Rn) TV[f ]
subject to

∫
Rn f(x) dx = t

0 ≤ f ≤ 1Ω.
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Example: Circle

Proposition

For all (Ω, t), we have ITV
Ω (t) ≤ IΩ(t).

Examples (Circle)

Suppose Ω ⊂ R2 is a circle of radius R, and take t = πr2 for r ∈ (0, R).
In this case, by the isoperimetric inequality we know IΩ(t) = 2πr. But

suppose we take f(x) ≡ r2

R2
. By the co-area formula

ITV
Ω (t) ≤ TV[f ] = 2πR · r

2

R2
= 2πr · r

R
< IΩ(t).

Hence, our relaxation is not tight.
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Isoperimetry and Convexity

Proposition (Isoperimetry)

Suppose B ⊂ Rn is a ball whose volume matches vol(Ω). Then, for all
t ∈ [0, vol(Ω)], we have ITV

B (t) ≤ ITV
Ω (t), and if the equality holds for

some t > 0 then Ω is a ball.

Proposition (Convexity)

ITV
Ω (t) is a convex function of t.

Proposition (Convex Envelope)

The function ITV
Ω is the lower convex envelope of IΩ.
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Dual Optimization

Dual Formulation:

ITVΩ (t) =

{
supφ∈C1

c (Rn→Rn),λ∈R λt−
∫

Ω
max(λ−∇ · φ(x), 0) dx

subject to ‖φ‖∞ ≤ 1

Proof.

With the dual in hand, the convexity results follow from constructing an
auxilliary function:

h(λ) = inf
‖φ‖∞≤1

∫
Ω

max(λ−∇ · φ(x), 0) dx.

and computing some Legendre transforms.
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Minimizer Structure

Proposition (Distinguished Solutions)

There exists a family (ft)t∈[0,1] such that:

• For any t ∈ [0, 1], the function ft ∈ L1(Rn) satisfies 0 ≤ ft ≤ 1Ω,∫
Rn ft(x) dx = t and TV(ft) = ITV

Ω (t).

• For any t ∈ [0, 1], there exist vt ∈ (0, 1) such that ft takes its values
in {0, vt, 1}.

• For a.e. x ∈ Ω, the function t→ ft(x) is increasing.
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NC 12 # 9
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NC 12 # 2
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NC 12 # 12
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Cheeger Sets

Definition (Cheeger Constant)

The Cheeger constant of Ω, denoted by h1(Ω), is defined as

h1(Ω) := inf
Σ̃⊆Ω

area(∂Σ̃)

vol(Σ̃)
,

and a subset Σ ⊆ Ω such that h1(Ω) = area(∂Σ)
vol(Σ) is known as a Cheeger set

of Ω.

Proposition (Small t)

Let Ω be compact, let h1(Ω) be the Cheeger constant of Ω, and let Σ be
a Cheeger set of Ω. Then for any t ≤ vol(Σ), we have ITV

Ω (t) = h1(Ω)t,
and a solution f is given by f := t

vol(Σ) · 1Σ.
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Cheeger Proof

Proof.

We start with f̂ = t
vol(Σ) · 1Σ which satisfies the constraints of the

problem defining ITV
Ω (t) as soon as t ≤ vol(Σ), which ensures

0 ≤ f̂ ≤ 1Σ ≤ 1Ω. Hence, ITV
Ω (t) ≤ h1(Ω)t. On the other hand, using

the co-area formula, if f is any competitor then

TV(f) =

∫ +∞

0

area(∂{f ≥ s})ds

=

∫ +∞

0

vol({f ≥ s}) · area(∂{f ≥ s})
vol({f ≥ s})︸ ︷︷ ︸
≥h1(Ω) by definition

ds

≥ h1(Ω)

∫ +∞

0

vol({f ≥ s})ds = h1(Ω)

∫
Rd

f(x)dx = h1(Ω)t.

Hence, for t ≤ vol(C), we have ITV
Ω (t) = h1(Ω)t.
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Synthetic Examples
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North Carolina
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NC 2011 Districts
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NC 2016 Districts

District
1

District
2

District
3

District
4

District
5

District
6

District
7

District
8

District
9

District
10

District
11

District
12

District
13

t
=

0
.2

3
t

=
0
.3

4
t

=
0
.4

5
t

=
0
.5

6
t

=
0
.6

7
t

=
0
.7

8
t

=
0
.8

9
t

=
1
.0



Computational Redistricting

TV Isoperimetry

Judge’s Plan
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Higher Dimensions
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Other Formulations

Definition (Population Measure)

ITV
Ω,ρ(t) :=

 minf∈L1(Rn) TV[f ]
subject to

∫
Rn f(x) dρ(x) = t

0 ≤ f ≤ 1Ω.

Definition (Discrete )

ITV
V0

(t) :=


minf∈RV

∑
(v,w)∈E |f(v)− f(w)|

subject to
∑
v∈V0

f(v) = t|V0|
f(v) = 0 ∀v 6∈ V0

f(v) ∈ [0, 1] ∀v ∈ V.
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Synthetic Cities
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Discrete Animation
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Multiscale Wrapup

Open questions:

• How much can we learn about the full profile from the relaxed
version?

