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Abstract

Enumerative Combinatorics is the study of counting problems.

Frequently, we can use concrete models to reduce abstract problems to more

manageable cases; an important example is the Fibonacci numbers, which

can be described as the number of ways to tile a 1×n rectangle with squares

and dominoes. We introduce a model based on seating rearrangements in a

classroom and show how it can be applied to a wide variety of problems.

Our main goal is to use the model to construct recurrences and closed form

expressions for the problems that we consider. Using techniques from

Combinatorics, Graph Theory, and Linear Algebra we will also prove several

theorems about the combinatorial structures generated by our model.

Notation

We will use the notation R(∗) to represent the number of permissible

rearrangements of a particular context-dependent structure. Subscripts will

be used to identify classes of rearrangements.

Introduction

In the early 1990’s, mathematicians from UCM calculated the number of

possible rearrangements of the students in a rectangular classroom, given

that each student could only move one desk in any direction [3, 7]. They

solved the 2× n case by constructing a matrix to represent the number of

rearrangements of a classroom of length n + 1, and used mathematical

induction to show that the total number is:

R(2, n) =


1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 0
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In order to solve the general 2m× n case they computed the permanent

of a symbolic imaginary matrix to obtain the solution R(2m,n)=

22mn
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Seating Rearrangements

We began our research by constructing combinatorial proofs of the

enumerations given in [3, 7]. To simplify the 2× n case, we colored the

classroom like a chessboard, and considered the movements of the students

from the white and black desks separately. We then constructed a bijection

between the “colored” seating rearrangements and the Fibonacci tilings of a

1× n rectangle to show that R(2, n) = F 2
n+1. The characteristic polynomial

of the recurrence, {−1, 1, φ
2
, φ}, lead us to an equivalent generalized power

sum.

A similar technique allows us to reduce the general case as well. Coloring

a 2m× n classroom allows us to represent the movement of each student by

a domino, covering the students original and final desks. This bijection leads

to the following theorem:

Theorem 1. The number of rearrangements of a 2m× n classroom,
R(2m,n), is equal to the square of the number of domino tilings of a
2m× n rectangle.

This is a much simpler problem, as domino tilings were completely solved

in the 1960’s by Kasteleyn, Temperley, and Fisher [2]. An example of both

the Fibonacci tilings and the general tilings can be seen in (fig. 1).

Figure 1: Domino Tilings Generated by a 2× 9 Seating Rearrangement

3-D Prisms

Our first extension of this model dealt with the related question, “How

many rearrangements exist in a m× n classroom if the students are

permitted to remain in their seats?” Classifying the endings of a 2× n + 1

classroom leads to the following homogeneous recurrence:

an+1 = 2an + 5an−1 + 4

n∑
i=3

an−i = an+1 = 2an + an−1 + 4

n∑
i=2

an−i

Then, computing an+2 − an+1 gives an+1 = 3an + 3an−1 − an−2, and

eigenvalues {−1, 2 +
√

3, 2−
√

3}. Combined with the initial conditions

a0 = 1, a1 = 2, and a2 = 9 we constructed the generalized power sum
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This sequence is equivalent to A006253 in the OEIS [6]. A006253 is

defined by the number of tilings of a 2× 2× n prism in R3 with 1× 1× 2

dominoes. We proved that these two structures are equivalent by

demonstrating a bijection between the seating rearrangements and the 3-D

tilings. An example of the mapping can be seen in (fig. 2).

The 3× n case has significantly more endings to consider. We were able

to exploit some of the symmetries of the structure to generate a ten term

recurrence for Rs(3, n):

an+1 = 6an + 21an−1 − 42an−2 − 89an−3 + 68an−4

+89an−5 + 42an−6 + 21an−7 + 6an−8 + an−9

Taken with the initial conditions given in (tab. 1) this sequence is

equivalent to the number of perfect matchings of P2 × P3 × Pn as computed

by Lundow [4]. More generally we showed that this relation holds for any

integer m.

Theorem 2. The number of seating rearrangements, where students
are allowed to remain in their seats, in an m× n classroom, Rs(m,n),
is equal to the number of perfect matchings in P2 × Pm × Pn.

Currently, matchings of this sort are calculated through extensive matrix

manipulations and numerical algorithms. By using our model to express

them as counting problems, we are able to generate recurrences and closed

form expressions, which are much easier to implement.

