
NETWORKS AND COMPLEX SYSTEMS QUAL PRACTICE SOLUTIONS

DARYL DEFORD

Introduction

This document consists of preliminary solutions to the 2/19/15 practice questions (with an additional
bonus question that I needed an excuse to answer anyway). The answers are mostly not intended to be

comprehensive, but instead sketches of the main ideas.

1. Easier Questions

(1) Define the various centralities for a network.
• (degree) Degree centrality ranks the nodes by the number of edges incident to each node.
• (closeness) Closeness centrality ranks each node by the length of geodesics to each other node.

Symbolically, Ci = n∑
i6=j di,j

.

• (betweeness) Betweeness centrality ranks each node by the number of shortest paths between

pairs of other nodes containing the node. Symbolically,Bi =
∑
i 6=j 6=k

σj,k(i)
σi,j

.

• (eigenvector) Eigenvector centrality ranks each node by the sum of the rankings of their neigh-
bors. This corresponds to iterative multiplication by the adjacency matrix of the graph, so the
nodes are ranked by their corresponding magnitudes in the leading eigenvector. This process
can also be normalized to use the random walk Laplacian D−1A, which is stochastic so the
leading eigenvector is the steady state for the system. This corresponds to the probability that
a random walk ends up at node j after the process is mixed.
• (Katz) Katz centrality is a modification of eigenvector centrality that works for directed net-

works. The idea is to add a constant value of reputation to each node at each step of the
“Markov” process with final solution given by (I − αA)−11.

(2) Describe the clustering algorithms.
• (thresholding) Input: A (dis)similarity matrix and a threshold value. Place nodes i and j in

the same cluster if the corresponding i, j entry is (above)below the threshold. Output: The
clusters.
• (linkage) Input: A set of data points and a metric. This is a hierarchical, iterative process.

Initialize with each point as a separate cluster. At each step, select the pair of clusters with
the highest metric value (break ties randomly) and form a new cluster by taking their union.
Update the similarity values according to one of the following three rules:

– (single) Define the new similarity between clusters by taking the pairwise maximum of
elements under the metric.

– (complete) Define the new similarity between clusters by taking the pairwise minimum of
elements under the metric.

– (average) Define the new similarity between clusters by taking the average of all pairwise
comparisons under the metric.

Repeat this process until there is only a single cluster. Output: the ordered list of joins.
• (k–means) Input: A set of points embedded in Rn and an integer k that determines the number

of clusters to find. This is also an iterative algorithm. Initialize with k arbitrary points in Rn
as representative elements. For each point in the data set, assign it to the cluster associated
to the nearest representative. Compute the centroid of each cluster and replace the original
representative points with these centroids. Reassign the data points by Euclidean distance and
repeat until the centroids do not change. Output: The k clusters.

Date: March 15, 2015.

1

2 DARYL DEFORD

• (spectral) Input: The adjacency matrix of a network. Eigenvector centrality in its various for-
mulations clusters the nodes based on a discretization of a particular eigenvector corresponding
to a particular Laplacian. Thus, based on the clustering desired compute the corresponding
Laplacian and the eigenvector described below:

– The second eigenvector of the Standard Laplacian gives a clustering that minimizes (re-
laxed) Cut and RatioCut formulations.

– The second eigenvector of the Normalized Laplacian gives a clustering that minimizes the
(relaxed) NormalizedCut.

– The second highest eigenvector of the Random Walk Laplacian also minimizes the (re-
laxed) NormalizedCut.

Usually, the nodes are clustered according to the sign of the entries in the eigenvector, although
sometimes the median value is used as a division point instead.

(3) What defines a scale free network?
Scale free networks are characterized by an exponential degree distribution. This means that

the fraction of nodes in the network with degree k is approximately k−γ for some fixed constant γ.
For most empirical networks the variable γ is between two and three. Qualitatively, these networks
tend to have high degree nodes (hubs) connecting densely connected sub networks of much lower
degree. The Albert–Barabsi preferential attachment model is the most commonly used method for
generating these networks.

(4) Which centrality scores are best for very large networks?
Honestly, none of them are great. Approximate sampling methods (i.e. looking at neighborhoods

of neighborhoods of randomly selected nodes) are probably best for very large networks. Degree
centrality is pretty reasonable especially if the data is expected to fall into a particular type of degree
distribution. For example, if you expect the network to have scale free or small world properties, then
information about specific nodes can be inferred with high probability from their degree. Eigenvector
centrality is possible if the network is quite sparse using iterative methods to calculate the steady
state.