• Can the medial axis be computed from the TV-Profile?

• What is the right way to compare regions of the profiles?

• Spectral Versions (i.e. how to make the heat kernel useful)

• Random walk versions (absorbing boundary nodes)

• Distance based measures

• ...
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Discrete Partitioning
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Discrete Partitioning
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Permissible Districting Plans

We want to partition a given geography (graph), at a given scale, into k
pieces, satisfying some constraints:

• Contiguity

• Population Balance

• Compactness

• Communities of Interest

• Municipal Boundaries

• Competitiveness/Responsiveness

• Incumbency Protection

• ...
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Mathematical Formulation

Given a (connected, planar) graph G = (V,E):

• A k-partition P = {V1, V2, . . . , Vk} of G is a collection of disjoint
subsets Vi ⊆ V whose union is V .

• A partition P is connected if the subgraph induced by Vi is
connected for all i.

• The cut edges of P are the edges (u,w) for which u ∈ Vi, w ∈ Vj ,
and i 6= j

• A partition P is ε-balanced if µ(1− ε) ≤ |Vi| ≤ µ(1 + ε) for all i
where µ is the mean of the |Vi|’s
• An equi–partition is a 0-balanced partition
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Ensemble Analysis

• The wide variety in rules applied to districting problems (even in the
same state) means that any single measure of gerrymandering will be
insufficient/exploitable

• Instead we want to compare to large ensembles of other feasible plans.

• This allows us to understand the impacts of the underlying political
and demographic geography on a wide collection of metrics.
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Which ensembles?
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Ensembles in Practice

• The appeal of an ensemble method is that you get to control the
input data very carefully

• However, just because a particular type of data was not considered
doesn’t mean that the outcome is necessarily “fair”

• There are lots of “random” methods for constructing districting plans

• Most don’t offer any control over the distribution that you are
drawing from
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MCMC on partitions

1 Set constraints to define the state space

2 Start with an initial plan

3 Propose a modification

4 Verify that the modification satisfies the constraints

5 Accept using MH criterion

6 Repeat

Why?
• Control over sampling distribution and input data

• Possibility of local sampling

• Ergodic Theorem
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Flip Proposals

Single Edge Flip Proposals

1 Uniformly choose a cut edge

2 Change one of the incident node assignments to the other

• Mattingly et al. (2017, 2018) Court cases in NC and WI.

• Pegden et al. Assessing significance in a Markov chain without
mixing, PNAS, (2017). Court case in PA.
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Flip Proposals

Single Edge Ensembles
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Flip Proposals

PA Single Edge Flip
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Flip Proposals

Unconstrained Flip
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Flip Proposals

Constrained Flip
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Flip Proposals

Annealing
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Flip Proposals

Annealing
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Flip Proposals

Annealing
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Hardness Results

Uniform Sampling of Contiguous Partitions

Theorem (Najt, D., and Solomon 2019)

Suppose that C is the class of connected planar graphs and k ≥ 2. If
there is a polynomial time algorithm to sample uniformly from:

• the connected k-partitions of graphs in C ,

• or the connected, 0-balanced k-partitions of graphs in C .

then RP = NP .

Remark

This theorem has various interesting extensions, including:

• Connectivity constraints on C

• Degree bounds

• Distributions proportional to cut length

• TV distribution approximation
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Hardness Results

Stronger Version Example

Theorem (Najt, D., and Solomon 2019)

Let C be the class of cubic, planar 3-connected graphs, with face degree
bounded by C = 60. Let µx(G) be the probability measure on Pk(G) such
that a partition P is drawn with probability proportional to xcut(P ). Fix
some x > 1/

√
2, ε > 0 and α < 1. Suppose that there was an algorithm

to sample from P ε2 (G) according to a distribution ν(G), such that
||νG − µx(G)||TV < α, which runs polynomial time on all G ∈ C . Then
RP = NP .
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Hardness Results

Proof Outline Sketch

Following technique of Jerrum, Valiant, and Vazirani1.

1 Show that uniformly sampling simple cycles is hard on some class C

1 Choose a gadget that respects C and allows us to concentrate
probability on long cycles

2 Count the proportion of cycles as a function of length
3 Reduce to Hamiltonian path on the graph class

2 Show closure of class under planar dual

3 Identify partitions with cut edges 7→ simple cycles (via planar duality)

4 Conclude that sampling partitions would allow you to sample from
cycles which would allow you to find Hamiltonian cycles

1 M. Jerrum, L. Valiant, and V. Vazirani, Random generation of
combinatorial structures from a uniform distribution, Theoretical Computer
Science, 43 (1986), 169–188.
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Proof Sketch – Planar 2–Partitions

Still following technique of Jerrum, Valiant, and Vazirani.

