
TAYLOR POLYNOMIALS

DARYL DEFORD

1. Introduction

We have seen in class that Taylor polynomials provide us with a valuable tool for approximating
many different types of functions. However, in order to really make use of these polynomials we
need to understand how closely they actually match the function values we are interested in. This
leads us to define a collection of “remainder functions”

Rn(x) = |f(x)− Tn(x)|

to measure the difference between the actual function value f(x) and the Taylor approximation
Tn(x). We then hope to be able to control the size of this error term by picking n large enough so
that Rn(x) is small on some interval containing our initial value a. This will gives us a guarantee
that our approximation is actually useful. Figure 1 shows an example of this for the function
e−x sin(x) centered at a = 0.

(a) Function Plot (b) Error Plot

Figure 1. An example of the error of a Taylor approximation. In plot (a) the
original function f is in blue and the Taylor polynomial is plotted in green. The red
lines show an error bound of .1 around f . Thus, when the green line is inside the
red bounds the approximation given by the Taylor polynomial has error less than .1.
Part (b) show the plot of the error function R3(x). From this plot it is easy to see
that for values of x between −1 and 1 the Taylor approximation is pretty good but
when x > 1.5 the error is much higher.
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2. Taylor’s Inequality

The tool that we have to bound this error value is known as Taylor’s inequality. Formally, it says
that if |fn+1(x)| ≤M for all x in the interval [a− d, a + d] then

|Rn(x)| ≤ M

(n + 1)!
|x− a|n+1 (2.1)

Practically, what this inequality says is that if we have an interval around a that we are interested
in, as long as we can bound the next derivative of f on the interval, we can estimate the size of
the error of our Taylor approximation as a function of the order of the Taylor polynomial, n. This
inequality looks a little complicated, so let’s talk briefly about each of the individual components.

2.1. Finding M . Perhaps the most mysterious part of the equation is the number M bounding
the “next” derivative of f . To get some intuition for why this appears in our inequality, let’s take
a look at the actual formula for the Taylor series:

Tn(x) =
n∑

k=1

f (k)(x−a)k = f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+

f ′′′(a)

3!
(x−a)3+ · · ·+ f (n)(a)

n!
(x−a)n

When we use a Taylor polynomial approximation we stop this series after a finite number of terms
so for the functions that we care about1 we can express the remainder term function, Rn(x) in terms
of the rest of the terms in the series:

Rn(x) = |f(x)− Tn(x)| (2.2)

=
∣∣∑∞

k=1 f
(k)(x− a)k −

∑n
k=1 f

(k)(x− a)k
∣∣ (2.3)

=
∣∣∑∞

k=n+1 f
(k)(x− a)k

∣∣ (2.4)

= |f
(n+1)(a)
(n+1)!

(x− a)n+1 + f (n+2)(a)
(n+2)!

(x− a)n+2 + · · · | (2.5)

Observe how closely the terms in Taylor’s inequality (2.1) match the first summand in (2.5). What

this is saying is that the most important term in estimating Rn(x) comes from f (n+1)(a)
(n+1)!

(x − a)n+1

which is the first term left–over after subtracting Tn from f . Thus, is we can find a number M that
is larger than fn+1 on our interval we can use it in place of fn+1 in the formula to get a simpler
bound that works over the entire interval.

Although this explains where M comes from it doesn’t tell us anything about how to actually
find it. There are three main techniques that we will use. The simplest case is when f is a sin or
cos function. In these cases we know that the derivative alternate sin → cos → − sin → − cos →
sin → · · · . All of these functions have |fn| ≤ 1 and so when f is composed of sin and cos we can
just take M = 1 to bound our derivative no matter what order it is. For other functions we will
need a different approach from Math 3.

We are trying to find the maximum value of fn+1 over some interval. This is just a standard
optimization problem from calculus, where we take the derivative and set it equal to zero to search
for critical points. Be very careful here to also check the endpoints of the interval as many of the
functions that we analyze are either strictly increasing or decreasing, so they will not have any critical
points on the interval and so the maximum value will occur by plugging in either the left or right

endpoint. For example, if fn+1 =
−2

x3 + 4
and our interval is [5, 11] then the function is increasing

over the entire interval so it takes its maximum at x = 11 where fn+1(11) =
−2

113 + 4
≈ −.001498.