Betweeness clustering is unreasonable because the numerator cannot be calculated efficiently al-
though the denominator can be calculated in matrix multiplication time. Closeness centrality can
be calculated in matrix multiplication time as well. To compute the length and number of shortest
paths between every pair of nodes in the network requires being able to look entrywise at the collec-
tion of matrices {A,A2, A3, . . . , Adiam(A)}, to determine the first time that every entry is non–zero
and record the value that occurs. Unfortunately, matrix multiplication time is much too slow for
large networks.

(5) Describe the constructions of the standard random networks
• (Erdös–Renyi) Inputs: The number of desired nodes n and a probability parameter p. Construct

a network on n nodes where each of the
(
n
2

)
edges independently occur with probability p.

Another standard version of this model selects an arbitrary graph from the collection of all
graphs on n vertices with m edges uniformly, although this formulation makes it more difficult
to calculate some standard network parameters since there is no assumption of independence
on the edges.
• (Barabsi–Albert) Inputs: An initial network, a final number of nodes, and a fixed number c

of edges to add for each new node. This is an iterative process. At each step, until the final
number of nodes is reached, add a new node to the network. Connect this new node to c nodes

already in the graph with probability deg(i)∑
j deg(j) . This preferential attachment process generates

scale free networks.
• (Watts–Strogattz) Inputs: The number of desired nodes n, a probability parameter p, and the

desired mean degree d. The construction begins with a ring lattice on n nodes where each node
is connected to its k

2 nearest neighbors. Visit the nodes sequentially and reattach each edge at
that node with probability p. Select the new target for the reattached edges uniformly. This
method produces small world graphs.

NETWORKS REVIEW QUESTIONS 3

2. Harder Questions

(1) Derive the formula for eigenvector centrality.
The idea behind the basic version of eigenvector centrality is that we should give more credit to

nodes whose neighbors are high ranking. That is, we define the ranking of a node to be the sum of
the rankings of each node adjacent to it multiplied by some scalar. If we consider the ranking values
of the nodes as a vector, then multiplication by the adjacency matrix has the property of computing
this value exactly, so we are looking for an eigenvector of the adjacency matrix with the scalar value
the inverse of the eigenvalue.

Requiring that the entries of the resulting vector to be non–negative we can apply1 the Perron–
Frobenius Theorem to see that the eigenvector we want corresponds to the leading eigenvalue. We
can also slightly rephrase the definition so that the matrix is stochastic, by dividing each column
by the degree of the corresponding node. In this case, our matrix is the transition matrix for the
associated finite state Markov process and we are computing its steady state solution. For undirected
networks the Markov interpretation just gives rankings that are proportional to degree centrality. In
either case, the correct eigenvalue can be computed by iterative methods for the leading eigenvector.

For directed graphs more care is necessary since weakly connected components tend to absorb all
of the centrality in the network. To combat this problem the notion of Katz centrality is introduced,
where at each step each node is granted some small amount of centrality. This becomes an affine
system, but the solution can still be realized as a matrix vector multiplication using the machinery
of Neumann series. Google’s PageRank algorithm is a modified version of Katz centrality using the
stochastic version of the adjacency matrix to prevent highly central nodes from distributing all of
their centrality to their out neighborhood2.

(2) Derive the formula for the three spectral clustering methods.
The ideas behind the three basic spectral clustering methods are that we wish to partition the

network into two pieces such that if we disconnect the two components we do a minimal amount of
“damage” to the network as a whole. The definition of the damage function is what distinguishes the
various methods. The most näıve method uses the Cut formulation. In this case, we wish to minimize
the number of edges that must be removed to disconnect the two components. Unfortunately, solving
this optimization problem for the components is NP–hard, although it can be computed exhaustively
for small networks. Instead, we approach a relaxed version of the problem. We begin by constructing
a vector v to represent the desired partition, with entries of 1 assigned to nodes in one component
and entries of −1 assigned to the other component. This gives that vivj = 1 if and only if i and j
are in the same component. We can now formulate the damage condition algebraically as

damage(v) =
1

2

∑
i,j

1

2
(1− vivj)Ai,j .