2× n Endings 2× 2× n Endings Bijection

Figure 2: 2× n Seating Rearrangements and 2× 2× n Prism Tilings

n 1 2 3 4 5 6 7 8 9

R(3, n) 3 32 229 1845 14320 112485 880163 6895792 54003765

Table 1: Rs(3, n) initial conditions

Generalizations

Generalizing our model allows us to count in more abstract

circumstances. This is an important example of the applicability of the

model; by finding formal generalizations, we can reduce complex instances

of problems in other fields to questions about seating rearrangements that

we can answer combinatorially.

. Set Theory. Given a set S = {s1, s2, s3, . . . sk} we define a restriction,

R = {A1, A2, A3 . . . Ak}, on S, where each Ai ⊆ P(S). Then, we want to

count the number of permutations, σR(S), that satisfy σ(si) ∈ Ai for all

1 ≤ i ≤ k. Note that there are
(
k2
)k

possible R for any given set with k
elements.

. Digraphs. Define a digraph D = (V,E), where the vertices in V are the

elements being rearranged, and for any x, y ∈ V , let (x, y) ∈ E if an

element in position x is permitted to move to position y. Then, we want to

count the number of cycle covers of D. This is equivalent to computing the

permanent of a 0− 1 matrix, which is difficult in general [8]. Permanents

also have a deep connection to graph matchings, which have many

applications. Thus, our model can be used to provide expressions for these

difficult and important problems.

Fibonacci and Lucas Tilings

Two of the best known integer sequences are the Fibonacci sequence and

the Lucas sequence. We can model both of these sequences with our model

and its generalizations. The seating rearrangements and digraphs are

straightforward constructions, but the set theory model is more complex. To

count the Fibonacci numbers we let S = {1, 2, 3...k}, and define each

Ai = {i− 1, i, i + 1}. To define the Lucas numbers, perform the addition

(mod k).

Permanents and Cycle Covers

Given a digraph, D, the adjacency matrix of D is a 0− 1 matrix whose

entries represent the edges in the digraph. The permanent of a matrix is

defined exactly like the determinant, without taking in to account the the

sign of the permutation. Unfortunately, this small change means that there

are no exact polynomial-time algorithms to calculate the permanent of an

arbitrary matrix [8]. The best known algorithm to compute a permanent,

and thus the quickest deterministic way to compute the cycle covers of a

digraph, is Ryser’s Algorithm.

Ryser’s Algorithm. Given a zero-one, n× n matrix M . Denote a
sub-matrix of M created by deleting exactly r rows of M as Mr. Then
let RSP (Mr) represent the product of the row sums of Mr. Compute
the sum of all possible RSP (Mr) over each possible value of r. This
gives us the final expression for the permanent of a matrix as

per(M) =

n∑
r=0

(nr)∑
i=1

−1rRSP (Mr)

This algorithm is still O(2nn2) in complexity time, but that is much better

than the O(n!) of cofactor expansion. Sometimes combination methods

offer improvements for sparse graphs. Also, if the matrix is planar and

bipartite, we may instead form a biadjacency matrix and use the pfaffian

method or FTK Algorithm.

Consider the digraph shown in (fig. 3). Its adjacency matrix, A, is

A =



0 1 0 0 0 0 0

0 0 1 0 0 1 1

0 0 0 1 0 1 1

0 0 0 1 1 0 0

0 0 1 0 1 0 0

0 0 0 0 1 0 1

1 0 0 0 0 0 0


Since Per(A) = 2, we know that there are two cycle covers, which are

also shown in (fig. 3). In 1966, Harary and Beineke showed that the

adjacency matrix of a digraph has its permanent equal to its determinant if

and only if the digraph contains no odd cycle covers [1]. A cycle cover is

defined to be odd if it contains an odd number of even cycles, or even if it

contains an even number of even cycles.

Thus, cycle cover 1 is an odd permutation because it is composed of one

even cycle and one odd cycle. Cycle cover 2 is composed of three odd cycles

and no even cycles, so it is an even cycle cover. Since determinants are

much easier to compute than permanents, it is simpler to obtain closed

forms for the number of rearrangements on a graph if we can compute the

cycle covers in terms of determinants. To this end, we constructed several

families of graphs with equal permanent and determinant (fig. 4).

Original Digraph Cycle Cover 1 Cycle Cover 2

Figure 3: Cycle Covers of a Digraph[1]

G5,6,7 K5 W6

Figure 4: Digraphs with Per(A) = Det(A)[1]

Chess Problems

As an extension of the original problem, we asked the following question,

“Given a m× n chessboard, with a single game piece on each square, how

many rearrangements are possible if each piece must make exactly one legal

move?” At most one move? Can these problems be solved with recurrence

techniques?

