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Recurrence Relation Solutions
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Motivating Problem

Chessboard Tiling Sequences

We are interested in integer sequences formed in the following fashion:

Definition

Given a fixed set of tiles T and integer k let Tn be defined as the number
of ways to tile a k × n board with tiles in T as n ranges over the natural
numbers.
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Motivating Problem

Recurrence Relations

In 2009, W. Webb, N. Criddle, and D. DeTemple proved that every
such sequence satisfies a linear, homogeneous constant–coefficient
recurrence relation (LHCCRR).

We generalized to matchings on families of graphs/hypergraphs and
counting cycle covers on families of digraphs

Existence proof by constructing such a relation

Unfortunately...
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Motivating Problem

Upper Bound

The constructed relation is spectacularly bad and not feasible to
compute for any interesting problem. For instance the following table
shows the bound given in the proof and the actual minimal recurrence
order for a simple family of tiling problems:

Table: Simple Example

k 1 2 3 4 5 6 7 8 9 10
Upper Bound 1 4 9 25 64 169 441 1,156 3,025 7,921
O(Tn) 1 2 2 3 4 6 8 14 19 32



Seminar Talk

Motivating Problem

Upper Bound

The constructed relation is spectacularly bad and not feasible to
compute for any interesting problem. For instance the following table
shows the bound given in the proof and the actual minimal recurrence
order for a simple family of tiling problems:

Table: Simple Example

k 1 2 3 4 5 6 7 8 9 10
Upper Bound 1 4 9 25 64 169 441 1,156 3,025 7,921
O(Tn) 1 2 2 3 4 6 8 14 19 32



Seminar Talk

Motivating Problem

Why it matters...

Initial Conditions

Other Forms/Root Finding

Identities
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Motivating Problem

Example Parameters

Example

Let T contain 1× 1 and 2× 2 squares and Tk,n be the number of ways
to tile a k × n rectangle with T .
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Methods

Methods

There are many methods to approach these problems:

Computationally

Cayley–Hamilton Theorem

Count indecomposable blocks

· · ·
For theoretical results the successor operator method is very convenient.
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Methods

Successor Operator Method

1 Construct a system of LHCCRRs based on the number of ways to
tile the last row

2 Re–write as a system of polynomials in the successor operator

3 Form a matrix from these polynomials

4 The symbolic determinant of this matrix is an annihilating
polynomial for the sequence Tn
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Methods

7× n Rectangle Endings
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Methods

7× n Rectangles

an = an−1 + 5an−2 + 2bn−1 + 2cn−1 +

2dn−1 + 2en−1 + 4fn−1 + 2gn−1 + hn−1

bn = an−1 + bn−1 + cn−1 + 2dn−1 + en−1 + 2fn−1

cn = an−1 + bn−1 + cn−1 + dn−1 + en−1

dn = an−1 + 2bn−1 + cn−1 + gn−1 + hn−1

en = an−1 + bn−1 + cn−1

fn = an−1 + bn−1

gn = an−1 + dn−1

hn = an−1 + 2dn−1
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Methods

7× n Rectangles

M =



E 2 − E − 5 −2E −2E −2E −2E −4E −2E −E
−1 E − 1 −1 −2 −1 −2 0 0
−1 −1 E − 1 −1 −1 0 0 0
−1 −2 −1 E 0 0 −1 −1
−1 −1 −1 0 E 0 0 0
−1 −1 0 0 0 E 0 0
−1 0 0 −1 0 0 E 0
−1 0 0 −2 0 0 0 E
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Methods

7× n Rectangles

A Characteristic Polynomial:

det(M) = E 9−3E 8−30E 7 +17E 6 +138E 5−85E 4−116E 3 +42E 2 +32E

Recurrence Relation:

an = 3an−1+30an−2−17an−3−138an−4+85an−5+116an−6−42an−7−32an−8
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Methods

Symmetry

In order to reduce the upper bound we need to minimize the number
of equations in our system

Trivial improvements (length of tiles, generalized Fibonacci numbers)

Symmetry

NOTE: No guarantee of minimality
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k = 7
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Counting Tiling Orbits

Counting Distinct Tilings

Burnside’s Lemma

O(Tk,n) =
1

|G |
∑
g∈G

|Fix(g)|

Pòlya’s Enumeration Theorem

Difficulties
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Counting Tiling Orbits

Example: Preliminaries

In order to prove the upper bounds for each sequence constructed by our
example, we need some simple lemmas:
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Counting Tiling Orbits

Example: Preliminaries

Lemma

The number of distinct Fibonacci tilings S(fn) of order n up to symmetry

is equal to
1

2
(f2k + fk+1) when n = 2k and

1

2
(f2k+1 + fk) when

n = 2k + 1.