Proceeding by algebraic manipulation, we can reduce this expression to

1

2

∑
i,j

1

2
(1− vivj)Ai,j = 1

4 (
∑
i,j Ai,j − vivjAi,j)

= 1
4

∑
i,j vi deg(i)vjδi,j − viAi,jvj)

= 1
4v
TDv − vTAv

= 1
4v
TLv

Now we have reduced our problem to minimizing this bilinear form over all vectors v ∈ {±1}n.
Unfortunately, this is still an NP–hard problem so we relax our constraints to minimize over all real
vectors of norm one, where the norm condition rules out trivial minimization solutions. We further
require that v ⊥ 1 since 1 is in the kernel of L and carries no information for our clustering. The
theory of Lagrange multipliers then gives that the solution vector to our minimization problem is
the eigenvector corresponding to the Fiedler value of L. We can assign nodes to components by
separating the positive values and negative values.

1with some ... caveats detailed in my previous document.
2Just because your webpage can be found on Google doesn’t make you important.

4 DARYL DEFORD

The problem with the direct cut formulation is that it says nothing about the relative sizes of the
partition. In order to rule out trivialities, such as disconnecting a pendant edge, two other types
of damage metrics are frequently used in the literature. These are the RatioCut which scales the
damage by the number of vertices in the subsets and the NormalizedCut which scales the damage
by the number of edges in the subsets. Symbolically, these are

RatioCut(A,B) =
1

2
(
E(A,B)

|A|
+
E(A,B)

|B|
)

and

NormalizedCut(A,B) =
1

2
(
E(A,B)

vol(A)
+
E(A,B)

vol(B)
).

The RatioCut derivation leads to a very similar optimization structure as the (relaxed) Cut
problem. In this case we assume that there is again a vector v representing the partition, but this
time the entries in v are proportional to the size of the component that the vertex is selected from:

v =


√
|B|
|A| i ∈ A

−
√
|A|
|B| i ∈ B

. We can simply compute that vTLv again gives exactly the cut value and that

||v||2 = vtv is exactly the denominator that appears in the definition of the RatioCut. Thus, we

are minimizing the expression vTLv
vT v

which is the Rayleigh quotient associated to L. Since v1 = 0
by construction this expression is minimized by the second eigenvalue of L as in the previous case.
Thus, we again take the second eigenvector of L to form our partition.

If we proceed as in the standard case for the NormalizedCut, we can again imagine a parti-
tion vector v, with vi = 1

vol(A) if i ∈ A and vi = −1
vol(B) if i ∈ B. Then, we see that vTLv =

E(A,B)(1
vol(A) + 1

vol(B)), while vTDv = 1
vol(A) + 1

vol(B) . Thus, the normalized cut corresponding

to v is the ratio of these two values. That is we wish to minimize vTLv
vTDv

. Using the substitution

D−
1
2w = v this becomes wTD−

1
2 LD−

1
2W

wTw
which is the Rayleigh quotient for the normalized Laplacian

I − D− 1
2AD−

1
2 . Minimizing this expression is equivalent to finding the second eigenvector of this

normalized Laplacian and we may partition the network with this vector as above.
Interestingly, the stochastic matrix AD−1 can be used to solve the NormalizedCut problem. In

this case if λ, v are an eigenpair of AD−1 then (1−λ), v are an eigenpair for the normalized Laplacian.

This relationship is more clear when we note that AD−1 = D−
1
2 (I −D− 1

2LD−
1
2)D

1
2 . The Normal-

izedCut value of a partition Q can be realized in the random walk setting as NormalizedCut(Q,Q) =
P (Q|Q)+P (Q|Q) which provides some intuition for the relationship. Thus, finding the second largest
eigenvalue of AD−1 and its corresponding eigenvector also gives a solution of the NormalizedCut
problem on a network.

(3) How does modularity use a null model to determine communities in the network?
The modularity of a network is a function that maps a partition of the network to a value

measuring the proportion of connectivity that occurs within the clusters compared to the edges
between clusters. Given a partition of the network into clusters, the modularity is computed as the
difference between the number of edges that lie within the observed clusters to the number of edges
that would occur if the edges had been distributed uniformly with the same degree distribution.
This is usually normalized by the maximal value obtainable from the configuration model.

This is an example of a null model because the you are comparing the observed network to a
theoretical model, of a network with same degree distribution and randomly placed edges, in order
to determine the significance of the observed data. This particular model is formed by splitting each
edge in half and reattaching the edge ends at random. Subtracting off the amount of clustering that
appears in the null model leaves behind the extra (or deficient) amount of clustering that appears
in the observed network.

The definition of modularity is also frequently extended to cover scalar partitions where each
cluster is assigned a relative value. In this case the modularity can be interpreted as a covariance of
the partition labels. Specifically, the notion of assortativity is a scalar modularity with the partitions
defined by the degrees of the nodes.