Thus we could choose our value for M to be anything larger than | − .001498|.

1who are equal to their Taylor series
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In order to determine M we need to know the (n + 1)st derivative of our function f as well as
the interval. Usually, the function is given to us as part of the problem statement but we may need
to determine the interval before choosing a value for M . One exception to this is mentioned above
with the sin and cos functions, where we can usually simply take M = 1.

2.2. Choosing d. The second slightly confusing portion of the inequality is the interval: [a−d, a+d].
This is sometimes constrained by our problem but other times we get to make a choice. For example,
if we want to approximate the value of a function at a specific point, we must choose an interval
that contains the point but we may want to choose a larger interval to make our function easier to
evaluate. Looking at the contribution of the d value in (2.1) we see that the maximum of |x− a|n+1

is dn+1.
This allows us to give a single estimate on the error for the entire interval by replacing |x− a|n+1

by dn+1. Let’s look at an example: Assume that we have M = 2, n = 4, and our entire interval is
[1, 7] = [4− 3, 4 + 3]. If we want to estimate the error at a single point (say x = 3) we can:

|R4(3)| ≤ 2

5!
|4− 3|5 =

1

60

On the other hand, if we want a single bound for the entire interval we can say that for any x in
[1, 7] the error is bounded by:

|R4(x) ≤ 2

5!
d5 =

2

5!
35 =

81

20

Obviously, at the point x = 3 this is a much worse bound but it gives us a single number that works
for the entire interval, which is frequently all we really want.

2.3. Choosing n. Many times n is given to us as part of the problem statement but occasionally
we are asked to find the number of Taylor polynomial terms needed to approximate a particular
value. In this case our best bet is usually a little trial–and-error type approach, substituting in
some values for n and seeing what they do to the bound.

For example, if we want our error bound to be less than .001 on the interval [−2, 2] (so a = 0 and

d = 2) with M chosen to be 12, we can make a table of values of
12

(n + 1)!
2n+1 for different choices

of n:

n Error Bound

2 16
3 8
4 3.2
5 1.067
· · · · · ·
9 .0034
10 .0006

Thus, for n ≥ 10 we have |Rn(x)| ≤ M

11!
211 ≈ .0006 < .001 which is what we wanted. This tells us

that we should use the 11th order Taylor polynomial T11 to approximate our function. Frequently,
we can estimate the effects of n, particularly when d is small but checking a few small values is
usually good enough.
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3. How to use the error estimate

Now that we understand the parts of the inequality a little better it is nice to look at how we might
actually use the formula. The thing to keep in mind is that there are three algebraic components
(n, d, and the error) to the expression and so if we are given values for two of them we can solve
for the third. The simplest case is when we are given n and d and just need to find the error over
the interval. In this case we have all the components of the right–hand–side of the equation and
can simply substitute in to obtain the error, Rn(x), over the given interval.

In the other two cases, we are given a particular error value that we want to obtain and need to
determine either the number of terms n or the size of the interval d. As mentioned in the previous
section, if we are looking for n our first approach is generally to make a table of values and continue
trying values of n until we get lower than the desired error value. If we are looking for d, then we
can rearrange the inequality to choose a d value that satisfies:

n+1

√
|Rn(x)| · (n + 1)!

M
≤ d

4. Examples

In this section we examine the three homework exercises from Daily HW #3. Each of these
problems provides us with a different set of information and asks us to find or estimate the remaining
components using the Taylor inequality and a little algebra.

4.1. Section 11.11 #15.

Problem. Approximate the function f(x) = x
2
3 at the point a = 1 with a third order Taylor

polynomial. What is the error associated with this approximation for .8 ≤ x ≤ 1.2?