1 Let C be the planar connected graphs

1 Replace the edges with chains of dipoles
2 Hamiltonian hardness for C given by 1

2 C closed under planar duals

3 Identify partitions with cut edges (via planar duality)

1 M. Garey, D. Johnson, and R. Tarjan, The Planar Hamiltonian Circuit
Problem is NP-Complete, SIAM Journal on Computing, 5, (1976),
704–714.
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Slowly Mixing Graph Families

Theorem (Najt, D., and Solomon 2019)

Let G be any connected graph. Then let G(d) be the graph obtained by
replacing each edge by a doubled d-star. Then the flip walk on partitions

of family of graphs G
(d)
d≥1 is slowly mixing, in the sense the Cheeger

constant is decaying exponentially fast. More specifically:

H(Partition Graph(G(d)) = O(2−d)

Remark

There are many similar constructions that give rise to equivalent mixing
results.
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Slow Mixing Example
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Tree based methods

District Spanning Tree
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Tree Based Methods

Tree Seeds Ensemble
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Tree Based Methods

Recombination Steps

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Draw a spanning tree for the new super–district

4 Delete an edge leaving two population balanced districts

5 Repeat
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Recombination Step Example
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Tree Based Methods

AR Ensembles
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Tree Based Methods

PA Recombination Steps
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Tree Partitioning Questions

• Characterizing the distribution on partitions defined by cutting trees!

• How bad is the best cut?

• Criteria for determining when a tree is ε cuttable?

• Criteria for determining when all spanning trees of a graph are ε
cuttable?

• How hard is it to find the mininum ε for which a cut exists?

• As a function of ε what proportion of spanning trees are cuttable?

• As a function of ε what proportion of edges in a given tree are
cuttable?

• What is the fastest way to sample uniformly from k − 1 balanced cut
edges?
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Initial Seeds

Initial
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Boundary Flip Mixing – Seeds

10,000,000 Flip Steps
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Recombination Mixing – Seeds

20,000 Recombination Steps
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Boundary Flip Mixing – Length
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Recombination Mixing – Length

20,000 Recombination Steps
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Try it at home!

• Draw your own districts with Districtr
• https://districtr.org
• Easy to generate complete districting plans in browser or on a tablet
• Measures district demographics and expected partisan performance
• Identifies communities of interest

• Generate your own ensembles with GerryChain1

• https://github.com/mggg/gerrychain
• Flexible, modular software for sampling graph partitions
• Handles the geodata processing as well as the MCMC sampling
• Current support for a
• Successfully applied in VA, NC, PA, etc.

• Data is available for your favorite state!
• Census dual graphs with demographic information:
• https://people.csail.mit.edu/ddeford/dual_graphs
• Precincts with electoral results
• https://github.com/mggg-states

1Originally RunDMCMC

https://districtr.org
https://github.com/mggg/gerrychain
https://people.csail.mit.edu/ddeford/dual_graphs
https://github.com/mggg-states
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Applications
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Outlier Example: NC
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Outlier Example: NC



Computational Redistricting

Applied Ensemble Analysis

Outlier Example: VA
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Outlier Example: VA
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Baseline Example: VA

Mean–Median Efficiency Gap
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Baseline Example: PA

Mean–Median Efficiency Gap
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Reform Example: Competitiveness

UT GA WI

VA MA
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The End

Thanks!
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General Tree Proposals

1 Form the induced subgraph on the complement of the cut edges

2 Add some subset of the cut edges

3 Uniformly select a maximal spanning forest

4 Apply a Markov chain on trees

5 Partition the spanning forest into k population balanced pieces
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Special Cases

• Uniform Trees: Add all cut edges

• k–edges: Uniformly add k cut edges

• Recombination: Add all cut edges between one pair of districts.

• Super-Recombination: Take a maximal matching on the dual graph
to the districts and add all cut edges between matched districts.

• Bounce Walk: Add a single cut edge between enough pairs of districts
to make a tree in the dual graph of districts.

Question

What are the steady state distributions (and mixing times) of these walks?
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Question
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Tree Partitioning Questions

• Characterizing the distribution on partitions defined by cutting trees!

• How bad is the best cut?

• Criteria for determining when a tree is ε cuttable?

• Criteria for determining when all spanning trees of a graph are ε
cuttable?

• How hard is it to find the mininum ε for which a cut exists?

• As a function of ε what proportion of spanning trees are cuttable?

• As a function of ε what proportion of edges in a given tree are
cuttable?

• What is the fastest way to sample uniformly from k − 1 balanced cut
edges?
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General Merge Proposals

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Bipartition the new super–district

4 Repeat

5 (Optional) Mix with single edge flips

Before During After
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3 Bipartition the new super–district
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Before During After
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Bipartitioning Methods

• Trees!

• Flood Fills

• Path Fills

• Agglomerative/Hierarchical

• Spectral

• Min Cut

More details (and colorful figures) at:
https://www.overleaf.com/read/zpmyzqmpvmnx

https://www.overleaf.com/read/zpmyzqmpvmnx
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Ensemble Example: NC
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Ensemble Example: PA
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Ensemble Example: PA
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