NETWORKS REVIEW QUESTIONS 5

(4) How can you use the graph Laplacian to determine the number of connected components
of the network? Can you identify the groups of nodes in each component?

The graph Laplacian is defined as D−A. It is clear that zero is an eigenvalue of this matrix since
all of the row sums are zero. Thus, L1 = 0. The number of connected components is the number
of zero eigenvalues of L. This can be seen from the fact that the restriction of 1 to the subspace
spanned by the nodes in each connected component is annihilated by L and that this collection of
vectors is linearly independent. To see that there are no more vectors with the property we can
proceed by induction using the fact that if a component is connected then the eigenvalue zero has
multiplicity one. This fact can be seen by observing that if v is a corresponding eigenvector, then
0 = vtLv =

∑
i∼j(vi − vj)2 so vi = vj since the graph is connected.

The components can be discovered from an arbitrary basis of the null space of L by identifying
the components in each vector that have the same values, since we know that the vectors must be
expressible as linear combinations of the characteristic vectors on the connected components. The
underlying idea is the the matrices can be rearranged to be block diagonal representations of the
connected components3.

(5) Discuss the definition of a small world network. Give examples of networks that are/are
not small world networks.

The notion of a small world network does not have a perfectly standardized definition, but they
are usually characterized by two properties: a low average geodesic length and a high clustering
coefficient. Generally, the average geodesic length is expected to be about the log of the number of
nodes in the graph. The clustering coefficient is defined to be 1

n

∑n
i=1

ei

(deg(i)
2)

where ei is the number

of edges between neighbors of i. This is a measure of how connected the neighborhood of each node
is compared to the complete graph. In general, to be considered a small world network, this value
should be significantly higher than that of an Erdös–Renyi graph on the same number of nodes and
edges.

For examples, transportation networks such as airline or train networks satisfy the small world
properties due to their hubs, while local road networks do not(they tend to be fairly regular grids).
Electrical power grids, neural networks, and social networks tend to satisfy the small world properties.
The most common counterexample is social networks either all people, or people at an institution
over an enormous time scale. In this case it is unlikely that there will be short path lengths between
randomly selected individuals.

(6) Show that if D is a distance matrix giving distances between points in Rn the MDS will
recover the coordinates of the points up to a rigid motion.

Let D be a matrix whose entries represent differences between k points in Rn. That is D2
i,j =

d(xi, xj). Since the points are assumed to be Euclidean already, we can realize the distance as an
inner product: D2

i,j = ||xi − x− j|| = 〈xi − xj , xi − xj〉. If X is a n × k matrix whose columns are

the entries of the xi then the matrix A = XXT has entries Ai,j = 〈xi, xj〉. Thus, if we can construct
the matrix A from D we can recover X from the spectral decomposition of A since it is symmetric
and positive definite by construction.

Looking entrywise we see that D2
i,j = 〈xi, xi〉−2〈xi, xj〉+〈xj , xj〉 = Ai,i−2Ai,j+Aj,j . Considering

the entries of A as k2 variables we obtain a system of equations that can be solved exactly to obtain
A. Since we can obtain X from A, this gives us at least a translate of the original vectors up to a
rotation since the Euclidean distance is translation and rotationally invariant. In practice however,
these problems are usually solved with iterative approaches for a fixed dimension, using a stress
measure as an objective function.

Another approach is to form the matrix Mi,j =
D2

1,i+D1,j−D2
i,j

2 . This is also a symmetric matrix
whose spectral decomposition gives rise to another realization of X as above. In this case we are
shifting the first element in X to the origin and then the entries of M represent the differences from
x0 to each other point in the data set. The rank of M captures the minimal dimension such that
the distances can be realized exactly in Euclidean space with the standard metric.

3at least for A and L.

6 DARYL DEFORD

(7) Suppose you have a weighted directed network. Discuss the techniques you know that
are applicable to such a network or could be adapted to this case.

Weighted directed networks are one of the most general form of network models but the standard
techniques for analyzing networks have to be adjusted to account for the weights and asymmetry.
The trade off is between having finer grained information and having to adapt standard techniques
to reflect thee additional complexities. Let’s analyze the different types of statistics and dynamics
individually.

For degree distribution, we need to consider in–degree and out–degree separately. We can also
consider weighted degree vs. incidence degree to get finer grained information. For paths there
is a similar dichotomy between the topological (binary) network and the weighted flow network.
Depending on the data type the weights can either be thought of as costs or capacities which changes
the definition of geodesic in each case. This is important for determining weighted variants of the
standard statistics such as diameter, eccentricity, etc.