Lemma

The number of distinct Padovan tilings S(Pn)of order n up to symmetry

is equal to
1

2
(P2k + Pk+2) when n = 2k and

1

2
(P2k+1 + Pk−1) when

n = 2k + 1.

Lemma

The number of endings with no consecutive 1× 1 tiles is equal to Pn+2.
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Counting Tiling Orbits

Lemma Proofs

The key to the first and second lemmata is to realize that since
every reflection of a particular tiling is another tiling we are
over–counting by half, modulo the self–symmetric tilings. Adding
these back in and a little parity bookkeeping completes the results.

The second lemma follows from a standard bijective double counting
argument.
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Counting Tiling Orbits

Self–Symmetric Fibonacci Tilings
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Counting Tiling Orbits

Example: Conclusion

Theorem

The minimal order of the recurrence relation for the number of tilings of
a m × n rectangle with 1× 1 and 2× 2 squares is at most
S(fn)− S(Pn) + 1 or

1

2
(f2k + fk+1 − P2k − Pk+2) + 1 (1)

when m = 2k, and

1

2
(f2k+1 + fk − P2k+1 − Pk−1) + 1 (2)

when m = 2k + 1.
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Counting Tiling Orbits

Example Order Bounds

Table: Comparison between the derived bound and the actual order

n 2 3 4 5 6 7 8 9 10
Order(an) 2 2 3 4 6 8 14 19 32
Bound 2 2 3 4 7 10 17 26 44
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Counting Tiling Orbits

Connections

What does this example show in general?

We can give a much better upper bound for the recurrence order

However, a similar argument can be used to provide a convenient
lower bound, say cfn for some c < 1

2

Hence, asymptotically the growth rate is still exponential

:(:)

On the bright side...
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Colored 1 × n Tilings

General 1× n Case

In the preceding example, knowing two 1× n cases allowed us to reduce
the upper bound from 1, 156 to 10 without a significant amount of extra
effort. Here we give an expression for all 1× n rectangular tilings, where
the tiles in T are allowed to have multiple colors.
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Colored 1 × n Tilings

Notation

We begin by defining some convenient notation. Since we are covering
boards of dimension {1× n|n ∈ N}. Let T = (a1, a2, a3, . . .), where am is
the number of distinct colors of m–dominoes available. Then, Tn is the
number of ways to tile a 1× n rectangle with colored dominoes in T .
Connecting to our example, the Fibonacci numbers would be
T = (1, 1, 0, 0, 0, . . .) while the Padovan numbers have
T = (0, 1, 1, 0, 0, 0, . . .).
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Colored 1 × n Tilings

Coefficients

We also need to define a set of coefficients based on the parity of the
domino length and the rectangle length.

cj =


Tn− j

2
j ≡ n ≡ 0 (mod 2)

0 j ≡ 0, n ≡ 1 (mod 2)
0 j ≡ 1, n ≡ 0 (mod 2)
Tn− j−1

2
j ≡ n ≡ 1 (mod 2)

(3)
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Colored 1 × n Tilings

Coefficient Motivation
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Colored 1 × n Tilings

Complete Characterization of 1× n Tilings

Theorem

Let T be some set of colored k–dominoes, then the number of distinct
tilings up to symmetry of a 1× n rectangle is equal to

1

2

(
Tn +

∞∑
i=1

aici +
T n

2

2
+

(−1)nT n
2

2

)
(4)
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Colored 1 × n Tilings

Lucas Tilings

It is natural to wonder if these methods could be adapted to give a
similar formula for generalized Lucas tilings on a bracelet or necklace.
Unfortunately, the complexity of the underlying symmetric groups makes
this a much more complex problem. Even in the simplest case we have:

Theorem

The number of distinct Lucas tilings of a 1× n bracelet up to symmetry
is:

d n−1
2 e∑

i=0

 1

n − i

∑
d|(i,n−1)