Solution 1. For this problem we are given f = x
2
3 , n = 3, a = 1, and d = .2 and simply need to

compute the bound on |Rn(x)|. In order to use the inequality we also need to find a value for M so
we will start by taking n + 1 = 4 derivatives of our function f :

f(x) =x2/3 f(a) = 1

f ′(x) =
2

3
x−

1
3 f ′(a) =

2

3

f ′′(x) =
−2

9
x−

4
3 f ′′(a) =

−2

9

f ′′′(x) =
8

27
x−

7
3 f ′′′(a) =

8

27

f ′′′′(x) =
−56

81
x−

10
3 f ′′′′(a) =

−56

81

This gives us that the Taylor polynomial is:

T3(x) = 1 +
2

3
(x− 1)− 1

9
(x− 1)2 +

4

81
(x− 1)3

To choose a value for M ≥ |f ′′′′(x)| = |−56
81

x−
10
3 | we notice that this is always increasing on this

interval and thus the maximum occurs at the left endpoint: .8. This means that we can choose any
value for M that is greater than or equal to |f ′′′′(.8)| ≈ 1.4546. Choosing M = 1.5 is a convenient,
nearby value that makes our computation a little easier.

At this point we have all the pieces we need to get the error from the inequality:

|R3(x)| ≤ 1.5

24
(.2)4 = .0001
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.
This example shows that on this interval even a small value of n is able to match the function

quite closely:

]

(a)
[.8,1.2

]

(b)
[0,10

Figure 2. Plots for Problem 1. The first plot shows the function and approximation
on the interval, while the second shows the plot for a larger interval. Although the
match is almost perfect in (a) by the time x is around 4 the value of the approximation
is quite far from the actual function.

4.2. Section 11.11 #25.

Problem. Use Taylor’s inequality to determine the number of terms necessary to estimate e.1 to
within .00001.

Solution 2. In this problem, we need to start by determining what function f to use. Since we
want to estimate e.1 a natural choice is f(x) = ex. This then changes the problem statement to
estimating f(.1). Our next task is to determine a suitable a value. Since we are dealing with ex a
nice choice is a = 0 since e0 = 1. This is also a good choice because the value we want to estimate
which is .1 is close to zero.

Using this reasoning we decide to make our d = .1 so that the interval is [−.1, .1] which is the
smallest interval centered at zero that contains our desired x value. Our next step is to determine
M on this interval. Luckily, all of the derivatives of ex are the same and even better we know
that ex is an increasing function. Thus, any derivative of ex on the interval [−.1, .1] is bounded by
e.1 ≈ 1.105 and we can take M to be anything greater than or equal to this value.

At this point we have all of the information that we need and have to start trying values of n to
get the right–hand–side of Taylor’s inequality to be less than .00001:

|Rn(x)| ≤ e.1

(n + 1)!
(.1)n+1 < .00001

Substituting in n = 2 gets us ≈ .00018 and moving to n = 3 gives ≈ .0000046 so 3 terms is
definitely enough. In this case we can compute the actual error value at the point: |R3(.1)| =
.00000425140898108189 which is only slightly less than the bound we get from Taylor’s inequality.
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4.3. Section 11.11 #27.

Problem. Use Taylor’s inequality to estimate the range of x values where the approximation to
sin(x) ≈ x− x3

6
has error less than .01.

Solution 3. For this problem we are trying to determine the right value of d to build our interval.
We are given f = sin(x) and a Taylor polynomial. In this case, the approximation is both T3 and
T4 since sin is an odd function and hence has no even terms in the corresponding Taylor expansion.
We will use n = 4 throughout this solution since it gets a better bound but n = 3 would also work.

Since all the derivatives of sin are bounded by 1 on any interval we will simply take M = 1 from
the beginning. We now have all the information we need to compute the interval length:

.01 ≤ 1

5!
(d)5

5
√

1.2 ≤ d

1.037 ≤ d

Taking d = 1.037 gives us the interval [−1.037, 1.037] where our error is guaranteed to be less than
.01. Looking at the plot of the approximation and the error confirms our numerical calculations.
Note that in plot 3(b) the error line crosses the bound at ≈ ±1.037.

(a) Function Plot (b) Error Plot

Figure 3. An example of the error of a Taylor approximation for problem 3. In plot
(a) the original function f is in blue and the Taylor polynomial is plotted in green.
The red lines show an error bound of .1 around f . Thus, when the green line is inside
the red bounds the approximation given by the Taylor polynomial has error less than
.1. Part (b) show the plot of the error function R3(x). From this plot it is easy to see
that for values of x between −1 and 1 the Taylor approximation is pretty good but
when |x| > 1.1.
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