For centrality measures, modulo the definitions of geodesics and the edge weights as above, we
can calculate betweeness and closeness centrality for both in and out edges. Eigenvector centrality
must be modified significantly. There are two main approaches to this problem. One is a generalized
notion of centrality due to Kleinberg that rates authority centrality and hub centrality separately as
the eigenvalues of ATA and AAT . The other is to use a version of Katz centrality with a stochastic
matrix that takes into account the edge weights.

For clustering the most standard approach is to simply assume that the network is undirected
and apply basic techniques. Other approaches have been developed, such as redefining the objective
functions for modularity and spectral clustering or projecting onto bipartite networks that preserve
notions of the directed arcs and clustering in these settings. However, none of these techniques have
become standard in the literature.

As far as dynamics, we can form modified versions of the Laplacian and random walk matrix
incorporating the edge weights. Another approach is to only consider the out or in edges separately.
The interpretation remains mostly the same in the case of the random walk dynamics but is slightly
different for the Laplacian depending on what type of flow is being considered in the application.

(8) Derive the formula for calculating the assortativity of a network.
(This first approach follows the statistical methods in Newman’s 2002 paper)
Assortativity in the network setting usually refers to the likelihood that nodes of similar degree

are connected, though it can be applied more generally. In order to complete the derivation we need
to define some notation. Let pk be the probability that a random node has degree k. The probability
distribution for the degree of a node that is selected as a neighbor of a randomly chosen node is kpk
since a neighbor is likely to have higher degree. Assortativity is traditionally computed in terms of
the remaining degree of such a node which is the distribution of the number of edges minus the one
that was used to arrive at that node.

The distribution of the remaining degree qk can then be determined to be qk = (k+1)pk+1∑
j jpj

since

the chosen node actually has degree one higher and the edge that carried us to the node could have
been from a node of any degree. We further define ej,k to be the joint probability distribution that
given an arbitrary edge the incident nodes have remaining degrees j and k. Summing all the ej,k
gives one, while fixing k and summing over all j gives qk.

If there is no assortativity in the network we should expect that ej,k = qj · qj so a measure of the
assortativity can be realized as the average value over all edges of the network as:

∑
j,k jk(ej,k−qj ·qk).

This value is traditionally normalized to allow for cross network comparisons by dividing by the
maximum possible value which occurs when ej,k = qkδj,k. Substituting this simplification in we see

that
∑
j,k jk(qkδj,k − qj · qk) =

∑
k k

2qk − (
∑
k kqk)

2
= σq. Together we obtain a final formula:

r =
∑

j,k jk(ej,k−qj ·qk)
σq

. This is equivalent to the Pearson Correlation Coefficient of the degrees of

nodes incident to the same edge across the network. Note that this methodology only captures
possible linear correlation between the degree connections, so it is important to be aware of other
possible distributions of the correlations.

NETWORKS REVIEW QUESTIONS 7

Here is a more natural4 way to view assortativity as a special case of scalar modularity. Recall that
for a partition of a network the (enumerative) modularity is defined as Q = 1

2m

∑
i,j Bi,jδ(ci, cj),

where Bi,j + Ai,j − kikj
2m and the ci represent the respective components of the vertices. Further

this is compared to the maximum possible value on the network, where the edges all lie within

components so i ∼ j implies δ(ci, cj) = 1, giving Qmax = 1
2m

∑
i,j(Ai,j−

kikj
2m). The idea is capturing

the overabundance of edges in the observed network that lie within instead of between the clusters.
Taking this idea to the case where our paritions are defined by scalar variables instead of enumer-

ative classes we can proceed with a similar derivation, first computing the average over the edges as

µ =
∑

i,j Ai,jxi∑
i,j Ai,j

= 1
2m

∑
j kjxj , and then computing the covariance:

cov(ki, kj) = 1
2m (

∑
i,j Ai,j(xi − µ)(xj − µ))

= 1
2m (

∑
i,j Ai,j(xixj − µ(xi − xj + µ)))

= 1
2m (

∑
i,j Ai,jxixj − µ

∑
i,j Ai,j(xi + xj − µ))

= 1
2m (

∑
i,j Ai,jxixj − µ(

∑
i

∑
j Ai,jxi +

∑
j

∑
iAi,jxj +

∑
i

∑
j Ai,jµ))

= 1
2m (

∑
i,j Ai,jxixj − µ(

∑
i kixi +

∑
j kjxk −

∑
i,j Ai,jµ))