ϕ(d)

( n−i
d
i
d

) (5)
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Larger Rectangular Tilings

Larger Rectangles

As useful as this characterization is, counting distinct tilings of more
general rectangles is also an interesting problem on its own. Some of the
earliest motivations for this type of tiling problem arose in statistical
mechanics and other applied fields where the notion of symmetric
distinctness is particularly relevant. The expressions in these cases are
more complex, but often give nice closed forms as well.
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Larger Rectangular Tilings

k > 1 Example

Example

The number of distinct tilings of a 3× n rectangle with squares of size
1× 1 and 2× 2 is

1

3

(
22n−1 + 2n + 2n−1 +

1 + (−1)n

2

)
(6)

when n is odd, and
1

3

(
22n + 2n + 2n−1 + 1

)
(7)

when n is even.
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Larger Rectangular Tilings

Symmetry Conclusion

Arbitrary Tile sets

Restricted Tile sets

Dominoes / Kasteleyn’s Identity / Perfect Tiles√√√√22mn

2m∏
t=1

n∏
s=1

(
cos2

(
sπ

n + 1

)
+ cos2

(
tπ

2m + 1

))
(8)
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Larger Rectangular Tilings

Vector Spaces

Given a particular recurrence relation R of order n, the set of sequences
that satisfy that relation form a vector space (over C). Since each
sequence is uniquely determined by its initial conditions, the order of the
space is also n.
If the roots of R are α1, α2, . . . , αk with respective multiplicities
m1,m2, . . . ,mk , then the set of generalized power sums (GPS) of the
form:

k∑
i=1

pi (n)αn
i

where the pi are polynomials of degree strictly less than mi forms an
equivalent vector space.

If we consider the set of all sequences that satisfy some LHCCRR and the
set of all GPS of algebraic numbers, we see that these larger sets form a
commutative ring (actually an integral domain)
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Larger Rectangular Tilings

Bases

Since we have a vector space, it makes sense to talk about a basis
for that space

What sequences should we select?

GPS coefficients / Sequence terms / Generating function numerator

Consider the tribonacci numbers, Padovan numbers etc.

Combinatorial interpretations (fn) / Number–theoretic properties
(Fn)
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Lucas Sequences

Second Order

Luckily, in the case of second order sequences a natural basis presents
itself.
Considering the simplest second order relation:

Tn = Tn−1 + Tn−2

We can take F0 = 0 and F1 = 1 as well as L0 = 2 and L1 = 1. Obviously
[0, 1] and [2, 1] are linearly independent as initial conditions, however, the
respective GPS are also simple:

Fn =
ϕn − ϕn

√
5

Ln = ϕn + ϕn
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Lucas Sequences

Identities

Obviously, there are innumerable identities linking these two very
well known sequences...

This is exactly what we want from a basis

What about other second order sequences?
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Lucas Sequences

Lucas Sequences

Lets consider the more general form of a second order recurrence relation:

Tn = PTn−1 − QTn−2

This relation has:

characteristic equation x2 − Px + Q

discriminant D = P2 − 4Q

roots α = P+
√
D

2 and β = P−
√
D

2
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Lucas Sequences

Tn = PTn−1 − QTn−2

Definition (Fundamental Lucas Sequence)

u0 = 0, u1 = 1

with GPS

un =
αn − βn

√
D

Definition (Primordial Lucas Sequence)

v0 = 0, v1 = 1

with GPS
vn = α + β
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Lucas Sequences

Identities

Similar to the Fibonacci/Lucas identities there exist many relationships
between the Lucas sequences satisfying any such recurrence relation.
Particularly interesting are the following trigonometric identities:

un =
2Q

n
2 sin

(
in
2 ln α

β

)
√
−D

and

vn = 2Q
n
2 cos

(
in

2
ln
α

β

)

Other identities
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Lucas Sequences

Generalized Lucas Sequences

Having a nice result for the second order case it is natural to wonder
about extensions to higher orders. In particular, which properties would
we like to have in such a basis

“Terms for free”

Fundamental divisibility sequences

Primality Testing

University of Calgary; Williams, Guy, and Roettger

Symmetric functions
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That’s all...

THANK YOU
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