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In this talk I will present a dynamically motivated model for a
class of multiplex networks that provides natural extensions for many
of the standard network tools to the multiplex setting, including
centralities, diffusion, and clustering. I will also present some
spectral results related to the Laplacian formulation of this model for
diffusion and clustering applications on multiplex networks.
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Motivation

• In the terminology introduced in2 these are the diagonal,
node–aligned multilayer networks.

• Disaggregated Data
• A single set of objects of interest
• Many different types of relations or connections
• Intra–object interactions that are distinct from the inter–layer

dynamics

• Examples:
• World Trade Web
• Social Networks
• Neural Networks
• Many others ...

2Kı̈vela et al.: Multilayer Networks, Journal of Complex Networks, July 2014.



Multiplex Dynamics

Motivation

Setup

Motivation

• In the terminology introduced in2 these are the diagonal,
node–aligned multilayer networks.

• Disaggregated Data
• A single set of objects of interest
• Many different types of relations or connections
• Intra–object interactions that are distinct from the inter–layer

dynamics

• Examples:
• World Trade Web
• Social Networks
• Neural Networks
• Many others ...

2Kı̈vela et al.: Multilayer Networks, Journal of Complex Networks, July 2014.



Multiplex Dynamics

Motivation

Setup

Motivation

• In the terminology introduced in2 these are the diagonal,
node–aligned multilayer networks.

• Disaggregated Data
• A single set of objects of interest
• Many different types of relations or connections
• Intra–object interactions that are distinct from the inter–layer

dynamics

• Examples:
• World Trade Web
• Social Networks
• Neural Networks
• Many others ...

2Kı̈vela et al.: Multilayer Networks, Journal of Complex Networks, July 2014.



Multiplex Dynamics

Motivation

World Trade Web

WTW Setup

• Nodes → Countries
• Edges → Trade Volume
• Disaggregation: Commodity Type

Layer Description Volume % Total Transitivity

0 Food and live animals 291554437 5.1 .82

1 Beverages and tobacco 48046852 0.9 .67

2 Crude materials 188946835 3.3 .79

3 Mineral fuels 565811660 10.0 .62

4 Animal and vegetable oils 14578671 0.3 .64

5 Chemicals 535703156 9.5 .83

6 Manufactured Goods 790582194 13.9 .87

7 Machinery 2387828874 42.1 .85

8 Miscellaneous manufacturing 736642890 13.0 .83

9 Other commodities 107685024 1.9 .56

All Aggregate Trade 5667380593 100 .93

Table : Commodity information for the 2000 WTW
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WTW Aggregate Figure

Figure : Aggregate 2000 World Trade Web3

3Feenstra et al.: World Trade Flows: 1962–2000, Working Paper 11040, NBER.
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WTW Dynamics

• Edge weights reflect the volume of trade flow

• Stability analysis4 can reveal sensitivity of the global network to
various perturbations. This approach can be refined by considering:

• Exchanges between the various industries within each country
• Net trade surpluses and deficits

• A model that allows us to distinguish intra–country dynamics from
international dynamics permits a more nuanced view of the data and
hence a more complete analysis.

4Foti et al.: Stability of the World Trade Web Over Time:
An Extinction Analysis, Journal of Economic Dynamics and Control, September 2013.
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Social Networks

• Survey Data
• Heterogeneous layers

• Hierarchical layers
• (un–)Directed layers

• Information dynamics5

• Diffusive
• Transactional

5Banerjee et al.: The Diffusion of Microfinance, Science, (2013).
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Social Networks

Social Layers

Advice Friendship Report

Figure : Krackhardt Hi-Tech Manager Relationships6

6Krackhardt: Cognitive Social Structures, Social Networks (1987).
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We want a model that

• preserves the dynamics captured by the individual layers (data)

• permits control over the mixing at the nodes themselves

• allows for the generalization of standard network metrics and
processes

• Refined Aggregation

• Layer effects pass through copies. Copies don’t interact directly.
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Notation

• n nodes

• k layers

• v a nk × 1 vector of “quantities”

• vij the quantity at node j on layer i

• i and ` layer indices

• j node index
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General Approach

Two–step iterative process

• Initialize the nk × 1 vector of “quantities” v

• Step 1: Inter–layer dynamics: given by the layer relationships

• Linear Case: Given a collection of dynamic operators {Di}, one for
each layer, form D = diag(D1, D2, . . . , Dn).

• Step 2: Intra–node mixing:

• Mix the effects of the Di as a scaled, convex combination of the
resulting values at each copy of each node.

(v′)ij = αi
j

k∑
`=1

ci,`j (Dv)`j

• Return to Step 1
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Projections

Step 2: Scaled Projections

• Orthogonal projections onto the “node subspaces”

• Gather and redistribute

• ci,`j – “pass–through proportion”

• αij – scaling coefficient
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Projections

Matrix Representations

Step 2 can be expressed as a single block matrix acting on v, with
Ci,` = diag(α`1c

i,`
1 , α`2c

i,`
2 , . . . , α`nc

i,`
n ):

M =


C1,1 C1,2 · · · C1,k

C2,1 C2,2 · · · C2,k

...
. . .

. . .
...

Ck,1 Ck,2 · · · Ck,k

 ,

The final multiplex dynamic operator is a product of the layer dynamics
matrix D and the redistribution matrix M

D =MD =


C1,1D1 C1,2D2 · · · C1,kDk

C2,1D1 C2,2D2 · · · C2,kDk

...
. . .

. . .
...

Ck,1D1 Ck,2D2 · · · Ck,kDk

 .
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Unified Node

The unified node model assumes that each node has a distinct set of
weighted preferences between its copies.

As an example, in the WTW network each country can evaluate each
commodity’s importance as the total volume of trade at that country in
the respective layer. Then the total trade flow at each country can be
redistributed proportionally to these weighted degrees.
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Simplifications

Hierarchical Layers

A further natural simplification occurs if we assume that the global
network has an ordering of layers, so that the effect of layer i on layer ` is
fixed across all nodes. In this hierarchical layer model the blocks Ci,`

are just scalar multiples of In.

In the absence of application specific choices of Ci,` the layer densities
provide a natural hierarchy either by taking Ci,` to be the density itself or
the ratio of the density of layer i to the density of layer j.

When the layer dynamics are the adjacency matrices, this simplification is
the asymmetric influence matrix introduced in7.

7Solá et al. Eigenvector centrality of nodes in multiplex networks. Chaos (2013).
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Simplifications

Equidistribution

The simplest version of this operator, the equidistribution model, sets
ci,`j = 1

k for all 1 ≤ j ≤ n and 1 ≤ i, ` ≤ k. At every step, this operator
simply averages the quantities at each node copy. This is a natural
simplification for applications where the flow is equally likely to move
between layers or represents the probabilities of a binary process.
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Adjacency

Centrality Score Comparison

Figure : Monoplex Comparison
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Centrality Score Comparison

Figure : Unified Node Comparison
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Centrality Score Comparison

Figure : Hierarchical Layer Comparison
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Figure : Equidistribution Comparison
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Diffusion

Multiplex Diffusion

To extend the standard interpretation of the Laplacian operator to the
multiplex setting, we allow the ci,`j to represent the proportion of the
effect on layer ` that passes to the jth node on layer i:

dvij
dt

= K

k∑
`=1

ci,`j
∑

n`
j∼n`

m

(v`j − v`m).

Here K is the diffusion constant and the ci,`j represent the proportion of

the effect on layer ` that passes through to nij . Linear algebraically, this
is:

dvij
dt

= K

[
k∑
`=1

ci,`j L
`v`

]
j

(1)
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Diffusion

Eigenvalue Bounds

The theory of Hermitian matrices, and in particular the Weyl bounds,
allow us to bound the eigenvalues of this diffusion operator using the
hierarchical layer or equidistribution models:

• Fiedler Value: maxi(λ
i
f ) ≤ kλf ≤ λmf +

∑
j 6=` λ

j
1,

• Leading Value: maxi(λ
i
1) ≤ kλ1 ≤

∑
i λ

i
1,

These bounds are special cases of the following more general but less
computationally feasible bounds:

maxi(λ
i
n−`) ≤ kλn−` ≤ min

J`n+k−(`+1)

(
min
σ∈Sn

(
k∑
i=1

λ
σ(i)
ji

))
,
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Random Walks

Preserved Properties

If we take the original layer dynamics to be the corresponding random
walk matrices then many of the matrix properties are preserved in the
equidistribution model:

• Stochastic

• Irreducible

• Primitive

This version of the multiplex random walk operator is equivalent to
versions used in8 and9 to model transportation networks and information
diffusion respectively.

Additionally, we may project the random walk to the original node space
to derive a n× n transition matrix. This is an example of the refined
aggregation aspect of our model.

8De Domenico et al.: Navigability of interconnected networks under random
failures, PNAS (2014).

9Trpevski et al: Discrete–time distributed consensus on multiplex
networks., New Journal of Physics (2014).
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WTW Applications

• Commute Time Clustering
• Distance proxy for gravity model of trade

• Random Walk Betweenness Centrality
• Aggregate: US/Canada
• Individual Layers: Sources and sinks
• Multiplex: Good measure of global flow
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Applications

Random Walks

Conclusions

• Our operator represents a dynamically motivated approach to better
understanding the properties of multiplex networks

• Control of the intra–node mixing allows us to examine a continuum
of results for each data set that reveals different aspects of the
underlying data.

• This approach generalizes several standard methodologies from both
monoplex and mutliplex perspectives.
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Thank You!
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Small Example

Layer 1 Layer 2 Layer 3

Figure : A toy multiplex model
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Eigenvector Centrality

Node Level 1 Level 2 Level 3 D̂

1 .5883 .5 .7071 .6438
2 .3922 .5 .4714 .4416
3 .3922 .5 .4714 .4190
4 .5883 .5 .2357 .4636

Table : Eigenvector centrality scores for the toy multiplex network

In10 the authors use diffusion centrality as a proxy for their
communication centrality. This approach also translates directly to this
multiplex operator.

10Banerjee et al.: The Diffusion of Microfinance, Science (2013)
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