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Introduction

Abstract

Permutation entropy has become a standard tool in time–series
analysis that exploits the the temporal properties of these data sets.
Many current applications use an approach based on Shannon
entropy, which implicitly assumes an underlying uniform distribution
on patterns. In this paper, we consider several additional null models
for time series data and determine the corresponding permutation
distributions. This allows us to compare real–world data to more
complex generative processes. Additionally, building on recent results
of Martinez, we define a measure of complexity that allows us to
characterize when a random walk is an appropriate model for a time
series.
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Iterated Maps

Given a function f : [0, 1]→ [0, 1] and a point x ∈ [0, 1], consider the
behavior of {x, f(x), f(f(x)), f(f(f(x))), . . .}.

Example

Let f(x) = 4x(1− x) and x0 = .2. Then, the list of values is:

[0.20, 0.64, 0.92, 0.28, 0.82, 0.58, 0.97, 0.11, 0.40, . . .].
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Forbidden Patterns

Definition (Topological Entropy)

TE = lim
n→∞

log(|Allow(f)|)
n− 1

• C. Bandt and B. Pompe: Permutation entropy: A natural
complexity measure for time series, Phys. Rev. Lett. 88, 174102
(2002).

• C. Bandt, G. Keller, and B. Pompe: Entropy of interval
map s via permutations, Nonlinearity 15, 1595 (2002).
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Complex Time Series
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Complex Time Series
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Time Series Complexity

Definition (Permutation Entropy)

PE({Xi}) = −
1

log(N !)

∑
π∈Sn

pπ log(pπ)

Definition (Uniform KL Divergence)

DKL({Xi}||uniform) =
∑
π∈Sn

pπ log

(
pπ
1
n!

)

• M. Zanin, L. Zunino, O.A. Rosso, and D. Papo :
Permutation Entropy and Its Main Biomedical and Econophysics
Applications: A Review, Entropy 2012, 14, 1553-1577.

• M. Zanin: Forbidden patterns in financial time series, Chaos 18
(2008) 013119.

• C. Bandt: Permutation Entropy and Order Patterns in Long Time
Series, Time Series Analysis and Forecsting, Springer, 2016.
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Null Models

I.I.D. Variables

The uniformity assumption is already associated to a null model.

Lemma

Let {Xi} be a set of I.I.D. random variables, then (π, t) and (τ, s) are
independent random variables if and only if |t− s| > n.

Lemma

Let {Xi} be a set of I.I.D. random variables, then P(π) =
1

n!
for all

π ∈ Sn.
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Random Walk Models

Definition (Random Walk)

Let {Xi} be a set of I.I.D. random variables and define {Zi} by

Zj =
∑j
i=0Xj .

Theorem

If {Zi} are defined as above then either 123 . . . n or n(n− 1)(n− 2) . . . 1
occurs with the highest probability.

Corollary

If {Zi} are defined as above and n ≥ 3 then the expected distribution of
permutations is not uniform.
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Uniform Walks

Definition

Let the {Xi} be defined as uniform random variables over [b− 1, b] where

0 < b < 1 and define {Zi} with Zj =
∑j
i=0Xi.
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Null Models

Expected Distributions

Theorem

Let {Zi} be a random walk as defined above, then the expected
distributions of permutations for S3 and S4 are characterized by the
following:

P(123) = b2 P(321) = (1− b)2
P(132) + P(231) = (1− b)b P(213) + P(312) = (1− b)b

P(1234) = b3

P(4321) = (1− b)3
P(1243) + P(1342) + P(2341) = (1− b)b2
P(1432) + P(2431) + P(3421) = (1− b)2b
P(2134) + P(3124) + P(4123) = (1− b)b2
P(3214) + P(4213) + P(4312) = (1− b)2b

P(1324) + P(1423) + P(2314) + P(2413) + P(3412) = (1− b)b2
P(4231) + P(3241) + P(4132) + P(3142) + P(2143) = (1− b)2b
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Null Models

Hyperplanes

Example

In order for the pattern 1342 to appear in the time series we need the
following inequalities to hold:

• X1 > 0

• X2 > 0

• X3 < 0

• X3 > X2

• X3 < X1 +X2

π P(π) π P(π)

123 b2 132 (b− 1)− 3
2 (b− 1)2

213 (b− 1)− 3
2 (b− 1)2 231 1

2 (b− 1)2

312 1
2 (b− 1)2 321 (b− 1)2
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Random Walk Metrics

Equivalence Classes

Theorem (Martinez 2015)

Let π, τ ∈ Sn. The P(π) = P(τ) for every probability distribution on the
{Xi} if and only if π and τ are equivalent under repeated application of
the reverse complement operation on bounded cylindrical blocks.

{123}, {132, 213}, { 231, 312}, {321}
{1234}, {1243, 2134}, {1324}, {1342, 3124}, {1423, 2314}, {1432, 2143, 3214},

{2341, 3412, 4123}, {2413}, {2431, 4213}, {4231}, {3142}, {3241, 4132}, {3421, 4312}, {4321}
{12345}, {14325}, {21354}, {21453}, {25314}, {41352}, {45312},{52341}, {54321},

{12543, 32145}, {13245, 12435}, {13425, 14235},
{15243, 32415}, {15342, 42315}, {15432, 43215}, {21345, 12354}, {21435, 13254}, {21543, 32154}, {23145, 12534},
{23415, 15234}, {24153, 31524}, {24315, 15324}, {24513, 35124}, {24531, 53124}, {25134, 23514}, {25341, 52314},
{25413, 35214}, {25431, 53214}, {31245, 12453}, {31425, 14253}, {31542, 42153}, {32514, 25143}, {32541, 52143},

{35142, 42513}, {35241, 52413}, {41235, 13452},
{41253, 31452}, {41325, 14352}, {41523, 34152}, {41532, 43152}, {42135, 13542}, {42351, 51342},

{45231, 53412}, {51324, 24351}, {51423, 34251}, {51432, 43251},
{53142, 42531}, {53241, 52431}, {54123, 34521}, {54132, 43521}, {54213, 35421, }, {54231, 53421},

{54312, 45321}, {31254}, {43125, 14532}, {34125, 14523}, {13524, 24135},
{35412, 52134, 45213, 23541}, {51243, 32451} {43512, 45132}, {23451, 45123, 34512, 51234} {21534, 23154, 15423, 34215}



Time Series Entropy

Random Walk Metrics

Equivalence Classes

Theorem (Martinez 2015)

Let π, τ ∈ Sn. The P(π) = P(τ) for every probability distribution on the
{Xi} if and only if π and τ are equivalent under repeated application of
the reverse complement operation on bounded cylindrical blocks.

{123}, {132, 213}, { 231, 312}, {321}
{1234}, {1243, 2134}, {1324}, {1342, 3124}, {1423, 2314}, {1432, 2143, 3214},

{2341, 3412, 4123}, {2413}, {2431, 4213}, {4231}, {3142}, {3241, 4132}, {3421, 4312}, {4321}
{12345}, {14325}, {21354}, {21453}, {25314}, {41352}, {45312},{52341}, {54321},

{12543, 32145}, {13245, 12435}, {13425, 14235},
{15243, 32415}, {15342, 42315}, {15432, 43215}, {21345, 12354}, {21435, 13254}, {21543, 32154}, {23145, 12534},
{23415, 15234}, {24153, 31524}, {24315, 15324}, {24513, 35124}, {24531, 53124}, {25134, 23514}, {25341, 52314},
{25413, 35214}, {25431, 53214}, {31245, 12453}, {31425, 14253}, {31542, 42153}, {32514, 25143}, {32541, 52143},

{35142, 42513}, {35241, 52413}, {41235, 13452},
{41253, 31452}, {41325, 14352}, {41523, 34152}, {41532, 43152}, {42135, 13542}, {42351, 51342},

{45231, 53412}, {51324, 24351}, {51423, 34251}, {51432, 43251},
{53142, 42531}, {53241, 52431}, {54123, 34521}, {54132, 43521}, {54213, 35421, }, {54231, 53421},

{54312, 45321}, {31254}, {43125, 14532}, {34125, 14523}, {13524, 24135},
{35412, 52134, 45213, 23541}, {51243, 32451} {43512, 45132}, {23451, 45123, 34512, 51234} {21534, 23154, 15423, 34215}



Time Series Entropy

Random Walk Metrics

Related Metrics

Definition

To measure how closely the distribution matches the conditions of
Martinez we compute

gn(T ) =
∑

Λi⊂Sn

∑
π∈Λi

pπ|pπ − µi|,

or “equivalently”,

hn(T ) =
∑

Λi⊂Sn

∑
π∈Λi

pπ log

(
pπ
µi

)
.

Corollary

If ZN = {Zi}Ni=1 is a random walk, then

lim
N→∞

gn(Z
N ) = 0 and lim

N→∞
hn(Z

N ) = 0.
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Examples
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Beyond Distributions

321

312

123

231 213

132

(a) The permutation graph for n = 3 whose
edges, π → τ , are weighted with probability
PX(π → τ).
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Walks on Sn

Uniform Walks

Lemma

Let π, τ ∈ Sn. Then,

P(τ → π) =
P(τ ∧ π)
P(τ)

Lemma

Let {Zi} be a random walk as above. Then, the transition probability
between permutations are not the uniform distribution.
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Further Reading

• M. Riedl, A. Müller, and N. Wessel: Practical
considerations of permutation entropy, Eur. Phys. J. Special Topics
222, 249262 (2013).

• M. Zanin, L. Zunino, O.A. Rosso, and D. Papo :
Permutation Entropy and Its Main Biomedical and Econophysics
Applications: A Review, Entropy 2012, 14, 1553-1577.

• L. Zunino, M. Zanin, B. M. Tabake, D. G. Prez, O. A.
Rosso: Forbidden patterns, permutation entropy and stock market
inefficiency, Physica A 388 (2009) 2854-2864.
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Code (Try it yourself...)

https://math.dartmouth.edu/

~ddeford/time_series.html

https://math.dartmouth.edu/~ddeford/time_series.html
https://math.dartmouth.edu/~ddeford/time_series.html
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Conclusion

That’s all...

Thank You!
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