We began by considering rearrangements of kings, queens, bishops,

knights, and rooks, on boards of size 1× n, 2× n, 3× n, and 4× n. Several

of the sequences were equivalent to ones already in the OEIS, but many

were not. The rearrangements for the kings, bishops, and knights tend to

satisfy recurrences, while queen and rook rearrangements do not. However,

the number of terms in the rearrangements grows geometrically. For

example, the king rearrangements satisfy recurrences of order 2, 3, 10, 27,

and 53, for boards with one through five rows respectively.

These chess problems can also be stated in terms of digraphs. Examples

of these graphs are shown in (fig. 5). Notice that since the bishops must

remain on a fixed color, their graph consists of two connected components,

while the knights, who alternate between colors each move, have a bipartite

graph. We counted the number of rearrangements for these structures by

constructing the appropriate digraph and computing its permanent

numerically. Similarly, we computed the rearrangements with stays

permitted by adding the appropriate identity matrix to the adjacency

matrix and recomputing the permanent.

A famous problem in graph theory and combinatorics is the Knight’s

Tour. This question asks for the number of distinct Hamiltonian cycles on

the 8× 8 knight graph. The number of tours was finally computed to be

26,534,728,821,064 in 1997 [5]. We asked a similar question about

knight rearrangements. In order to determine the number of rearrangements

on a 8× 8 board we took advantage of the bipartition and constructed a

biadjacency matrix. This left us a 32× 32 matrix. Expanding the least

dense rows by hand allowed us to sum over the permanents of 4,096 24× 24

matrices leading to our final answer. The number of knight rearrangements

on an 8× 8 board is 8,121,130,233,753,702,400.

Knight Moves Rook Moves Bishop Moves

Figure 5: Chessboard Rearrangement Graphs[2]

Checkers Problems

We also computed these values for checkers pieces. Checkers without

stays only permit rearrangements when both m and n are even. Checkers

rearrangements with stays lead to systems of linear recurrences, which can

be solved combinatorially, without using permanents. These systems come

from analyzing the endings based on the number of checkers in the last

column. The following system represents the 2× n checkerboard

rearrangements.

an = bn−1 + 2an−2

and

bn−1 = an−2 + 2bn−2 + 4an−4

Substitution then gives a final solution

an = 2an−1 + 3an−2 − 4an−3 + 4an−4

Fibonacci Relations

These chess piece rearrangements provided us with more interesting

relations to the Fibonacci numbers.

. The number of 1× n king rearrangements is equal to the nth Fibonacci

number.

. The number of 2× n bishop rearrangements is equal to the square of the

nth Fibonacci number.

. The number of 2× 2n knight rearrangements is equal to the fourth power of

the nth Fibonacci number.

. The number of 2× 2n− 1 knight rearrangements is equal to the product of

the squares of the nth and n− 1st Fibonacci numbers.

Graph Families

Finally, we applied the rearrangement model to three well-known families

of graphs, in order to analyze their perfect matchings (fig. 6). Perfect

matchings are often used by computational chemists to analyze organic

compounds, they are also used by theoretical physicists to model atomic

interactions [2]. These studies led to the following three theorems.

Theorem 3. The number of rearrangements on the nth iteration of a

k−polygonal lattice, Rl(k, n), is equal to

. the number of perfect matchings on P2 × Ck × Pn if k is even or

. the number of perfect matchings on Ck × Pn if k is odd.

Theorem 4. The number of rearrangements on the nth wheel graph,
Rw(n) is equal to n2.
Theorem 5. The number of rearrangements without stays on an
n−cube, RH(n), is equal to the square of the number of rearrangements
with stays on a n− 1 cube, RHs(n− 1), which is in turn equal to the
number of perfect matchings on an n cube.

Polygonal Lattice Wheel Graph Hypercube

Figure 6: Arbitrary Graph Families[3,2,2]

Conclusions and Extensions

Our combinatorial seating rearrangement model can be applied to many

subjects, both in mathematics and the physical sciences. Using

combinatorial arguments to generate closed forms and recurrences is a

valuable technique for describing the structure that underlies these

problems. We also hope to be able to extend our results by considering the

following problems:

. Adapting this model to analyze problems in crystal physics combinatorially

. Computing the remaining 8× 8 chessboard rearrangements

. Finding a simple recurrence for the Wheel Graphs with stays

. Determining which ”well-known” sequences can be motivated with our

model

. Extending our model to Tori, Möbius Strips, the projective plane and other

surfaces

. Constructing interesting families of digraphs with Per(A) = Det(A)
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