= 1
2m (

∑
i,j Ai,jxixj − µ(2mµ+ 2mµ− 2mµ))

= 1
2m (

∑
i,j Ai,jxixj − 2mµ2)

= 1
2m (

∑
i,j Ai,jxixj − µ2)

= 1
2m (

∑
i,j Ai,jxixj − (1

2m)2
∑
i,j kikjxixj))

= 1
2m (

∑
i,j(Ai,j −

kikj
2m)xixj)

Similarly, we consider for a perfectly assortative network the maximum value which occurs when
we have xi = xj for the coefficient of Ai,j in the definition. This then gives a perfect mixing value of
1

2m (
∑
i,j Ai,j(x

2
i −

kikj
2m)xixj) = 1

2m (
∑
i,j(kiδ(i, j)−

kikj
2m)xixj). Taking the quotient of the observed

and ideal values gives the assortativity coefficient:∑
i,j(Ai,j −

kikj
2m)xixj∑

i,j(kiδ(i, j)−
kikj
2m)xixj

Then, we obtain the standard assortativity for degrees by substituting in ki for xi into the ex-
pression above.

(9) Derive the graph Laplacian and the solution for the corresponding diffusion problem.
The standard graph Laplacian can be realized in several separate ways that highlight different as-

pects of its usefulness. The various normalized versions of the Laplacian add even further complexity
to this operator. Algebraically, it can be constructed as BBT where B is the incidence matrix of the
network, defined as a n×m matrix with each column representing an edge and signs (±1) assigned
to the columns arbitrarily. This construction gives the Laplacian many of its algebraic properties,
such as symmetry and positive semi–definiteness.

On the other hand, the Laplacian arises quite naturally in the context of studying diffusion
on graphs, as well as in the clustering case discussed in Problem 2, where the Laplacian arose as
the constraints matrix for the relaxed cut problems. For diffusion, we consider a vector of values
representing quantities on the nodes that spread along edges in the network proportionally to the
difference between the values at the incident edges. This is a discretization of the continuous heat
flow model that is solved by the standard Laplacian5. Letting ϕ represent our vector function of
interest, this gives the following system of differential equations: dϕi

dt = −c
∑
j Ai,j(ϕi −ϕj). Where

c is the proportionality constant and the minus sign is for historical (in)convenience.

4less statistical
5hence the name

8 DARYL DEFORD

Distributing this expression, we obtain

dϕi
dt

= −cϕi deg(i) +c
∑
j

Ai,jϕj = −c
∑
j

(δi(j) deg(i)−Ai,j)ϕj

Rewriting this expression in matrix form for the entire vector at once gives

dϕ

dt
= −k(D −A)ϕ = −cLϕ,

which is exactly the form that we wanted. To solve this linear differential equation, we note that
since L is symmetric it is orthogonally diagonalizable so we can write ϕ(0) =

∑n
k=1 ckvk, where the

vk are eigenvectors of L. Then, substituting into our matrix expression we have:

0 =
d
∑n

k=1 ckvk
dt + cL

∑n
k=1 ckvk

=
∑n
k=1

dckvk
dt + cckλkvk

Since the vk are linearly independent, this implies that we have dci
dt + cλici = 0 for all i. The

solution to each of these linear equations is ci(t) = ci(0)e−cλit. We proved above that L is positive
semi–definite, so the λi are all non–negative and hence the final solution for ϕ converges to a steady
vector in the limit, determined by coefficients of the components of the kernel of L. Furthermore, on
each component of the graph the values of ϕ converge to the average of the original values on that
component since that is the limit of the projection onto the kernel, which is 1 times the projection
onto each component.

A more general case can be considered if we allow forcing terms to act on our nodes. In this case
we are allowing for the existence of constant sources or sinks across the network. This modifies the
equations derived above by transforming the linear system to an affine one. We can still make use of
the orthogonality of the eigenvectors of L to obtain componentwise relations ci(t) = ci(0)e−cλit+ γi

λit

where the γi is the ith coordinate of the forcing vector in the eigenvector coordinates. Examples on
100 nodes can be see for the standard and forced cases below6.

Department of Mathematics, Dartmouth College

E-mail address: ddeford@math.dartmouth.edu

6only if you are using Adobe Reader, sorry Linux users...

NETWORKS REVIEW QUESTIONS 9

10 DARYL DEFORD

	Introduction
	1. Easier Questions
	2. Harder Questions

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	anm1:

