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An Introduction

Welcome

Welcome to the “Official” Written Qual Book! If you’re reading this, then you’re probably a first-year
graduate student at Dartmouth College and you’re hoping for some idea of what’s involved with the written
qualifying exam. This book contains a wide variety of information, including historical information about
the written exam, tips for getting through the first year of graduate school, and a collection of “complete”
solutions to the previous written qualifying exams.

The Written Exam

The first step on your journey to candidacy and eventual graduation is passing the written qualifying
exam. This section details some of the history of this test as well as the current format of the exam and
ways to prepare for it.

1.2.1 The Exam Itself

The best source for official material about the qualifying exam is the graduate handbook which is available
on the math department webpage. However, the information below should answer some of the “big
questions”:

• What is the format? The exam is broken into five topics exams, two separate exams in applied
mathematics, and one in each of algebra, analysis, and topology. Each exam will consist of a 3-hour
6-question written exam and each student must pass three of the five topic exams by the end of
summer to advance in the program.

• When is it? The exam usually takes place toward the end of June, typically the week before summer
classes begin. The entire written exam has historically been split up over three days.

• What topics are covered? The specific material is determined by the content of the respective
first year classes (101, 111, 103, 113, 106, 116, 126, 136, 104, and 114).
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• What resources are allowed during the exam? No external resources are permitted on the
exam. You must rely on the tools of the trade: pen(cil)s and paper.

• When is the exam graded? The problems are usually graded and scores are returned within a
week or two of the exam date.

• What happens if I fail? It is worth noting that every year that the written exam has been offered,
at least one student has failed the summer exam, so you are not alone. Currently, if you fail a section,
you must retake and pass that section in the fall (just before the start of fall term) to remain in the
program.

It is not necessary to completely answer every question to pass the qual and some credit may be
awarded for partial solutions. However, this does not mean that you should simply write down everything
that might be somehow relevant to the problem in an attempt to “score some points.” The faculty members
grading the exam are unlikely to be impressed by such an approach.

On the other hand, leaving a problem entirely blank does not send a particularly impressive message
either. In the event that you are not able to make significant progress on a problem, it might be worthwhile
to explain the approaches that you attempted and why they didn’t work out. This shows your thought
process without trying to slip something by the faculty.

1.2.2 History

Part of the “fun” of the qualifying exam is tracking the evolution of the format and question types over the
years. Although the collective history of the written exam is not as entertaining as the details contained
in The Qual Book1, there are still some interesting facets to be examined.

The “olden” days

The current form of the qualification system was adopted beginning with the 2011-12 school year. The
previous system did not have a written component. Instead, advancement to candidacy was contingent
on successfully completing four oral exams. Specifically, each student had to pass oral exams in algebra,
analysis, topology, and one additional topic of their choice. Students traditionally began taking oral
exams during the spring term of their first year. The introductory courses for graduate students were also
quite different as many of the course sequences were three quarters long instead of the current two. This
explains the structure of some of the current first year courses (e.g., 103 mashing together measure theory
and complex analysis into a single course and the lack of a general topology course).

Switching systems

Although the overall structure of the current qualification system (a written exam at the end of the first
year and two oral exams during the second year) was put in place in 2011, the transition was not entirely
smooth. The rules and procedures surrounding the written exam have been updated most years since it
began. Some of the changes were relatively minor, whereas others were quite significant. We describe some
of the steps in this evolutionary process below:

1If you’re unfamiliar with this resource, one of the other graduate students is sure to have a copy somewhere. When oral
qualifying exams come around, you might want to take a gander.
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• 2012: The first year of the exam is distinguished from later iterations in several notable ways. The
most obvious difference is the fact that the questions were not separated by topic. Each day of
the exam contained a mixture of question types. Additionally, the overall level of the questions on
this exam is lower than many of the following years, particularly in analysis and topology. Many of
the questions are derived from the basic knowledge sections of the previous system’s practice qual
questions.2

• 2013: The big change for the second year was the separation of question types: each day of the
exam featured material from only a single subject area.

• 2014: It was clarified this year that students could be separated from the program after the summer
exam.

• 2015: Major procedural changes were introduced:

(1) All students in good standing3 were guaranteed the ability to retake the exam in the fall if they
failed in the summer.

(2) Students who failed portions of the exam were only required to retake the sections that they
failed.4

(3) The policy that internal grades from the first year courses were to be given to the students at
the conclusion of the course was reinforced.

(4) The graded exams were made available to students after the exam.

• 2016: There were no significant updates to the qualifying exam rules this year. However, due to
a situation where the instructor of a course was unable to write questions for their portion of the
exam, another professor created the questions for the course.

• 2017: The first applied math exam was given this year. Students were required to select 3 out of
the 4 possible exams. Anyone who failed a section was asked to meet with faculty to discuss their
performance.

• 2018: This coming year, two distinct applied math exams will be given.

All of this goes to show that the written exam is not a polished product; it is still changing and
updating. We expect this to continue.

1.2.3 Looking Forward

As the current composition of the department is evolving rapidly, further changes to the qualification
system are being discussed by the faculty. We hope that this book will continue to be a valuable resource
regardless of the changes made to the qualifying format.

2Look for these practice problems on the math department webpage.
3That is, you have not been told you’re in bad standing.
4Prior to 2015, a student had to pass all three exams. If they were given a retake, regardless of how many they passed,

they still had to pass all three exams.
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1.2.4 Preparing for the Exam

There is no single “right approach” for studying the material in preparation for the written exam. Ever-
yone learns and masters material differently.5 That being said, some aspects of the preparation process
are sufficiently generic and helpful to warrant inclusion in this document. Our main focus is providing
suggestions about what material to study, how to study effectively, and what resources are most useful.

• The questions on the written exam are written by the faculty members that taught the respective
first year course. Thus your class notes from those courses are (hopefully) your first and best source
of study material. Additionally, homework and exam questions from those courses, as well as optional
exercises presented in lecture6, are also excellent places to start.

• Remember that the exam tests your ability to apply the knowledge that you gained in the courses
to problems. Thus it is not sufficient to simply know the statements of results that were presented in
class but, instead, understand how to apply them. Memorizing page after page of theorems, proofs,
and examples should not be a substitute for understanding.

• As mentioned above, it would be foolish for us to try and offer general, prescriptive advice on how to
study. Some people prefer to spend hours alone in silence revising their notes, while others prefer to
discuss mathematical topics aloud and debate the best approaches to individual problems. However,
there are a couple of things that are important regardless of your study method:

(1) Preparing for this exam requires a significant amount of consistent, sustained effort. Do not
put off your studying until the end of spring term. There are only a couple of weeks between
when classes end and the qualifying exam. That is not enough time to review 9 months worth
of material.

(2) Make sure to take a step back and view the forest as well as the trees. There are many
commonalities between the material presented in the first year courses and being able to make
connections across different areas of mathematics is an important part of the preparations
process.7 Try to summarize the important ideas and concepts from each course and use that
outline to guide your preparation.

• There are many different types of resources that can help you study for the exam. This book contains
the problem statements and solutions to the previous written exams and can give you an idea of the
general level and topics that have been included. As mentioned above, textbooks and written notes
for the course are also a good place to start. Additionally, older graduate students can provide some
insight into the problems that certain faculty prefer.8

• The single most useful thing you can do to prepare for the exam is to spend time with the faculty
members teaching the first year courses; they have office hours for a reason.

5After about 16 years of formal schooling, we hope that you have a good sense for how you learn best.
6For instance, you might hear “... you can prove this on your own time.” Maybe now is the time to do that.
7Sound familiar? Good! That means you read some of the graduate handbook.
8As with everything related to the written exam, the best source is the actual professor for the course in question.

Specifically, some well-meaning eager-to-help graduate students may offer opinions that are not actually rooted in experience
with the professor (or the course) in order to make you feel better. Exercise appropriate skepticism in all things.
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All of the information in this section is superseded by the following directive: talk to the professors.
Talk to them about the class material. Talk to them about the exam. Talk to them about how to prepare.
Just talk to them. One of the best parts of the graduate program at Dartmouth is the accessibility of the
faculty; make the most of it.

This Book

This book is intended as a record of the various written exams that have been given as part of the
mathematics graduate program at Dartmouth College. While the problem statements are available through
the math department’s website, students over the years have been unsure of whether or not certain problems
should be solvable for them. That is, given the flexibility that the faculty have with the course syllabi,
some “optional” topics become essential to a particular iteration of the course and makes an appearance
on the written exam.

By having a written record of solutions to the written exam problems, students will be able to look at
the methods used to solve the problems and judge for themselves whether or not the material is related
to what they have seen in class. Furthermore, by having complete solutions, this book can be a useful
studying tool.

1.3.1 Current Edition

This is the second edition of the Written Qual Book. We have added the Summer 2017 exam and fixed
solutions from the original version. No major stylistic changes have been implemented.

1.3.2 First Edition

This is the first edition of the Written Qual Book. We hope that the content addressed in the first three
chapters will evolve as the preliminary exam does and that future years of graduate students will work as
hard to make this resource useful and available to new students.

1.3.3 Format and Instructions

This book has been organized into three major sections: information, exam solutions, and exam com-
mentary. The informational chapters are intended to answer questions about the written qualifying exam
and offer generic advice. The exam solutions and commentary are split by subject, by year, and finally
by problem. In all of this, there is one very important caveat: expectations for the same problem
will be different when given by a different instructor. That is, each faculty member is responsible
for determining how much detail is required. If your algebra professor doesn’t care about the categorical
definition of “natural,” that’s fine. However, if they do, you better include that in your solution.

Each problem has a complete statement of the question, as asked on the written qualifying exam,
followed by a solution which was provided by one of the graduate students. Unsurprisingly, this solu-
tion should provide a detailed explanation of how the problem can be solved (occasionally with snarky
footnotes). There is also a hyperlink to take you to the commentary associated to that problem, if any.

The commentary chapters serve two major purposes:
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(1) It can be used to break a complicated problem into more conceptual pieces. For some problems, it
is easy to get lost in the details; to lose sight of what is happening. In these cases (we hope), the
commentary has extracted the essential proof and the details are found in the solution itself.

(2) It can provide context that would otherwise be missing. For instance, some non-intuitive problems
were given as homework in the core courses and so it isn’t as unreasonable for that group of graduate
students to solve it on their written exam.

The commentary chapters have been purposefully separated from the solutions to keep the solution sections
as “clean” as possible (for printing or specific types of studying).

1.3.4 Disclaimers

• This book was written by graduate students, for graduate students. As such, this book does not have
any Official Stamp of Approval from the faculty.

• We recognize that typos and mistakes are a given, but we have done our best to proofread and evaluate
the solutions provided in this book. When you find errors, please report them to the appropriate
authorities.

• The vast majority of the solutions (from the first 10 exams) were written and subsequently edited
by the authors. As such, please address comments, concerns, questions, and complaints to them.

• The solutions given will not always be the most elegant9 but we hope that additional, perhaps more
concise, solutions will be added to the commentary as time goes on.

1.3.5 Acknowledgments

We would generally like to thank the graduate students who have contributed solutions for this book:

• Class of 2017: Tim Dwyer, Everett Sullivan

• Class of 2018: Daryl DeFord, David Freund, Kate Moore, Justin Troyka

• Class of 2019: Ben Breen, Sara Chari

• Class of 2020: Juan Auli, Chris Coscia, Zach Garvey, Emma Hartman, Laura Petto, Lizzie Tripp

• Class of 2021: Victor Churchill, Sarah Manski, James Ronan

This book has been a wonderful opportunity for the graduate students to work together to create a
resource for future classes.

9In fact, do not expect any of the solutions to qualify for being in “The Book.”
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2

Surviving Your First Year

Many people find the graduate program to be quite different than most of their previous schooling and
the first year in particular can be quite an extreme transition. This chapter describes some of the integral
components of the first year of the graduate program at Dartmouth and provides some commentary on
graduate school in general.

First Year Outline

The graduate handbook1 contains an outline of the first year in Section 2.1. In order to more strongly
encourage you to read it, we do not reproduce that material here.

What is Graduate School?

A Ph.D. is a research degree and the purpose of graduate school is to train you to become an independent
researcher and mathematician. By joining the graduate program, you are joining the community of mathe-
maticians. There is a commensurate expectation that you will behave in a professional manner. Different
aspects of this will be discussed in ethics and teaching assistant (TA) training but, in all of your actions,
you should keep in mind that you are an adult mathematician representing Dartmouth College.

One of the tasks for your first year is deciding why you are here and what you want to do. The first
year of this program is difficult and some aspects of this are even by design. Pursuing a Ph.D. is a complex
task that trains you to be a research mathematician and requires a significant amount of independent work
and effort.

Unlike an undergraduate program, you are responsible for your learning.2 Thus, you must be willing
to take ownership for your learning and progress through the program. One of the purposes of the first
year is to force you to confront these issues. Mathematics research is a difficult career path and it requires
a significant amount of dedication. Part of this year is learning if you are able/willing to commit to your
own education and development.

1As you might have noticed, the authors of this document have a great deal of appreciation for the handbook. Read it.
2That is, you will probably have fewer people keeping tabs on you.
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There is a common temptation among graduate students to stick with what is easy and familiar. For
some, this means TA and teaching responsibilities; for others, it is coursework and problem sets. Do not
let these aspects of the program keep you from your primary goal of writing a successful thesis.

More Details

In this section, we provide details about some common confusions that confront first year students. If you
have any questions about topics not addressed here, people in the department are always happy to answer
questions.

2.3.1 Classes and Grades

Perhaps one of the more obvious and natural components to the first year experience is that you will be
taking classes.3 These classes should provide some amount of familiarity (in terms of structure) to help
you smoothly transition to graduate school. However, even in this, there are probably some unexpected
differences and adjustments:

• Dartmouth’s faculty have a propensity to incorporate Latin phrases in their lectures (e.g., nota bene,
a priori, a posteriori). It’s part of the faculty training program.

• Commutative diagrams (and category theory) are preferred to lines of equations.

• Problems can (and perhaps should) require you to apply material that is not directly taught in that
course.4 Since you are at Dartmouth, it is likely that you are used to getting excellent grades on
all of your homework assignments in math classes. Thus the scores on your first sets of graduate
assignments may come as a shock. This is a common situation and you can take comfort in the fact
that you are surrounded by people who have had (and are having) similar experiences.

If things are going well for you, that is fantastic but please remember that your classmates who
might be struggling are your peers and you can help them without being condescending. Denouncing
homework problems as “trivial” or “super easy” is not helpful commentary, regardless of the situation.

Assignments in graduate school require a much greater level of independent reading and thinking than
undergraduate work and making this transition is an important part of your first year experience.
You will undoubtedly have to make changes to your studying methods and scheduling priorities (e.g.,
beginning an assignment the night before it is due is unlikely to remain an effective strategy). This
is a good thing – graduate school is preparing you for something different than your undergraduate
program and change is inevitable.

• Exams are frequently designed as learning experiences. For some courses, the exams will be week-long
take-home assessments, full of complex multi-part problems.5

3This is not true of all graduate programs, certainly, but it’s how undergraduate programs work everywhere.
4This is one reason that talking to faculty can be so helpful: they might point out a weak area that you never knew about!
5Please be considerate of your classmates during these stressful times. Walking around saying things like “question � is

super easy” or “question 4 is impossible” is rude, unfair, and frankly unethical.
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Failing an exam in a core course is not necessarily like failing an exam in an undergraduate class.
Your goal is to master the material in time to pass the summer exam and, for some topics, this simply
takes longer than the four weeks before the first midterm or the ten weeks before the final. The faculty
members are aware of this. While your professor (hopefully) designed the exam to be passable, your
score on any one particular exam has little bearing on your final success in the program. If you
“fail,”6 you should certainly consult with the professor to see what you need to improve.

Even more significantly, grades are very different in Dartmouth’s graduate program. As is standard,
you will receive a letter grade for all of your hard work at the end of a course. For lecture courses, this
will be one of the following: F (fail), LP (low pass), P (pass), or HP (high pass). A “P” indicates that you
have done a sufficient amount of work to pass the class. This doesn’t (necessarily) correlate with a “C” in
a more traditional grading system, but it is the best analog.

If you receive an “LP” or an “F,” you should consult faculty and the graduate handbook about what
this means. These are unsatisfactory grades and can lead to immediate consequences for you. Do not take
them lightly.

Pass is the normal grade. Even if you productively work on problems from dawn ’til dusk, turn
in the most magnificent and elegant solutions, and ace the exams, some faculty simply do not assign high
passes. Others do and they may use whatever criteria they feel is justified for doing so. Let us reinforce
this (since it is something that takes a little bit of time to get used to): the letter “P” has no quantitative
meaning. There is no particular average score cut-off that must be achieved to obtain it and trying to
interpret these grades as anything other than decoration on a transcript is the road to madness. Similarly,
the “HP” on your transcript gives you no further advantages than a pass would have.7

Since the grades reported to the college are not particularly useful in gauging your progression on the
qual material, the department has instituted a set of internal grades for the 8 qual courses. These grades
(on a scale of 1-5) are delivered to your mailbox sometime after the term ends and provide a few more
details about how the course instructor feels about your readiness for the written exam. A low (or high)
score here is not predictive but rather another piece of information to help you evaluate your progress.

2.3.2 Advising

As a new graduate student, you’re inundated with different advisers. These individuals are supposed
to assist you with the transition to graduate school as you request. Everyone has some silly questions
about grad school when they start (and it’s much better to get them answered than to let them remain
mystifying). The two advisers you will interact with most commonly as a first year are described below:

• Adviser to graduate students: This individual has more of a “global” advising role. They are supposed
to make sure you’re doing all the different mandatory things that you’re supposed to be doing
(registering for classes, attending classes, settling into the department, applying for the NSF-GRP
fellowship, etc.).

• Individual adviser: This individual may change (if you wish) and is “your” adviser for the year. They
are supposed to help you navigate the courses for the year, help you make informed choices about
what to do, and answer questions about life and times at Dartmouth.

6It is a little difficult to say exactly what this means given the relatively uninformative measure that is the LP/P/HP
system (read on!).

7That’s not to say that they’re worthless. Certainly they provide an ego boost (deservedly or not).
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2.3.3 Other Commitments

During the first year, there’s more involved with graduate school than “take and pass classes.” A lot more.

1. TA responsibilities: During your first year, you will TA (typically) during the fall and winter terms.
Your standard responsibilities will include holding tutorial sessions from 7-9pm three nights a week
and helping grade exams. It is tempting to devote significant amounts of time to your TA responsi-
bility, especially since the material is familiar and the work feels doable. However, do not allow your
TA preparation to compromise your own learning. Talk to the course instructors frequently – they
like to know what is happening with their students.

For some graduate students, this will not be a new experience (math center employment is fairly
common for undergraduates). However, this is not the same. You are representing the department
and, regardless of how it feels, there is a power differential that you should acknowledge.8

2. TA training: In the fall of your first and second years in the math program, you and your classmates
will be meeting with a faculty member to understand your role as a teaching assistant. The syllabus
for this training was developed in the math department and it helps to standardize the way that we
support the students in our courses.

3. Ethics: As a first-year graduate student at Dartmouth, you are expected to take part in ethics
training. This involves attending four 2-hour sessions throughout the term that cover different topics.
Although the standard ethics curriculum is not really designed for mathematics students, there has
been an attempt in recent years to update the syllabus to better reflect mathematical cultural norms.

4. GSS: The Graduate Student Seminar consists of talks by graduate students for graduate students
(and free pizza). You should attend this seminar every week. It is a good chance to find out what the
other graduate students in the department are doing and to get a feel for the research that happens
here.

In addition to the math and pizza, there is another important aspect to your involvement with GSS:
supporting the other graduate students in the program. Graduate school can be difficult and en-
couraging your peers and classmates is very valuable. Historically, this department has a reputation
for maintaining a supportive environment among the graduate students and the collaborative atmos-
phere fostered by the GSS program is part of that. Finally, it is likely that, at some point, you will
also be in need of help or support yourself. Being an active part of the graduate community makes
it much easier for other people to reach out to you.

5. Colloquium: The department colloquium brings in professors from other schools to give talks about
their research. You are expected to attend this seminar every week. Even though the talks are
usually advanced, it is an excellent opportunity to get exposure to many different research fields.

6. Gauss: You should setup an account on the department server early on. This will get you access to
a math.dartmouth.edu e-mail account as well as a webpage.

7. CV: As a graduate student, you should maintain an updated CV.9 Keeping track of your accom-
plishments as they happen is much easier than trying to remember them all when you are trying to
put together a job application. Ask an older student for a template if you don’t have one.

8Read the TA guidelines (available on the math department webpage!).
9Keeping an updated CV and webpage is even better.
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8. NSF: During the fall term of your first year, you are eligible10 to apply for the NSF Graduate Research
Fellowship. The department has traditionally offered a series of workshops helping students to prepare
their applications.11

9. Tea: The department holds tea every afternoon. Generally there is very little tea at this event,
rather there are snacks and treats. This is a good chance to meet with students and faculty members
and discuss a wide variety of topics (mathematical or otherwise). Similar to GSS participation, tea
attendance is not only about food and math but also about being a part of the community of graduate
students.

10Assuming U.S. citizenship.
11Mileage may vary.
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3

Unsolicited Advice

This chapter consists of some advice collected from older graduate students concerning things that went
well during their first year as well as things they wished had gone differently.

Classmates

In graduate school, you are part of a cohort (generally with 5 or so other people). Like any other work
place, you don’t choose the composition of this group. At Dartmouth, for your entire first year, you will be
around them for classes, seminars, and tutorials. Hopefully you will enjoy their company and develop, at
the very least, a quality working relationship with everyone. In reality, with all the time you’re spending
with these people, conflicts will naturally arise (and some of them may be your fault!).

Since we presume that everyone reading this is an adult, we will not go into managing interpersonal
relationships. Instead, we will focus on how classmates can impact (positively or not) preparation for the
written exam.

3.1.1 Collaboration

Your classmates are in a unique position that no one else in the department is in: they’re also trying to
prepare for the written exam. Even better, they’re sitting in the same classes! This means that you and
your classmates are in the best position to support each other through the introduction to graduate school
and the first major hoop. It’s likely that some (if not all) of you have been working on homework problems
together anyway, so why stop there?

• Scheduling: However unfortunate it may be, people have different schedules, different study pat-
terns, and different misunderstandings. Being responsible for 6 courses worth of material makes it
naturally difficult to cover it all as a group. While collaboration may be the most productive met-
hod for you, it’s also unreasonable to wait and try to do all of your studying in groups. Too much
collaboration can be detrimental.

• Group Size: Working in small groups (of two or three), it’s possible to address all the misunder-
standings that come up with various concepts, examples, and proofs. Once you get to larger groups,
it’s much more likely that someone is getting left behind. This is a horrible feeling (whichever side of
it you’re on) but it’s the only way that larger groups can maintain momentum.
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• Language: When working with other people, there will (we hope) be times where you are helping
as well as times where you are being helped. Especially when you’re trying to assist someone else,
it’s essential to be aware of your use of language. For instance, in mathematics, we “all” know that
the words “obviously,” “trivial,” and “clearly” should be used sparingly.1

Somewhat less obvious (for some reason) is the fact that you are a peer, not an instructor. Don’t
talk to your classmates as though you’re trying to teach them something. If a classmate has come to
you for help, it’s not a good time to be cryptic and you should never belittle their misunderstandings,
misconceptions, or give them grief for not remembering a homework problem from 6 weeks prior2.

• Fears: Working collaboratively can coalesce your concerns and fears into one giant doom bubble.
You and your classmates are in the same boat: if you start to feel it sinking, it’s natural that
everyone else will pick up on those feelings too. To be a little more specific, if you find a subject that
“everyone” is finding difficult, you might trap yourselves into aggrandizing it, possibly ignoring it,
or otherwise spend many fruitless hours banging your head against it. The solution? Talk to other
people.3

3.1.2 Competition

Dartmouth’s math program is naturally non-competitive. We don’t have kick-out quotas to meet, we’re all
in the same funding situation, and there are generally enough advisers to go around for our small program.
And yet some amount of competition in qual courses is natural: you’re trying to figure out “where you fit”
as a mathematician and your peers become the most immediate and relevant comparison. As ever, this
leads to some stupid ideas:

• “I’m spending so much more (less) time studying than �.”

So what? Everyone has different methods of studying and different needs. Graduate school does
require a significant amount of work but at the end of the day it is your accomplishments that will
make the difference.

At the same time, the amount of effort expended is usually a good first-order approximation to
achievement. As with many of the other elements of this list, the key is not to focus on comparing
yourself to others but instead to focus on your own progression.

• “My undergraduate background is not as good as everyone else’s.”

Sometimes it can feel like everyone else has already seen large portions of the material in some of
the first year courses and you are always struggling to catch up. Although this means that you may
have to spend more time mastering the fundamentals of the material, it has little bearing on your
ability to succeed in the program. You were admitted because the faculty believe that you can do
it. Every year, students enter the program and pass the written exam without previous exposure to
topics like point-set topology or module theory. Don’t let this hold you back.

• “If I find a problem easy (hard), it must be easy (hard) for everyone!”

1If you hadn’t heard this before, please take it to heart now.
2...for example
3Hmm... wasn’t there a professor for that course? I wonder what they have to say about this.
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Okay, let’s be fair here: no reasonable person thinks this way. However, this idea creeps into people’s
behavior in much more insidious ways. Just because you’re finding a problem easy or difficult, you
should be careful how you present the problem to other people.

Imagine, if you will, that someone breezed though a problem in 5 minutes but you had spent hours
on it. How would you feel about them telling you that it was “so easy” and you should have: (a)
asked for help, (b) done the problem more intelligently, or (c) not wasted your time?4 In all such
things, please be conscious of how you treat other people.

While we’re on the subject, we should note that this not only applies to qual questions but also
homework and exams. With take-home exams in particular, some people have taken to wandering
around the department, mentioning the relative difficulties of problems while the exam is still being
taken. This is not only unethical (in fact, a violation of most take-home exam policies) and unfair,
it’s also extremely rude. Please put some care into how you talk about the difficulty of problems in
all situations.

• “I’m getting higher marks than �, so I’m doing well in the program.”

Did you read the section on grades? Go back and think about what you’ve done. Grades (for a
course, test, or assignment) tell you very little about anything. They can underline difficulties and
misunderstandings that you’re having, but they don’t tell you how well you actually understand the
material.

• “I’m getting some of the lowest marks, so I’m failing the program.”

Nooooooo, stop! Reread the section on grades, please! Whatever grades you’re getting, you can
dedicate serious effort to preparing for the written exam (talk with peers and faculty, read books).
However you feel about your grades, they do not dictate your performance on the written exam. For
most people, math takes time to learn and you may be surprised how much more makes sense after
a core course is over.

• “Something great happened for one of my classmates, now I’m jealous/worried that I’m falling
behind.”

During your time at Dartmouth, your classmates will (hopefully) succeed at things, publish papers,
win grants, and get hired for exciting positions. There probably isn’t anything that we can write
here to help with jealousy. However, it is worth reinforcing that everyone moves at their own pace
and trying to compare yourself to each accomplishment of each of your peers is not likely to be a
productive activity. Celebrate their achievements and remember to act gracefully when you succeed.

Common Frustrations

3.2.1 The “Quality” Debate

One of the more obvious frustrations that occurs in the mathematical community (and Dartmouth’s math
graduate program is no exception!) is the discussion of which field of mathematics is “best.” So we pit

4These are all based on actual events experienced by multiple graduate students. It happens and it’s not okay.
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pure math versus applied math, combinatorics versus “real” math, and so on. These comparisons are all
absurd, pointless, and divisive.

Many graduate students in � have put themselves in some sort of ridiculous group opposed to4, taking
pride in an ignorance of 4 (suggesting that 4 is easy or worthless). Honestly, you can fill � and 4 with
any pair of fields (e.g., pure and applied math). This is also absurd, pointless, and divisive; ignorance and
attempting one-upmanship are never positive qualities.

3.2.2 Older Graduate Students

It is generally understood that, despite their best intentions, older graduate students occasionally offer
remarkably unhelpful advice. This can range from comments that have no basis in reality (“everyone
passes”5) to unhelpful platitudes (“it will be ok”) to uninformed assessments of your progress (“you are
doing well”). Obviously not everyone passes (at least one student has failed the summer exam
every year), it isn’t always ok, and other students rarely have any real indicators of how you are doing.
The first year is exceptionally stressful6 and putting up with this kind of nonsense doesn’t help.

The older graduate students earnestly want you to succeed. Most of them even want to help support
you through the first year experience. However, intent is not always relevant and, when you’re at wit’s end,
the last thing you need is someone telling you that your concerns or fears are unjustified or unimportant.
The best advice we can offer is to ignore the perpetrators.7

Some especially jaded graduate students will tell you how unimportant the qual courses are for real
research and how they haven’t touched the material from the core courses in years. We believe this is meant
to be encouraging. After all, regardless of their importance, you will have spent a year working intensely
and the payoff will be that you can immediately forget all of that information! Isn’t that wonderful? So
let’s talk about this for a moment:

• The qual courses have been chosen to, in the view of the faculty, address material that they believe
all Ph.D. mathematicians should know.8 This should be immediately and viscerally dissociated from
the notion of being essential for all mathematical research. These things are incomparable.

• If you aren’t using the material from the core courses then, yes, it’s going to fade. However, despite
how some people talk about it, this is not a matter of pride. The more fundamentals and tools you
have at your disposal, the better you will be able to connect disparate ideas.

• Being able to speak intelligibly with other mathematicians with different interests (including your
classmates) is a feature, not a bug.

• Finally, you never know what classes you will be asked to teach down the road or how your research
areas will change.

5The authors will never forget being told by an older student (who had failed the exam) that nobody had ever failed the
exam. Not helpful.

6For most people. There are a decided few who make it through unscathed. If this applies to you, understand that you
are in the minority and consequently need to be even more compassionate toward those who are suffering.

7Actually, it would be nice if you told them how their commentary isn’t wanted or helpful. At the same time, we realize
that this sort of confrontation is the last resort for some people.

8Individual faculty opinions may vary.

18



The Written Qual Book Unsolicited Advice

Common Crises

There are many crises that naturally arise during the first year of graduate school.9 This is normal, possibly
even an important part of the process. After all, grad school is a huge life change. On top of the stress of
all that entails, you’re also trying to establish yourself as a professional mathematician (and determining
whether that’s what you want!). Below is a list of common crises:10

• Can I “make it?” Am I smart enough for this?

In the eyes of the faculty, yes. You were accepted to the program because the faculty believe that
you will be able to succeed in Dartmouth’s program. You may doubt their confidence, but know that
this is a common occurrence.11 While having “smarts” will get you through a lot of graduate school,
dedication is much more valuable and will carry you through equally well.

If you really want to make it through the program, you can find a way to make it happen. Everyone
has their unique obstacles to work through and so there’s no easy solution to this concern. Nonethe-
less, there are people (fellow graduate students, faculty, etc.) who will help – you don’t have to do
this alone.

• Is graduate school the correct choice for me?

Graduate school isn’t for everyone. Between the extra years of schooling, generally smaller paycheck,
and workload, lots of people would rather choose a different career path. Starting graduate school
and coming to this conclusion is not the end of the world. Frankly, most of the graduate students
have wondered whether or not they should quit at one time or another. Be honest with yourself and
decide what you want.

It is not uncommon for graduate students to find new interests during graduate school (e.g., dis-
covering a passion for teaching or research) or to grow weary of certain aspects of academia (e.g.,
teaching or research). There is nothing wrong with this and it is always better to learn these things
earlier than later. There isn’t any way to know if you will want to enjoy the unique balance of
responsibilities and tasks that accompany graduate study until you try them.

If you have a specific career in mind (whether that involves teaching, academia, industry, or so-
mething else entirely), you should think about whether graduate school is actually required or if it’s
something you simply want for yourself. Actually, instead of just thinking about it, talk to people in
that profession or find more information online. Regardless, you should consult with many faculty
members at every stage of your development. They are here to help and they’re generally happy
doing so!

• I don’t like math as much as everyone else.

That’s okay. No, really, it’s okay. Presumably you’re in graduate school for math because you enjoy
math, but nothing says that it has to be your entire life. Even though it’s probably easier to get
through the trials of graduate school if doing math is something that you actively want to do, you
can make it through by consistently dedicating time to whatever needs doing.

9These are not actually exclusive to the first year, but that’s our focus for this book.
10In the spirit of this chapter, they are accompanied by commentary!
11The authors certainly had this experience and we know that many others did/do as well.
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It can be difficult to discuss this topic with most of the graduate students; as a whole, they seem
to have a passion for math and want to do it all the time (some even say that it’s what they do for
downtime!). Nonetheless, you are not alone and you should try to find someone with whom you can
discuss this concern.

Make sure you take time for things that you enjoy (reading, sports, video games, knitting12, etc.),
especially if they’re important to you. Dropping the important aspects of your life to pursue math is
going to leave you feeling unsatisfied. However, if you want to make it through graduate school, you’re
going to have to put consistent time and energy into math (just don’t let it become “everything”).

• What am I doing here? Do I deserve to be here?

You’re here and, while it’s possibly unsatisfactory, that’s as close as you’re going to get to “deserving”
to be here. Without delving into a philosophical debate about some of the formal definitions13 it
is tough to offer a substantive answer to this question. That being said, this is a common concern
among graduate students and most of the other students in the program have confronted similar
worries about themselves at various times in the program.

• Why does everyone else have their life together?

They don’t. People project the image that they have life figured out because they don’t want to
be seen as someone who doesn’t have their life figured out. There are always hurdles to overcome,
dramas to handle, and problems that couldn’t have been predicted. Take it one day at a time and
try to juggle as many balls as you can.

All this being said, it’s hard to see “everyone else” succeeding if you don’t feel as though you are.
This is especially true with research where progress might take months or longer. The trick is to
push forward despite not having everything figured out.

• How do I manage all of this work?

With graduate school, there’s always a lot to do. Whether that’s because of classes, TA responsi-
bilities, seminars, or simply doing something for yourself, time gets used quickly. It’s important to
prioritize and keep track of what needs to be done. It’s all too easy to fall into the trap of getting
overwhelmed and not doing anything. However, you’re not alone in this – talk to other graduate
students, talk to your adviser, talk to your professors. You never know who might have an insight
that will help you make it all work.

• I know what I need to do to prepare for and pass the qual, but there’s not enough
time!”

Even in the best of circumstances (i.e., you know what you need to do, how to do it, and you are
actually doing it), it’s normal to feel that your effort is never enough; that it’s simply impossible be
actually prepared for the exam. This is entirely correct.

There’s always more that we can/should/must study in preparation for the qual. It doesn’t matter
if you’re following all of our advice from the section on preparing for the exam, you will probably
still feel that you’re behind (perhaps horribly so). The trick is to realize that most people walk into

12Or crocheting.
13“Deserve,” for example.
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the exams feeling under prepared – you’re definitely not alone. Try not to let this despair control
you; keep plugging away at the material and simply try to be as prepared as you can.14

• What happens if I fail?15

Failing happens. Since the inception of the written exam, at least one person has failed it every
year. This doesn’t mean that they weren’t fit for graduate school, it just means that they needed to
work on the “core” material for longer to have it gel. While no one likes to fail, everyone (under the
current version of the exam) gets a second chance – show the faculty that you can make substantial
progress and trounce the exam before the end of summer term.

If you’ve failed the exam, you’re going to want to meet with faculty frequently over the summer (for
whatever sections are relevant). They will meet with you and help, but you need to hold up your
end as well. This is a great opportunity to demonstrate that you can master material on your own.
There is a tendency for students to want to decelerate after a long year, but being fully prepared for
the fall exam is a very important benchmark. As addressed more directly in the next question, the
summer after your first year is not a break from the program but rather a chance for you to work to
develop your mathematical skills and interests.

Although the current system does guarantee that you will be allowed to retake sections of the qua-
lifying exam that you do not pass the first time, do not simply ignore one topic in hopes of passing
the other two and mastering the third over the summer. This type of “gaming” the system does not
reflect well on you as a student and runs counter to the ethos of the graduate program.

• What happens if I pass?

Most practically, the answer to this question is that it is time to begin to study for your oral quals.
There are few delineated responsibilities during the summer after your first year. You should take
some time to relax after the exam. However, one of the most common mistakes that students make is
to confuse the lack of immediate tasks with “nothing-to-do.” This is a perfect time to begin speaking
with possible advisors, forming your qual committees, and preparing for the oral exams. Is it possible
to be successful without doing too much work over the summer term? Probably, but why are you
wasting what could be productive and beneficial time?

• What is the point of this exam? It clearly isn’t a perfect measure of my abilities.

You’re right, it isn’t. No method of assessing students is perfect and the written qualifying exam is
not (and will never be) an exception to this rule, regardless of the best intentions of the faculty. It
is simply too difficult to measure knowledge, effort, and potential ability. Especially during the first
year at Dartmouth, we should acknowledge this directly and, while you should work hard to learn
the material (or pass the exam), you should not let the results of the exam define you. We should
also not allow ourselves to judge others by their results in these exams; passing and failing can mean
so many different things for each person that this is pointless.16

14Spending every waking minute on it is a bad idea too. Take some time for yourself.
15The authors have agreed to open a gelateria in Italy if they are separated from the program.
16And not very compassionate.
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Algebra

Algebra Exam

Summer 2012

Problem 4.1.1

Ideals and quotients.

(a) Find all ideals of the quotient ring Q[x]/〈x14 − 1〉. In particular, how many such ideals are
there?

(b) Determine the structure of the quotient ring Z[x]/〈5, x2 − 2〉. Be as precise as you can.

Notes and Comments

Proof of (a). First, we note that

x14 − 1 = (x− 1)(x+ 1)(x6 + x5 + · · ·+ 1)(x6 − x5 + x4 − · · ·+ 1) = Φ1Φ2Φ7Φ14.

By the Correspondence Theorem, any ideal of the quotient is an ideal in the base ring containing the
quotient ideal. Since Q is a field, Q[x] is a PID and hence, up to units, any ideal can be defined by a single
generating polynomial. Thus, we can represent the ideals containing f = x14 − 1 as one of the 24 = 16
products of the irreducible cyclotomic polynomials Φ1, Φ2, Φ7, and Φ14, including the empty product (all
of Q).

Proof of (b). Observe that Z[x]/〈5, x2 − 2〉 ∼= (Z/5Z)[x]/〈x2 − 2〉. We can check by direct computation
that x2 − 2 has no roots modulo 5

02 − 2 ≡ −2, 12 − 2 ≡ −1, 22 − 2 ≡ 2, 32 − 2 ≡ 2, 42 − 2 ≡ 4.

and hence x2 − 2 is irreducible over Z/5Z. This implies that the quotient is isomorphic to F25 since all
non-trivial quadratic extensions of prime order fields are isomorphic.

23



The Written Qual Book Algebra: Summer 2012

Problem 4.1.2

Let L be the splitting field over Q of x9 − 8.

(a) Determine the degree of [L : Q] carefully, explaining all conclusions.

(b) Justify whether or not the Galois group Gal(L/Q) is abelian.

(c) Justify whether or not the Galois group Gal(L/Q) is solvable.

Notes and Comments

Proof of (a). Let ζ9 denote a primitive 9th root of unity. Then the roots of x9−8 = (x3−2)(x6+2x3+4) are
ζk9

9
√

8 and hence L = Q(ζ9,
3
√

2). Note that L is the compositum of Q(ζ9) and Q( 3
√

2) which, respectively,
have degrees ϕ(9) = 6 and 3 since Q(ζ9) is cyclotomic and ϕ(9) = 6 and (x3−2) is irreducible by Eisenstein.
We observe that Q( 3

√
2) is not a normal extension of Q since it is a real extension but the other two roots

of (x3 − 2) are complex.
By multiplicativity of degrees, Q(ζ9)∩Q( 3

√
2) is either Q or Q( 3

√
2). Since Q( 3

√
2) ⊂ R is not a normal

extension, it is not a subextension of Q(ζ9) (which is abelian) and hence Q(ζ9) ∩ Q( 3
√

2) = Q. Thus the
entire extension has degree 18 by multiplicativity in towers.

L = Q(ζ9,
3
√

2)

Q(ζ9) Q( 3
√

2)

Q

3

6

18

6

3

Proof of (b). The Galois group is not abelian since Q( 3
√

2) is not normal.

Proof of (c). The extension is solvable since we can first adjoin the cyclotomic extension and then the
3
√

2.

Problem 4.1.3

Let the field K be an extension field of a field k. Show that there is a natural isomorphism of
K-algebras K ⊗k Mn(k) → Mn(K), where for a ring R, Mn(R) denotes the ring of n × n matrices
over R.

Notes and Comments

Proof. Define the map ϕ : K ⊗k Mn(k)→Mn(K) on elementary tensors as ϕ(a⊗M) = aM .1 This takes
a basis {1⊗ Ei,j} to a basis {Ei,j} and hence is an algebra isomorphism.

1More precisely, define a map on K ×Mn(k) in this way. Then it is k-balanced and k-linear and thus uniquely extends
to a map defined on elementary tensors in this way.
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To show that this is natural isomorphism, we must show that a specific diagram commutes. Let
F1, F2 : {k-algebras} → {K-algebras} be 2functors defined by F1(Z) = Z ⊗k Mn(k) and F2(Z) = Mn(Z).
Let L and J be k-algebras and f : L→ J a k-algebra homomorphism. For any ` ∈ L and M ∈Mn(k), we
have F1(f)(`⊗M) = f(`)⊗M and F2(`M) = f(`)M by k-linearity. Since

ϕJ(F1(f)(`⊗M)) = ϕJ(f(`)⊗M) = f(`) ·M = F2(f)(` ·M) = F2(f)(ϕL(`⊗M)),

the following diagram commutes

`⊗M ` ·M

L⊗k Mn(k) Mn(L)

J ⊗k Mn(k) Mn(J)

f(`)⊗m f(`) ·M

F1(f)

ϕL

F2(f)

ϕJ

and thus proves the naturality of ϕ as desired.

Problem 4.1.4

Let T be a linear operator on a finite-dimensional vector space V defined over a field k. Let
χT (x) = (x− λ1)m1 · · · (x− λr)mr be the characteristic polynomial and assume all the λi are distinct.
Let Vi be the eigenspace corresponding to the eigenvalue λi.

(a) Show that dimVi ≥ 1 for all i, 1 ≤ i ≤ r.

(b) Choose nonzero vi ∈ Vi. Show that {v1, . . . , vr} is linearly independent.

(c) Conclude that if dimVi = mi for all i, then T is diagonalizable.

Notes and Comments

2(capitalization-)
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Proof of (a). We assume throughout that mi ≥ 1. View V as a k[x]-module and call it VT . Then, VT is a
finitely generated torsion module over a PID and so, by the Primary Decomposition Theorem, VT uniquely
(up to reordering) decomposes as

VT = M1 ⊕ · · · ⊕Mr

where Mi is the (x − λi)-primary submodule of M . That is, Mi is the direct sum of generalized λi-
eigenspaces. (So each summand is cyclic and hence contains an eigenvector of T with eigenvalue λi.)

As mi ≥ 1, dimMi ≥ 1. Hence V contains an eigenvector of T with eigenvalue λi and dimVi ≥ 1.

Proof of (b). This is immediate since the different (x−λi)-primary submodules have trivial intersection.

Proof of (c). If dimVi = mi, then Mi splits as a direct sum of mi 1-dimensional submodules, each cor-
responding to an eigenvector. Hence VT is the direct sum of 1-dimensional spaces and hence the Jordan
Canonical Form J of T consists of a diagonal matrix. As [T ] is similar to J , T is necessarily diagonaliza-
ble.

Problem 4.1.5

Show that any group of order 30 is the semidirect product of two smaller abelian groups.

Notes and Comments

Proof. Denote the s-Sylow subgroups by P for s = 2, Q for s = 3, and R for s = 5. Notice that, by
counting subgroups with the Sylow theorems, there must be either a unique (normal) subgroup of order
5 or of order 3.3 Thus there is always a subgroup (QR = RQ) of order 15 in G which has index 2 and is
hence normal.4 There is a unique group of order 15 (Z/15Z ∼= Z/3Z×Z/5Z) and a unique group of order
2 (Z/2Z). Thus, by the internal semi-direct product criterion, any group of order 30 can be realized as
Z/15Z o Z/2Z which has abelian components.

Problem 4.1.6

Let m > 1 be a square-free integer and n ≥ 1 an odd integer. Let F/Q be any field extension with
[F : Q] = 2. Show that xn −m is irreducible in the polynomial ring F [x].

Notes and Comments

Proof. Since m > 1 is square-free, there exists a prime p such that p divides m and p2 does not divide
m. Therefore, by Eisenstein’s Criterion, xn −m is irreducible over Q. It follows that [Q( n

√
m) : Q] = n.

Taking the composite, we have Q( n
√
m)F = F ( n

√
m) and [F ( n

√
m) : Q] divides 2n. Since n and 2 are

relatively prime (because n was assumed to be odd), and both n and 2 must divide [F ( n
√
m) : Q], we have

[F ( n
√
m) : Q] = 2n. Therefore, [F ( n

√
m) : F ] = n. Since xn −m is a monic polynomial of degree n with

root n
√
m, xn −m is the minimal polynomial for this extension. Hence, xn −m is irreducible in F [x].

3A more general statement is proved in complete detail in Fall 2012 Algebra Exam problem #4.
4As 2 is the smallest prime dividing |G| = 30.
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Algebra Exam

Fall 2012

Problem 4.2.1

Let L be the splitting field of x15 − 8 over Q and let G be the Galois group of L/Q. Show that G is
a semi–direct prodcut of two proper subgroups K and H. Identify K and H by their intermediate
fields and determine their isomorhpism types.

Notes and Comments

Proof. The roots of the polynomial take the form ζk15
5
√

2 so L = Q(ζ15,
5
√

2). We begin by drawing the
standard Galois diagram and notice that the total degree follows from multiplicativity in towers since
ϕ(15) = 8 and 5 are relatively prime:

L

LH = Q(ζ15) Q( 5
√

2) = LK

Q

5

8

8

5

Let H and K be the respective subgroups of G associated with the fixed fields LH and LK labeled in
the figure. As LH/Q is a cyclotomic extension, H is normal in G. We must have LH ∩ LK = Q since
gcd(5, 8) = 1 and LHLK = L by the definition of the compositum. So, by the Galois correspondence,
HK = G and H ∩K = {1}. Thus G ∼= H oK by the semi-direct criterion.

We selected H and K with the Fundamental Theorem of Galois Theory to fix the intermediate fields
and there is only choice for K since there is only one group of order 5. From cyclotomic theory, we know
that H ∼= (Z/15Z)× ∼= Z/8Z since 3 6 | (5− 1).

Problem 4.2.2

Give three equivalent conditions which characterize when an algebraic extension of fields L/K is a
normal extension and prove any two are equivalent.

Notes and Comments

Proof. Let K be the algebraic closure of K. The following are equivalent:

(1) Every embedding L/K → K is an automorphism of L.

(2) L is the splitting field of a family of polynomials in K[x].

(3) Every irreducible polynomial in K[x] with one root in L splits in L.

(1)⇒ (2, 3): Let α ∈ L and p = mα,K . For any root β of p in K, there exists an embedding τ :

K(α)/K → K(β) ⊆ K which maps α 7→ β. By Theorem V.2.8 (Lang), this extends to an embedding
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σ : L/K → K with σα = β. By (1), σ is an automorphism of L and thus every root of p lies in L. Thus
we have (3).

Moreover, L is the splitting field of the polynomials {mα,K | α ∈ L} and hence (2). This is contained
in L by what we did above.

(2)⇒ (1): Let σ : L/K → K be an embedding. Let L be the splitting field of a family {fi}i∈I of
polynomials in K[x]. If α ∈ L is a root of some fi, then σα is another root of fi and hence it’s in L.

Since L is the splitting field of this family of polynomials, L is generated over K by the roots of the
fi’s. As σ preserves the algebraic operations, we have σ(L) ⊆ L. By the Fundamental Lemma5 (Lang),
σ(L) = L and hence (1).

(3)⇒ (1): Let σ : L/K → K be an embedding. Let α ∈ L and p = mα,K . Thus β = σα is a root of p

in K. By assumption (3), we have β = σα ∈ L and hence σ(L) ⊆ L. So by the Fundamental Lemma, we
have σ(L) = L.

Problem 4.2.3

Let F be a field of characteristic 0, f ∈ F [x] an irreducible polynomial of degree n ≥ 1 and K the
splitting field of f over F . It should be well-known that [K : F ] ≤ n!. The point of this problem
is to show [K : F ] | n!. Hint: Prove that there exists an injective homomorphism Gal(K/F ) → Sn
where Sn is the symmetric group on n letters.

Notes and Comments

Proof. Since F has characteristic 0, K is a finite separable extension of F . Hence the separable degree of
K/F is n and S = {ξ1, ξ2, . . . , ξn} are the distinct roots of f in K. Since the Galois group G = Gal(K/F )
takes roots of f to roots of f , we have an action of G on the set S; hence a homomorphism ϕ : G → Sn
given by ϕ(σ) being the permutation defined by ξi 7→ σ(ξi).

Consider the kernel of this permutation homomorphism. If ϕ(σ) is the identity, then σ fixes all roots
of f . Hence σ fixes all of K = F (ξ1, ξ2, . . . , ξn). Thus σ is trivial and so ϕ is injective. Thus G ∼= ϕ(G) by
the First Isomorphism Theorem. That is |G| = |ϕ(G)| must divide |Sn| = n! by Lagrange’s Theorem.

Problem 4.2.4

Let G be a group of order pqr, where p < q < r are distinct primes. Show that G is solvable.

Notes and Comments

Proof. Let np, nq, and nr denote the number of p, q, and r-Sylow subgroups, respectively, and let P , Q,
and R be arbitrarily chosen p, q and r-Sylow subgroups. Observe that |P | = p, |Q| = q and |R| = r
since |G| = pqr. We will start with a standard counting argument to show that at least one of the Sylow
subgroups must be normal.

The Sylow theorems tell us that nr ≡ 1 (mod r), and nr|[G : R] = pq. So nr ∈ {1, p, q, pq}. Since
p < q < r, we can’t have p ≡ 1 (mod r) or q ≡ 1 (mod r), so nr = 1 or pq. If nr = 1, then the r-Sylow
subgroup is normal and we’re done. Otherwise, nr = pq and we have pq(r − 1)elements of order r.

Similarly, nq ≡ 1 (mod q) and nq|[G : Q] = pr. So nq ∈ {1, p, r, pr}. Again, we can’t have p ≡ 1
(mod q) since p < q and so nq ∈ {1, r, pr}. If nq = 1, the q-Sylow subgroup is normal and we’re done.
Otherwise, nq is p or pr, giving us either p(q − 1) or pr(q − 1) elements of order q.

5Any embedding σ : L→ L over K is an automorphism of L.
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Also by similar arguments, np is 1, q, r or qr. If P is not normal, we have either q(p − 1), r(p − 1) or
qr(p− 1) elements of order p.

If none of the Sylow subgroups are normal, then we have at least pq(r− 1) elements of order r, at least
p(q − 1) elements of order q and at least q(p− 1) elements of order p. That is, we have at least

pqr − pq + pq − p+ pq − q + 1 = pqr + (p− 1)(q − 1) > pqr

elements in G (including the identity).	Thus, one of the Sylow subgroups is normal.
Claim: At least one of Q or R must be normal in G.

Proof. If P E G and Q and R are not normal, then np = 1, nq = r or pr, and nr = pq. In this case, we
have p − 1 elements of order p, at least r(q − 1) elements of order q and pq(r − 1) elements of order r.
Together with the identity element, this gives at least

p− 1 + qr − r + pqr − pq = pqr + q(r − p) + p− 1 > pqr

elements in G since r > p.	Therefore either Q E G or R E G.

If either Q E G or R E G, then QR = RQ ≤ G, and |QR| = |Q||R|
|Q∩R| = |Q||R|

1
= |Q||R| = qr. Also,

[G : QR] = |G|/|QR| = pqr/qr = p is the smallest prime dividing |G|, so QR E G.

• If Q E G, then Q E QR and so we have the following normal tower:

1 E Q E QR E G,

where the quotients G/QR ∼= P , QR/Q ∼= R, and Q/1 ∼= Q are abelian because they have prime
order.

• If R E G, then R E QR and so we have the following normal tower:

1 E R E QR E G,

whose quotients are isomorphic to P,Q and R which, again, are abelian.

In both cases, G is solvable.

Problem 4.2.5

Let K be the subgroup of G = Z ⊕ Z ⊕ Z generated by the three elements: u1 = (1,−3,−2),
u2 = (1, 3, 2), and u3 = (3, 3, 4). Determine the structure of the quotient G/K as a direct sum of
cyclic groups.

Notes and Comments

Proof. Let i : K → G be the inclusion map of K into G. Then the matrix representation of i, using the
basis {u1, u2, u3} of K and {e1, e2, e3} of G, we have

[i] =

 1 1 3
−3 3 3
−2 2 4

 .
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Now, to determine the structure of G/K, we can find the invariant factors of K by computing the Smith
Normal Form of [i].6 Without comment to the exact row and column operations used, we obtain

[i] ∼

1 1 3
0 6 12
0 4 10

 ∼
1 0 0

0 6 12
0 4 10

 ∼
1 0 0

0 2 2
0 4 10

 ∼
1 0 0

0 2 2
0 0 6

 ∼
1 0 0

0 2 0
0 0 6


Thus i(K) ∼= Z⊕ 2Z⊕ 6Z and so

G/K ∼=
Z⊕ Z⊕ Z
Z⊕ 2Z⊕ 6Z

∼= (Z/2Z)⊕ (Z/6Z)

by the Chinese Remainder Theorem.

Problem 4.2.6

Let R be a commutative ring. An R-module M is flat if the function M ⊗R (·) is exact. Prove that
any projective R-module is flat.

Notes and Comments

Proof. Recall that M ⊗R (·) is always right exact. Thus it is enough to show that M ⊗R (·) is left exact.

That is, if 0 N ′ N
ψ

is exact, we want to show that

0 M ⊗R N ′ M ⊗R N
1⊗ψ

is also exact. That is, 1⊗ ψ is injective.
Case 1: First we will prove that any free module F is flat. Let S be a basis for F . Choose x ∈ ker 1⊗ψ.

Since F is free, x can be uniquely written as x =
∑
s∈S

s⊗ n′s . Now we have

0 = (1⊗ ψ)(x) =
∑
s∈S

s⊗ ψ(n′s).

Hence for all s ∈ S, we have ψ(m′s) = 0. Since ψ is injective, this means m′s = 0 for all s ∈ S. Thus x = 0
and so 1⊗ ψ is injective. Hence F is flat.

Case 2: Now suppose that P is projective. Then, equivalently, P is the direct summand of a free
module F and so F = P ⊕Q. Then we have an exact sequence

0 F ⊗R N ′ F ⊗R N
1⊗ψ

.

Let ϕ : P ⊗R N ′ → P ⊗R N denote the map induced by ψ.7 Now we have isomorphisms

F ⊗R N ′ ∼= (P ⊗R N ′)⊕ (Q⊗R N ′) and F ⊗R N ∼= (P ⊗R N)⊕ (Q⊗R N).

6For those unfamiliar with Smith Normal Form, it’s a very useful tool and worthwhile to learn.
7It was tempting to call this map 1⊗ ψ in quotes.
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Thus we have a commutative diagram

F ⊗R N ′ F ⊗R N

P ⊗R N ′ P ⊗R N

1⊗ψ

π

ϕ

.

Hence ϕ is an injective map as well. Thus P ⊗R (·) is exact. That is, P is flat.
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Algebra Exam

Summer 2013

Problem 4.3.1

Let P be a p-Sylow subgroup of a finite group G such that for every other p-Sylow subgroup Q we
have P ∩Q = {1}. Show that any pair P1, P2 of p-Sylow subgroups intersects trivially: P1∩P2 = {1}.

Notes and Comments

Proof. We will show that all p−Sylow subgroups in G intersect trivially. By the second Sylow theorem, all
p-Sylow subgroups are conjugate in G. Let P1 and P2 be two distinct p-Sylow subgroups of G and h ∈ G
such that hP1h

−1 = P . Notice that, since P1 and P2 are distinct, hP2h
−1 6= P .

Let Q = P1 ∩P2 and consider conjugating by h. For any q ∈ Q, we have hqh−1 ∈ hP1h
−1 = P and also

hqh−1 ∈ hP2h
−1 6= P . Thus q ∈ P ∩hP2h

−1 and so q = 1 by the hypothesis on P . Hence P1∩P2 = {1}.

Problem 4.3.2

Let k be a field and x, y indeterminates over k.

(a) Show that x and y are irreducible in k[x, y].

(b) Show that, as rings, k[x, y]/(y − x2) can never be isomorphic to k[x, y]/(y2 − x2).

(c) Determine the structure of the quotient ring Q[x]/(x12 − 1) by characterizing this ring as a
direct product of simple (quotient) rings.

Notes and Comments

Proof of (a). We will show that x and y are irreducible in k[x, y]. Since k is a field, we have that k[x] is
a PID and hence k[x, y] is a UFD. Thus irreducibles are prime.8 Thus it suffices to show that x and y are
prime. Furthermore, this is equivalent to showing that 〈x〉 and 〈y〉 are prime ideals. However, we know
that k[x, y]/〈x〉 ∼= k[y] which is entire.9 Thus 〈x〉 is a prime ideal and x is irreducible as desired. By a
symmetric argument, y is also irreducible.

Proof of (b). We will show that k[x, y]/〈y − x2〉 6∼= k[x, y]/〈x2 − y2〉. Notice that, in k[x, y]/〈x2 − y2〉,
we have that (x + y)(x − y) = x2 − y2 = 0 but neither x + y ≡ 0 or x − y ≡ 0 (mod x2 − y2). Hence

k[x, y]/〈x2 − y2〉 is not entire . On the other hand, we claim that k[x, y]/〈y − x2〉 ∼= k[x].

Consider the diagram

k[x, y] k[x]

k[x, y]/〈y − x2〉

π

ϕ

ϕ

where ϕ : k[x, y] → k[x] acts by ϕ(f(x, y)) = f(x, x2). Clearly, ϕ is surjective since, for any g ∈ k[x], we
have ϕ(g(x)) = g(x). Additionally, we have 〈y−x2〉 ⊆ ker(ϕ), so it remains to show the opposite inclusion.

8Moreover, as k[x, y] is entire (i.e., an integral domain in Lang terminology), every prime is irreducible.
9Actually, it’s a PID but we don’t need all of that structure.
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Let h(x, y) ∈ ker(ϕ). Viewing h as a polynomial in k[x][y], we notice that y− x2 is a monic degree one
polynomial. By the Division Algorithm, we can write h = (y−x2)q(x, y) + r(x, y) with y-degree of r equal
to zero. That is, r is just a polynomial in x.

Since h ∈ ker(ϕ), we have

0 = h(x, x2) = (x2 − x2)q(x, x2) + r(x) = r(x).

Thus h = (y−x2)q and so h ∈ 〈y−x2〉 as desired. Therefore, ker(ϕ) = 〈y−x2〉. Hence ϕ is an isomorphism

and so k[x, y]/〈y − x2〉 is a PID and hence has no zero divisors, unlike k[x, y]/〈y2 − x2〉.10

Proof of (c). We want to characterize Q[x]/〈x12 − 1〉 as a product of simple quotient rings. From the
theory of cyclotomic polynomials, we know that

x12 − 1 =
∏
d|12

Φd = (x− 1)(x+ 1)(x2 + x+ 1)(x2 + 1)(x2 − x+ 1)(x4 − x2 + 1)

where each factor is irreducible over Q. We know that Q is a PID and hence the ideals generated by each
divisor is maximal. These principal ideals are all distinct and hence these ideals are pairwise comaximal.
Thus, by the Chinese Remainder Theorem, we have

Q[x]/〈x12 − 1〉 =
∏
d|12

Q[x]/〈Φd〉

as desired.

Problem 4.3.3

Let V be a finite–dimensional vector space over a field k, and let T : V → V be a linear operator
whose characteristic polynomial generates the ideal I ⊆ k[x] in the polynomial ring consisting
of polynomials that vanish at T , i.e., I = {f ∈ k[x] : f(T ) = 0}. Show that any linear operator
U ∈ Endk(V ) that commutes with T is a polynomial in T , i.e., if UT = TU , then there is some
p ∈ k[x] such that U = p(T ).

Notes and Comments

Proof. Let V be a finite dimensional vector space over k and T ∈ Endk(V ) such that the minimal polyno-
mial of T is equal to its characteristic polynomial. Observe that this is equivalent to the condition given
in the problem statement. We will show that any U ∈ Endk(V ) that commutes with T is a polynomial in
T . Since the minimal polynomial of T is equal to its characteristic polynomial, we that V decomposes as
a cyclic k[x]-module with action p · v = p(T )v. Thus there exists a vector x ∈ V such that we can form a
basis for V of the form {x, Tx, T 2x, . . . , T n−1x}.

Let U be any operator that commutes with T and express Ux =
n−1∑
i=0

uiT
ix. Define p ∈ k[x] by

n−1∑
i=0

uix
i.

We claim that U = p(T ).

10Note this is the same as showing that x2 − y2 is reducible but y − x2 is not.
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Letting v ∈ V be arbitrary, we may express v in terms of our basis as v =
n−1∑
j=0

vjT
jx. Then, since U

commutes with T , we have

U(v) = U

(
n−1∑
j=0

vjT
jx

)
=

n−1∑
j=0

vjT
jUx =

n−1∑
j=0

vjT
j

n−1∑
i=0

uiT
ix

=
n−1∑
j=0

n−1∑
i=0

uivjT
j+ix

=
n−1∑
i=0

uiT
i

n−1∑
j=0

vjT
jx = p(T ) ·

n−1∑
j=0

vjT
jx = p(T ) · v.

Thus U = p(T ) as desired.

Problem 4.3.4

Let E, F , and K be fields all contained in some larger extension Ω.

(a) Suppose the K ⊂ F ⊂ E. Show that E/F and F/K are algebraic extensions implies that E/K
is also algebraic.

(b) Suppose that E/K is an algebraic extension, but that F/K is an arbitrary extension. Show
that the extension EF/F is algebraic where EF is the compositum of E and F .

Notes and Comments

Proof of (a). Let e ∈ E be arbitrary. Since E/F is algebraic, e has a minimal polynomial in F [x] with
coefficients f0, f1, . . . , fn. Then K(f0, f1, . . . , fn, e)/K(f0, f1, . . . , fn) is a finite algebraic extension. Simi-
larly, since F/K is algebraic, we have that each fi is algebraic over K and hence that K(f0, f1, . . . , fn)/K
is a finite algebraic extension. By multiplicativity of degrees in towers, K(f0, f1, . . . , fn, e)/K is finite and
hence algebraic. Since e was arbitrary, every element of E is algebraic over K.

Proof of (b). Let L ⊆ EF be the set of elements of EF that are algebraic over F . Recall that this is a
field since the algebraic elements are closed under the field operations. We definitely have F ⊂ L since
every element of F satisfies an obvious linear polynomial in F [x]. Similarly, K ⊆ F and E/K is algebraic,
so E ⊂ L. As L is a field, it must thus contain the compositum EF . Hence L = EF .

Problem 4.3.5

Let k be a field and let V and W be k-vector spaces. Let V ∗ := Homk(V, k) denote the dual space
of V .

(a) Define a natural map F : V ∗ ⊗W → Homk(V,w) of vector spaces that is an isomorphism if V
and W are finite-dimensional. (Be sure to show that F is well-defined. You need not prove
naturality, but be sure to state what it means that F is natural.)
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(b) Recall that a projection on a finite-dimensional k-vector space V is an idempotent linear operator
P ∈ Endk(V ). Determine necessary and sufficient conditions on ϕ ∈ V ∗ and v ∈ V insuring that
the decomposable tensor ϕ⊗ v ∈ V ∗⊗V corresponds, via the linear isomorphism F : V ∗⊗V →
End(V ) above, to a nonzero projection operator.

Notes and Comments

Proof of (a). We will show that V ∗ ⊗ W is naturally isomorphic to Hom(V,W ). We will construct a
isomorphism out of the tensor product by defining a (clearly) bilinear map f : V ∗ ×W → Hom(V,W ) by
f(ϕ,w)(v) = ϕ(v)w. By the universal mapping property of the tensor product, this induces a well-defined
map f : V ∗ ⊗W such that the obvious diagram commutes.

V ∗ ⊗W HomK(V,W )

V ×W

f

i
f

To see that this is a natural map, we need to work in the category of k-vector spaces with k-linear
arrows. Our two functors are F1 : W → V ∗ ⊗ W and F2 : W → Hom(V,W ). Let A,B be k-vector
spaces and T : A → B a k-linear map. These functors act on maps11 by F1(T )(ϕ ⊗ a) = ϕ ⊗ T (a) and
F2(T )(ϕ(·)a) = ϕ(·)T (a). Then the following diagram commutes and our map f is natural:

ϕ⊗ a ϕ(·)a

V ∗ ⊗ A Hom(V,A)

V ∗ ⊗B Hom(V,B)

ϕ⊗ T (a) ϕ(·)T (a)

F1(f)

ϕ

F2(f)

ϕ

If V andW are finite-dimensional then, considering {ψ1, . . . , ψn} and {e1, . . . , em} the standard bases for
V ∗ and W respectively, f takes a basis to a basis (f(ψi⊗ej)(v) = ψi(v)ej) and is hence an isomorphism.

11And sums of elementary tensors by linear extensions of this.
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Proof of (b). To determine necessary and sufficient conditions for ϕ ⊗ v ∈ V ∗ ⊗ V to be mapped to a
non-zero projection operator by f , as given in part (a), note that

f(ϕ⊗ v)2(w) = f(ϕ⊗ v)(w)⇔ ϕ(ϕ(w)v)v = ϕ(w)v ⇔ ϕ(w)ϕ(v)v = ϕ(w)v

Certainly, in order for f(ϕ ⊗ v) to be non-zero we need that ϕ 6= 0 and v 6= 0. Additionally, from the
above, we must have ϕ(v) = 1. This condition is necessary and sufficient since, for any non-zero ψ ∈ V ∗,
any element x ∈ V that has ψ(x) = 1 makes f(ψ ⊗ x) a projection operator by the computation above.
Similarly, for any y ∈ V and ν ∈ V ∗ such that ν(y) = 1, we also have that f(ν ⊗ y) is a projection
operator.

Problem 4.3.6

Let K/F be a finite separable extension and L the Galois closure of K in some algebraic closure
F of F . Let G be the Galois group Gal(L/F ) and H the subgroups corresponding to K under the
Galois correspondence.

(a) Show that there is a one-to-one correspondence between the set of embeddings σ : K/F → F
(that is, of K into F fixing F pointwise) and all the cosets of G/H.

(b) Recall that one defines the norm from K to F as follows: For α ∈ K, define NK/F (α) =
∏

σ σ(α)
where the product is taken over all embeddings σ : K/F → F . Show that NK/F (K) ⊆ F .

Notes and Comments

Proof of (a). Since L is normal over F , we have that L is normal over K.12 Thus every embedding
σ : K/F → F lifts to [L : K] automorphisms of L that fixes K. In particular, any such embedding σ is an
element of G since K ⊆ F . Also, for any h ∈ H, we also have that σh still lies above σ.

Finally, we note that for any distinct σ, τ : K/F → F and h ∈ H, we cannot have σh|K = τ since
σ and τ must differ on some element of K which is fixed by h. Thus, the map that takes σ to [σ] is an
bijection.

Proof of (b). Let α ∈ K be selected arbitrarily. Then, by definition, NK/F (α) =
∏

σ:K/F→F

σ(α). For any

element g ∈ Gal(L/F ), we have that g(NK/F (α)) = NK/F (α) since g simply permutes the σ. Thus NK/F (α)
is fixed by the entire Galois group and must lie in the base field F .

12Which is why H is a (sub-)group.
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Algebra Exam

Fall 2013

Problem 4.4.1

Let V be a 3-dimensional Q-vector space, and let T : V → V be a linear operator that has eigenvalues
1 and 2 but is not diagonalizable.

(a) What are the possible rational canonical forms of T?.

(b) What are the possible Jordan canonical forms of the operator Id⊗T : C ⊗Q V → C ⊗Q V
on the complexification?

Notes and Comments

Proofs of (a) and (b). First note that, since V has dimension three, the degree of the characteristic po-
lynomial of T , χT , is 3 as well. Furthermore, the roots of χT are eigenvalues of T and, since T is not
diagonalizable, it cannot have 3 distinct eigenvalues. So χT is either (X − 1)2(X − 2) or (X − 1)(X − 2)2.

Now, since the minimal polynomial µT divides χT (and they share the same set of roots), we consider
four possible cases:

1. χT = (X − 1)2(X − 2) and µT = (X − 1)(X − 2)

2. χT = (X − 1)2(X − 2) and µT = (X − 1)2(X − 2)

3. χT = (X − 1)(X − 2)2 and µT = (X − 1)(X − 2)

4. χT = (X − 1)(X − 2)2 and µT = (X − 1)(X − 2)2

Each of these cases gives rise to a unique rational canonical form, some of which may be diagonalizable.
We will defer identifying the diagonalizable forms until later. In all cases below, we determine the invariant
factors of V viewed as Q[X]-module via T .

• Case 1: χT = (X − 1)2(X − 2) and µT = (X − 1)(X − 2).

Then the invariant factors of V are (X − 1) and (X − 1)(X − 2). Thus V ∼= Q[X]
(X−1)

⊕ Q[X]
(X−1)(X−2)

and
the associated companion matrices are

C((X − 1)) =
[
1
]

and C((X − 1)(X − 2)) =

[
0 −2
1 3

]

since (X−1)(X−2) = X2−3X+2. Hence the rational canonical form is given by R1 =

1 0 0
0 0 −2
0 1 3

 .
• Case 2: χT = (X − 1)2(X − 2) and µT = (X − 1)2(X − 2).

Here the single invariant factor is (X − 1)2(X − 2). Thus V ∼= Q[X]
(X−1)2(X−2)

and the associated

companion matrix is also the rational canonical form R2 =

0 0 2
1 0 −5
0 1 4

 since (X − 1)2(X − 2) =

X3 − 4X2 + 5X − 2.
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• Case 3: χT = (X − 1)(X − 2)2 and µT = (X − 1)(X − 2).

Here the invariant factors of V are (X− 2) and (X− 1)(X− 2). Thus V ∼= Q[X]
(X−2)

⊕ Q[X]
(X−1)(X−2)

. Then
the associated companion matrices are:

C((X − 2)) =
[
2
]

and C((X − 1)(X − 2)) =

[
0 −2
1 3

]
.

Thus the rational canonical form is given by R3 =

2 0 0
0 0 −2
0 1 3

.

• Case 4: χT = (X − 1)(X − 2)2 and µT = (X − 1)(X − 2)2.

Here the invariant factor of V is just (X − 1)(X − 2)2. Thus V ∼= Q[X]
(X−1)(X−2)2

and the rational

canonical form is given by R4 =

0 0 4
1 0 −8
0 1 5

 since (X − 1)(X − 2)2 = X3 − 5X2 + 8X − 4.

To determine which of the above forms are diagonalizable, we consider the corresponding Jordan
canonical forms.13 Note that Jordan canonical forms are defined in general only over algebraically closed
fields. Since Q is not algebraically closed, we must consider the complexification, as mentioned in part (b).
However, since all roots of χT (the eigenvalues 1 and 2) do lie in Q, we can proceed as we normally would
in finding the Jordan forms.

• Case 1: We previously showed that the invariant factor decomposition of V was Q[X]
(X−1)

⊕ Q[X]
(X−1)(X−2)

.
Utilizing the Chinese Remainder Theorem, we can convert this to the elementary divisor decompo-
sition of V : V ∼= Q[X]

(X−1)
⊕ Q[X]

(X−1)
⊕ Q[X]

(X−2)
. Thus the Jordan blocks are

[
1
]

,
[
1
]

and
[
2
]

and so the

Jordan canonical form is J1 =

1 0 0
0 1 0
0 0 2

. Since this is diagonal, this is not a possible form for T .

Furthermore, this proves that the corresponding rational canonical form R1 is not possible either.

• Case 2: The invariant factor decomposition here was V ∼= Q[X]
(X−1)2(X−2)

, so we get an elementary

divisor decomposition of V to be V ∼= Q[X]
(X−1)2

⊕ Q[X]
(X−2)

. Our Jordan blocks are

[
1 1
0 1

]
and

[
2
]
. Thus

the Jordan form is J2 =

1 1 0
0 1 0
0 0 2

. Since this is not diagonal, this is a possible Jordan form and

the corresponding rational canonical form R2 is also valid.

• Case 3: Here we obtain an elementary divisor decomposition of V as Q[X]
(X−2)

⊕ Q[X]
(X−2)

⊕ Q[X]
(X−2)

. However,
since these all lead to single Jordan blocks, this will also lead to a diagonal Jordan form and thus is
not possible.

13Since any diagonalizable matrix has a diagonal Jordan form and vice versa.

38



The Written Qual Book Algebra: Fall 2013

• Case 4: Here we obtain the following elementary divisor decomposition: V ∼= Q[X]
(X−1)

⊕ Q[X]
(X−2)2

. This

gives rise to the Jordan blocks
[
1
]

and

[
2 1
0 2

]
and the Jordan canonical form J4 =

1 0 0
0 2 1
0 0 2

.

In summary, the possible rational canonical forms for T are

RT,1 = R2 =

0 0 2
1 0 −5
0 1 4

 and RT,2 = R4 =

0 0 4
1 0 −8
0 1 5


and the possible Jordan canonical forms for T are

JT,1 = J2 =

1 1 0
0 1 0
0 0 2

 and JT,2 = J4 =

1 0 0
0 2 1
0 0 2


and no others exist.

Problem 4.4.2

Let A be an integral domain.

(a) Define what it means for an element π ∈ A to be irreducible.

(b) Suppose that π ∈ A is irreducible. Show that the polynomial ring A[x] is not a PID.

(c) Show that A[x] is a PID if and only if A is a field.

Notes and Comments

Proof of (a). A non-unit element π ∈ A is irreducible if π is not the product of two non-units. Equivalently,
if π = ab implies that either a or b is a unit.

Proof of (b). We will prove that the ideal (π, x) ⊆ A[x] is not principal. Suppose for contradiction that
(π, x) = (f). Then π ∈ (f), so f divides π. Thus f ∈ A by degree considerations. Since π is irreducible,
either f is a unit or f is an associate of π. The latter case is impossible because x /∈ (π) (if it were, π
would be a unit). So f is a unit.

Since f ∈ (π, x), we can write f = πg + xh for some g, h ∈ A[x]. Looking at the constant term of this
expression, we obtain f = πg0 where g0 ∈ A is the constant term of g. However, since f is a unit, so is
π.	Thus A[x] is not a PID.

Proof of (c). (⇒): Assume A[x] is a PID. To obtain a contradiction, suppose c ∈ A with c 6= 0 is not a
unit in A. Since A is an integral domain, c is also not a unit in A[x]. So (c) $ A[x] and so A[x] has a
maximal ideal (p) that contains (c).14 Then c ∈ (p), so p divides c and thus p ∈ A.

We will prove that p is an irreducible element of A. Suppose p = ab for a, b ∈ A. Since a, b ∈ A[x] too,
we have p ∈ (a) (the ideal in A[x]). Thus (p) ⊆ (a). But (p) is maximal, so either (a) = (p) or (a) = A[x].

14Since A[x] is a PID, this ideal is necessarily principal.
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• If (a) = (p), then a and p are associate. Thus p = au for a unit u ∈ A[x]. Then au = p = ab, so
u = b. Hence b is a unit.

• If (a) = A[x], then a is a unit.

Therefore, p is irreducible in A. By part (b), A[x] is not a PID.	Therefore every non-zero c ∈ A is a unit,
i.e., A is a field.

(⇐): Assume A is a field and let I be an ideal in A[x]. If I = (0), then I is principal. If I 6= (0), then I
has non-zero elements. Let f ∈ I be a non-zero element with minimum degree. We will show that (f) = I.

We know (f) ⊆ I because f ∈ I. Now let g ∈ I. Since A is a field and f 6= 0, we can use the Division
Algorithm to obtain q, r ∈ A[x] such that g = qf + r and deg r < deg f . Thus r = g − qf ∈ I (because
f, g ∈ I). But f has minimum degree among non-zero elements of I, so r = 0. Thus g = qf and so g ∈ (f).
Therefore (f) = I and I is principal. Hence A[x] is a PID.

Problem 4.4.3

Let V be a finite-dimensional vector space over a field k of characteristic zero and let 〈·, ·〉 : V ×V → k
be a skew-symmetric bilinear form.

(a) State what it means to say that the form is non-degenerate.

(b) Let W ⊆ V be a subspace such that the restriction 〈·, ·〉|W×W : W × W → k is non-
degenerate. Show that V admits an orthogonal decomposition V = W � W⊥, where
W⊥ = {x ∈ V : ∀w ∈ V, 〈x,w〉 = 0}. Show also that if the bilinear form on V was
non-degenerate, then so is the restriction to W⊥.

(c) Show that if the form is non-degenerate on V , then V is even-dimensional and it has a
basis relative to which the Gram matrix of the form is[

0 −In
In 0

]
,

where In is the n× n identity matrix.

Notes and Comments

Proof of (a). The form 〈·, ·〉 is non-degenerate if, when viewed as a linear map B : V → V ∗ given by
B(v)(w) = 〈v, w〉, B is an isomorphism. Equivalently, for finite-dimensional vector spaces, ∀x ∈ V with
x 6= 0, ∃w ∈ V such that 〈x,w〉 6= 0.

Proof of (b). W ∩W⊥ = {0} : Let x ∈ W ∩W⊥. If x 6= 0 then, since x ∈ W and 〈·, ·〉|W×W is nondegerate,

∃w ∈ W such that 〈x,w〉 6= 0 . However, since x ∈ W⊥, we must have 〈x,w〉 = 0 .	Hence x = 0 and so

W ∩W⊥ is trivial.
V = W +W⊥ : Consider 〈·, ·〉|V×W as a linear map B : V → W ∗. By the Rank-Nullity Theorem, we

know that
dimV = dim kerB + dim imB.

Notice that, by definition,

kerB = {x ∈ V | B(v)(w) = 0 ∀w ∈ W} = {x ∈ V | 〈x,w〉 = 0 ∀w ∈ W} = W⊥.
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On the other hand, B|W : W → W ∗ is an isomorphism since 〈·, ·〉|W×W is non-degenerate. Hence imB ∼=
W ∗ ∼= W .

Thus
dimV = dimW⊥ + dimW.

Since W ∩W⊥ is trivial, V = W �W⊥ as desired.
Finally, assume 〈·, ·〉 is non-degenerate on V . Let 0 6= x ∈ W⊥. Since 〈·, ·〉 is non-degenerate, there

is some v ∈ V such that 〈x, v〉 6= 0. By our work above, v = w + w⊥ for some w ∈ W , w⊥ ∈ W⊥. By
linearity and the definition of W⊥, we now have

0 6= 〈x, v〉 = 〈x,w + w⊥〉 = 〈x,w〉+ 〈x,w⊥〉 = 〈x,w⊥〉.

That is, 〈x,w⊥〉 6= 0 and so 〈·, ·〉|W⊥×W⊥ is non-degenerate as desired.

Proof of (c). Since 〈·, ·〉 is skew-symmetric, any Gram matrix G of 〈·, ·〉 will be skew-symmetric. Hence

detG = detGT = det(−G) = (−1)dimV detG.

Since 〈·, ·〉 is non-degenerate, detG 6= 0. Hence 1 = (−1)dimV . As the characteristic of k is not 2, this

means that dimV is even .
To find the desired basis, we will proceed by induction on n where dimV = 2n.
If n = 1, let v 6= 0 be in V . By nondegeneracy, ∃w ∈ V such that 〈w, v〉 6= 0. We may further assume

that 〈w, v〉 = 1 because, otherwise, we could rescale w.
Let W = span(v, w). Then 〈·, ·〉|W×W is nondegerate and has Gram matrix (with respect to this basis)

G =

[
0 −1
1 0

]
.

For the inductive step, assume dimV = 2n + 2. Our inductive hypothesis states that, for any ≤ 2n-
dimensional vector space with a non-degenerate skew-symmetric bilinear form, we have the desired basis.

Define W as above. By part (b), V = W � W⊥ and 〈·, ·〉|W⊥×W⊥ is a non-degenerate (necessarily
skew-symmetric) bilinear form. Thus, by the inductive hypothesis and the base case, W⊥ and W have
bases {v1, . . . , vn, w1, wn} and {v, w} with the desired form for the respective forms.

Consider the basis {v, v1, . . . , vn, w, w1, . . . , wn} for V . In this basis, the Gram matrix of 〈·, ·〉 is indeed[
0 −In+1

In+1 0

]
by the definition of W⊥ (thus giving us the zeros we might worry about).

Problem 4.4.4

Let K be a field of prime characteristic p, Fp the finite field with p elements.

(a) First assume that K/Fp is an algebraic extension. Show that, for every α ∈ K, there is a
unique β ∈ K with βp = α.

(b) Now let K be an arbitrary field of characteristic p and assume that L/K is a finite extension
with [L : K] = n and p - n. Show that L/K is a separable extension of fields.

Notes and Comments
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Proof of (a). Let α ∈ K. Since K is algebraic over Fp, there is an irreducible polynomial f(x) =
n∑
i=0

cix
i

where f ∈ Fp[x] such that f(α) = 0.
Consider the field Fp(α). Since this is a finite extension of Fp, it is necessarily a finite field. Hence

the Frobenius map is an automorphism. Thus α = βp for some unique β ∈ Fp(α). As β is contained in a

subextension of K/Fp, we know that β ∈ K .
To show uniqueness of β, suppose ∃γ ∈ K so that γp = α. Then, since Fp is a finite field, the Frobenius

map is again an automorphism and hence each coefficient of f can be written uniquely as ci = bpi for some
bi ∈ Fp. Hence, as K has characteristic p,

0 = f(α) = f(βp) =
n∑
i=0

ci(β
p)i =

n∑
i=0

bpi (β
i)p =

n∑
i=0

(biβ
i)p =

(
n∑
i=0

biβ
i

)p

.

As K is a field, this means that
n∑
i=0

biβ
i = 0.

Suppose γp = α = βp. Then γ also satisfies
n∑
i=0

biγ
i = 0. Since Fp(α) is a finite field, it is a normal

extension of Fp and so must contain every root of this polynomial. That is, γ ∈ Fp(α) as well. However,

as the Frobenius map is an automorphism, this means γ = β. Hence β is unique .

Proof of (b). Let α ∈ L and f = minα,K its minimal polynomial. Suppose f is inseparable. Then

f(x) =
k∑
i=0

cix
i where k = deg f | n. Hence p - k . Since f is inseparable, its formal derivative Df

must be the zero polynomial. That is,

Df(x) =
k∑
i=1

icix
i−1 = 0.

So kck = 0. However, since L is a field, this means k = 0 or ck = 0. As p - k and ck 6= 0 by assumption,
we have a contradiction. That is, f must be separable and hence L/K is a separable extension.

Problem 4.4.5

A non-abelian group G has exactly three conjugacy classes. What group is G and why?

Notes and Comments

Proof. Recall the Class Equation, |G| = |Z(G)| +
∑
i

|G|
|CG(xi)|

, where each xi is a representative of a

different conjugacy class and CG(xi) is the centralizer of that element.15 Each element of the center is its

15Recall x and y in the same conjugacy class implies that CG(x) = CG(y).
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own conjugacy class, so we can really rewrite the class equation as |G| =
∑
i

|G|
|CG(xi)|

where we include

singleton conjugacy classes.16

In this problem, we know that G has exactly three conjugacy classes. The identity always commutes
with every element, so one of our conjugacy classes is guaranteed to be of order 1. The other two we
know nothing about so far, except that the class equation must be satisfied. As it turns out, this is all the
information we need.

Let’s call the centralizers for our other two conjugacy classes H and K. WLOG, we assume that
|H| ≤ |K|. So the Class Equation simplifies to |G| = 1 + |G|

|H| + |G|
|K| or, equivalently,

1 =
1

|G|
+

1

|H|
+

1

|K|
(∗).

Since distinct conjugacy classes are disjoint, we know that |G| ≥ 3 and thus 1
|G| ≤

1
3
. Since |H| ≤

|K| ≤ |G|, we have 1
|G| ≤

1
|K| ≤

1
|H| and so 1 = 1

|G| + 1
|H| + 1

|K| ≤
3
|H| . Thus |H| ≤ 3 . Now, unfortunately,

we need to consider cases.
Case 1: Suppose |H| = 3. Then

1 =
1

|G|
+

1

|H|
+

1

|K|
≤ 1

3
+

1

3
+

1

|K|
,

so |K| ≤ 3. As 3 = |H| ≤ |K|, it must be that |K| = 3. We can solve for |G| in the Class Equation and
get that |G| = 3. So G must be Z3 which does indeed have 3 conjugacy classes, but is abelian and so it’s
not the desired group.

Case 2: Suppose |H| = 2. Since |K| ≤ |G|, we have 1 = 1
|G| + 1

|H| + 1
|K| ≤

2
|K| + 1

2
and so |K| ≤ 4.

• If |K| = 4, then we get |G| = 4 by solving (∗). As |H| = 2, G is nonabelian because the centralizer
of some element is a subgroup of order 2 that is not the whole group. But every group of order 4 is
abelian, so this is not possible.	

• If |K| = 3, then we get |G| = 6 by solving (∗). The only nonabelian group of order 6 is S3, which does
indeed have three conjugacy classes: {id}, {r, r2}, {s, rs, r2s}. Here we use the group presentation
〈r, s|r3 = 1, s2 = 1, rsr = s〉. So G could be S3.

• If |K| = 2, then we get 1
|G| = 0 from (∗). Clearly this is no good.

Case 3: Suppose |H| = 1. Then we get 1 = 1
|G| + 1 + 1

|K| and so 1
|G| + 1

|K| = 0. This is obviously not
possible since group orders must be positive.

Hence our only possible contender was S3 and so we can conclude that G = S3 .

Problem 4.4.6

Let n = 13 · 29 = 377 and m ≥ 3 a square-free integer. Let L be the splitting field over Q of
(x7 −m)(xn − 1).

(a) Determine the splitting field L/Q and its degree over Q, justifying all steps.

16Indeed, for a ∈ Z(G), |G|
|CG(a)| = |G|

|G| = 1.
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(b) Determine whether or not Gal(L/Q) is abelian.

(c) Determine whether or not Gal(L/Q) is a solvable group and, if so, give an appropriate
normal tower which demonstrates this fact. If not, be clear why the extension fails to
have a solvable Galois group.

Notes and Comments

Proof of (a). We first note that x7−m is irreducible due to Eisenstein’s Criterion and its splitting field is
generated by 7

√
m and ζ7.17 On the other hand, we can factor the xn−1 term using cyclotomic polynomials

as
xn − 1 = (x− 1)(x12 + x11 + · · ·+ 1)(x28 + x27 + · · ·+ 1)

This leads us to the following diagram (note 2639 = 7 · 13 · 29):

L

Q(ζ2639)

Q(ζ377)

Q( 7
√
m) Q(ζ7) Q(ζ13) Q(ζ29)

Q

7

6

ϕ(2639)

336

28
12

7
6 12 28

The degree extensions follow from multiplicativity in towers and basics of cyclotomic extensions (in-
tersections and Galois groups). In particular, we have 7

√
m /∈ Q(ζ29): Q( 7

√
m)/Q is not Galois hence

not a subextension of Q(ζ29)/Q (which is abelian and thus every subextension is Galois). This gives
L = Q(ζ7, ζ13, ζ29, 7

√
m) = Q(ζ2639,

7
√

(m)) with degree 14, 112 = 7 · (6 · 12 · 28) over Q.

Proof of (b). No The extension is not abelian because Q( 7
√
m) is not normal over Q. If the tower were

abelian, all subgroups would be abelian (hence Galois).

Proof of (c). Yes The extension is solvable because it is obtained from Q by adjoining roots of polyno-
mials. Adjoin all of the roots of unity and then the 7

√
m.

17Look at Lang V1.{3,7,9} to review this material.
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Algebra Exam

Summer 2014

Problem 4.5.1

Let R be a commutative ring. An R-module P is projective if for all R-module homomorphisms
v : M → N and f : P → N with v surjective, there exists an R-module homomorphism g lifting f in
the sense that the diagram

M

P N

0

v
g

f

commutes. Show that an R-module P is projective if and only if P is a direct summand of a free
R-module.

Notes and Comments

Proof. We begin with a helpful lemma.

Lemma 4.5.1 Every free R-module is projective.

Proof of Lemma. Let F(S) be a free R-module on a set S, let M , N be arbitrary R-modules, f : F(S)→ N
an R-module homomorphism, and v : M → N a surjective R-module homomorphism. Let ι : S → F(S)
denote the natural inclusion map.

First we define a set map φ : S → M . Since v is surjective, there exists ms ∈ M such that v(ms) =
f(ι(s)) for all s ∈ S. Define φ so that φ(s) = ms. Since F(S) is free, there is a unique R-module map
g : F(S)→M such that the following diagram commutes:

S F(S)

M

ι

φ
g

We’ll use this to show that

F(S)

M N 0

g
f

v

commutes. By construction of φ, we have v ◦ φ = f ◦ ι. Thus

f ◦ ι = v ◦ φ = v ◦ (g ◦ ι),
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where the last equality follows from the commutativity of the previous diagram. So

f = v ◦ g

and so F(S) is projective.

Now we will prove the desired result.
( =⇒ ) Assume P is projective. We will show that it is the direct summand of a free R-module. Since

every R-module is the quotient of a free R-module, we can write P ∼= F(S)/Q, where F(S) is a free
R-module and Q is some R-module.

Let π : F(S)→ F(S)/Q denote the standard projection and φ the isomorphism between F(S)/Q and
P . Since P is projective and π is surjective, there exists a map i : P → F(S) such that the following
diagram commutes:

P

F(S) F(S)/Q 0

i
φ

π

Now consider the following short exact sequence:

0 −→ ker(π) −→ F(S)
π−→ F(S)/Q −→ 0.

We know P ∼= F(S)/Q, and it is clear that ker(π) ∼= Q, so this becomes

0 −→ Q −→ F(S)
π−→ P −→ 0.

Thus, to show P is the direct summand of F(S), we need only find a section for π. However, since φ is an
isomorphism, we have a map i ◦ φ−1 : F(S)/Q→ F(S). To see that it is a section, note that

(π ◦ i) ◦ φ−1 = φ ◦ φ−1 = Id

by the above commuting diagram. Thus our short exact sequence splits and we can conclude that F(S) ∼=
P ⊕Q.

(⇐= ) Now assume P is the direct summand of a free R-module F(S), i.e., F(S) ∼= P ⊕Q where Q is
some R-module. Then we have natural projection and inclusion maps π : F(S) → P and ι : P ↪→ F(S),
respectively.

Let M , N be arbitrary R-modules with f : P → N and v : M → N R-module homomorphisms where
v is surjective. Then we have

F(S)

M N 0

f◦π

v

Since F(S) is free and hence projective by the lemma above, there exists a map g : F(S) → M that
makes the diagram commute. That is,

F(S)

M N 0

g
f◦π

v
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commutes. But we can then simply redraw the diagram as such:

P

M N 0

g◦ι
f

v

Thus, if this diagram commutes, P is projective. Note that the previous diagram commuting is not quite
sufficient, since that diagram did not involve ι. Here, we have

v ◦ g ◦ ι = f ◦ π ◦ ι = f ◦ Id = f,

where the first equality follows from the commutativity of the diagram associated to F(S); the second by
the definitions of π and ι. Thus P is projective.

Problem 4.5.2

Let A ∈ Mn(C) (with n ≥ 1) and suppose Am = 0 for some m > 0. Show that An = 0 and that the
trace of A is zero.

Notes and Comments

Proof. Proof 1 (just linear algebra): Since Am = 0 for some m (necessarily smaller than n), we know
that A is nilpotent. Thus all the eigenvalues of A are 0 and so the trace of A, being the sum of eigenvalues
of A, is also 0. Finally, An = 0 because

An = An−mAm = An−m0 = 0.

Proof 2 (using some module theory): Instead, for a more interesting and satisfying answer, we
could consider Cn as a C[x]-module Cn

A with action f · v = f(A)v. Let m be minimal such that Am = 0.
Then, since Am = 0, the minimal polynomial of A is xm.

As the only roots of xm are 0 (with multiplicity), the only possible eigenvalues of A (being the roots of
the minimal polynomial) are 0. That is, every eigenvalue of A is 0. Hence the characteristic polynomial of

A is χA(x) = xn (xm | χA and χA | (xm)k for some k). As χA annihilates Cn
A, An = 0 .

The argument for trace, even in this setting, remains unchanged. However, if you prefer, consider the
Jordan canonical form J of A. So A = UJU−1 and, as the trace is the sum of the diagonal and is invariant

under conjugation, trace(A) = trace(J) = 0 .

Problem 4.5.3

Suppose that G is a group of order 105 and that G has a normal 3-Sylow subgroup. Show that G
is cyclic.

Notes and Comments

Proof. First note that 105 = 3 · 5 · 7. Let np denote the number of p-Sylow subgroups. By the Sylow
theorems, we have n5 ≡ 1 (mod 5) and n5|21 = 105

5
. Thus n5 = 1 or 21. Similarly, n7 ≡ 1 (mod 7) and

n7|15 = 105
7

. So n7 = 1 or 15.
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If both n5 = 21 and n7 = 15, then there are 21(4) = 84 elements of order 5 and 15(6) = 90 elements of
order 7. This is already too many.	Therefore, either n5 = 1 or n7 = 1. Suppose n5 = 1 .

Let P be the 3-Sylow subgroup, Q a 5-Sylow subgroup, and R a 7-Sylow subgroup. Then we know
that Q E G. Then QR ≤ G. Note that P ∩QR = {1} since gcd(|P |, |QR|) = gcd(3, 35) = 1.

Since P E G, we have P (QR) ≤ G. Thus PQR = G . Then G ∼= P oϕ QR, where ϕ : QR→ Aut(P )

is given by α 7→ ψα, where ψα(β) = αβα−1. Note that Aut(P ) ∼= Aut(Z/3Z) ∼= Z/2Z. But |QR| = 35 and

gcd(2, 35) = 1, so ϕ is trivial. Hence G ∼= P ×QR .
Now QR is a group of order 5 · 7, the product of 2 primes, and any such group is cyclic. Moreover

|QR| = 35, so QR ∼= Z/35Z. Thus G ∼= P ×QR ∼= Z/3Z×Z/35Z ∼= Z/105Z and so G is cyclic as desired.
The same argument holds if R is normal (n7 = 1) and Q is not.

Problem 4.5.4

For n ≥ 1, let ζn denote a primitive nth root of unity.

(a) Consider the following lattice of fields.

Q

F = Q(ζ5) K = Q( 4
√

5)

E = Q(ζ20) L = Q(ζ5,
4
√

5)

EL = Q(ζ20,
4
√

5)

a

c

f g

b

d e

Determine the degrees of all extensions, giving reasons for your answers.

(b) Now consider the lattice

Q

E = Q(ζ20) K ′ = Q( 20
√

5)

L′ = Q(ζ20,
20
√

5)

a

e

b

c d

For each of the five extensions in this diagram, determine whether the extension is Galois or
not. If the extension is Galois, determine the strongest adjective that describes the Galois
group from among the following list (in ascending order):

nonabelian⇐ solvable⇐ abelian⇐ cyclic

48



The Written Qual Book Algebra: Summer 2014

and offer a brief explanation. (You may compute Galois groups to justify your assertions, but
this is not required.)

Notes and Comments

Proof of (a). (a, b, c) : Observe that [Q( 4
√

5) : Q] = 4 since x4 − 5 is irreducible by Eisenstein (p = 5).

The cyclotomic extensions have degree given by [Q(ζ20) : Q] = φ(20) = 8 and [Q(ζ5) : Q] = φ(5) = 4. By
multiplicativity of degrees in towers, this solves a, b, and c.

(d, e) : We now look to determine the degree of L/F . This requires the observation that Q(
√

5) ⊆
Q(ζ5), which is an example of the more general fact that Q(

√
p∗) ⊂ Q(ζp) for p prime where p∗ = ±p

depending on whether p ≡ 1 (mod 4). With this observation, let α =
√

5 and observe that L = F (
√
α) so

[L : F ] ≤ 2. If [L : F ] = 1 this would imply that F = K, a contradiction since the former is Galois over Q
and the latter is not. Hence d = e = 2.

(f, g) : To finish, we can now apply a similar argument to EL/E. Let α =
√

5 ∈ Q(ζ20) so EL = E(
√
α)

which implies that [EL : E] ≤ 2. Since Q(ζ20) is abelian then every sub-extension is normal so Q( 4
√

5) is
not a subfield. Hence EL 6= E so [EL : E] = 2 which solves f, g

Therefore the diagram becomes

Q

F = Q(ζ5) K = Q( 4
√

5)

E = Q(ζ20) L = Q(ζ5,
4
√

5)

EL = Q(ζ20,
4
√

5)

4

2

2 2

4

2 2

with all degrees determined as desired.

Proof of (b). a is Galois, abelian : As a cyclotomic extension we have Gal(Q(ζ20)/Q) = (Z/20Z)×. On

the level of rings, we can break Z/20Z apart as Z/20Z ∼= Z/5Z × Z/4Z using the Chinese Remainder
Theorem. Clearly the isomorphism restricts to units and hence (Z/20Z)× ∼= (Z/5Z)× × (Z/4Z)×. Thus
Q(ζ20)/Q is abelian but not cyclic.

b is not Galois : This extension is not normal since it only contains the real conjugates of 20
√

5.

c is Galois, cyclic : Adjoining an nth root of an element to a field with the nth roots of unity is cyclic.

d is Galois, abelian : The argument in part (a) gives that E ∩ K ′ = Q(
√

5). It can be checked that
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the subgroup 〈(4, 1), (1, 3)〉 ≤ (Z/5Z)× × (Z/4Z)× fixes Q(
√

5). Hence by Theorem 1.12 (Lang),

E ∩K ′ = Q(
√

5)

E = Q(ζ20)

Q

K ′ = Q( 20
√

5)

K ′F = Q(ζ20,
20
√

5)

2

Z/2Z× Z/2Z
=

Z/2Z× Z/2Z
=

That is, the extension is abelian but not cyclic.
e is Galois, solvable : The extension is Galois as it is the splitting field of x20 − 5. Since K ′ = Q( 20

√
5)

is not Galois, this extension is not abelian. However it is still solvable with a normal tower going through
Q(ζ20).

Problem 4.5.5

Finite Galois extensions.

(a) Suppose K1/F and K2/F are finite Galois extensions. Show that the extensions (K1 ∩K2)/F
and K1K2/F are Galois.

(b) Prove that for any integer n ≥ 1 there is a Galois extension K/Q with [K : Q] = n.

Notes and Comments

Proof of (a). Suppose K1, K2 are Galois over F . Let α ∈ K1∩K2 and let f(x) be the minimal polynomial
of α over F . Then f is separable since α ∈ K1 and K1/F is separable. Thus every α ∈ K1∩K2 is separable,
so K1 ∩K2 is separable over F .

To show that K1 ∩ K2 is normal over F , it suffices to show that, given α and f as above, K1 ∩ K2

contains all of the roots of F . But all roots of f are in K1 because K1 is normal over F and, similarly, all
roots of f are in K2 since K2 is normal. Therefore, all roots of f are in K1 ∩ K2, so K1 ∩ K2 is normal
over F . Hence K1 ∩K2 is Galois over F .

To show that K1K2 is Galois over F , write K1 = F (α), K2 = F (β) by the Primitive Element Theorem
(since K1 and K2 are Galois extensions and hence separable). Let fα and fβ be the minimal polynomials
of α and β, respectively. Then K1K2 = F (α, β) is the splitting field of fαfβ, so it suffices to show that
fαfβ is separable.

Since both fα and fβ are separable, the only way their product will not be separable is if fα and fβ
have a common root γ. Then fα and fβ are both minimal polynomials of γ over F , so fα = fβ and hence
K1 = K2. That is, K1K2 = K1 = K2 = F (γ) is Galois. Otherwise, fα and fβ do not share a root so fαfβ
is separable, so K1K2 is separable and hence Galois over F .
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Proof of (b). By Dirichlet’s Theorem on Arithmetic Progressions, there is a prime p such that p ≡ 1
(mod n) (and so that n|(p− 1)). Let ζp be a primitive pth root of unity. Define L = Q(ζp). Then L/Q is
Galois with Galois group (Z/pZ)×, which is cyclic of order p− 1.

Write p− 1 = nk. Then k|(p− 1) and G is abelian, so there exists a subgroup H ≤ G of order k. Let
K be the fixed field of H. Then [K : Q] = [G : H] = (p− 1)/k = n and hence K is the desired field.

Problem 4.5.6

Let A be a Noetherian integral domain (which is not a field), B a commutative ring with identity.

(a) Let a ∈ A be a nonzero, non-unit. Show that a can be written as a finite product of irreducibles.

(b) Let ϕ : A→ B be a surjective ring homomorphism. Show that B is a Noetherian ring.

Notes and Comments

Proof of (a). Suppose a cannot be written this way. Then a is not irreducible, so we can write a = a1b1

for some a1, b1 ∈ A, neither of which is a unit.
If both a1 and b1 could be written as a product of irreducibles, then a = a1b1 also would be a product

of irreducibles, a contradiction. So, without loss of generality, a1 is not a product of irreducibles. Then a1

is not irreducible and so a1 = a2b2 for some a2, b2 ∈ A, neither of which is a unit.
Continuing in this way, we can write a2 = a3b3 and, in general,

ai−1 = aibi (4.1)

with neither ai nor bi a unit. This yields the chain

(a1) ⊆ (a2) ⊆ (a3) ⊆ · · · .

Now we show that this chain does not stabilize. If (ai−1) = (ai) for some i, then ai = cai−1. Substituting
this into (4.1) yields ai−1 = cai−1bi where c is a unit. We are in an integral domain, so this implies 1 = cbi.
That is, bi is a unit.	Therefore, the chain

(a1) $ (a2) $ (a3) $ . . .

does not stabilize. Hence A cannot be Noetherian.

Proof of (b). There are three equivalent definitions of a Noetherian ring and each one can be used to prove
that B is Noetherian (though just one of the three is enough).

I. Let J1 ⊆ J2 ⊆ · · · be an ascending chain of ideals in B. Then

φ−1(J1) ⊆ φ−1(J2) ⊆ . . .

is an ascending chain of ideals in A. Since A is Noetherian, this chain in A stabilizes at some m, i.e.,

φ−1(Jm) = φ−1(Jm+1) = φ−1(Jm+2) = . . . .

Since φ is surjective, this implies Jm = Jm+1 = Jm+2 = . . ., so the chain of ideals in B stabilizes.
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II. Let J be an ideal in B. Then φ−1(J) is an ideal in A. Since A is Noetherian, φ−1(J) is finitely
generated by, say, φ−1(J) = (a1, . . . , ak). We will prove that J = (φ(a1), . . . , φ(ak)).

(⊇) ai ∈ φ−1(J), so φ(ai) ∈ J .

(⊆) Let b ∈ J . Since φ is surjective, b = φ(a) for some a ∈ A. Then φ(a) ∈ J , so a ∈ φ−1(J), so we
can write

a = c1a1 + · · ·+ ckak

for some c1, . . . , ck ∈ A. Then

b = φ(a) = φ(c1)φ(a1) + · · ·+ φ(ck)φ(ak),

so b ∈ (φ(a1), . . . , φ(ak)).

Therefore, J is generated by the elements φ(a1), . . . , φ(ak) and we have shown that every ideal of B
is finitely generated.

III. Let J be a non-empty collection of ideals in B. Set I = (φ−1(J))J∈J . Since A is Noetherian, I has
a maximal element. By the Correspondence Theorem, since φ is surjective, I and J have identical
containment relations, so J has a maximal element.

For any of these methods, we have that B is Noetherian.

52



The Written Qual Book Algebra: Fall 2014

Algebra Exam

Fall 2014

Problem 4.6.1

Let A be a 5× 5 matrix over C with minimal polynomial mA(x) = x2(x− 2)2. What are the possible
rational canonical forms and corresponding Jordan forms for A?

Notes and Comments

Proof. Note that mA divides the characteristic polynomial χA and that they share the same roots. As
A can be realized as a linear map, we can realize the underlying vector space as a C[x]-module with the
standard A action. Hence we have a decomposition (via the structure theorem) f1|f2| . . . |fs where we
know that mA = fs and f1f2 . . . fs = χA.

Since A is 5 × 5 we must have deg(χA) = 5. So we know that there are two possible forms for χA,
depending on the root of the additional factor. Thus the possible characteristic polynomials are either
xmA or (x− 2)mA. Thus we can compute the associated canonical forms:

• Rational Canonical Form: The companion matrices are C(x) = [0], C((x − 2)) =
[
2
]
, and

C(x2(x−2)2) = C(x4−4x3 +4x2) =


0 0 0 0
1 0 0 0
0 1 0 −4
0 0 1 4

. Thus the two possible rational canonical forms

are

RA1 =


0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 −4
0 0 0 1 4

 or RA2 =


2 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 −4
0 0 0 1 4

 .
• Jordan Forms: We have our Jordan forms corresponding to the p-primary decompositions. From

mA, we know that we will have Jordan blocks

[
0 1
0 0

]
and

[
2 1
0 2

]
. The final Jordan block depends

on the “extra” factor we include (either [0] or [2]). Thus

JA1 =


0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 2 1
0 0 0 0 2

 or JA2 =


2 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 2 1
0 0 0 0 2

 .

Problem 4.6.2

Let R be a commutative ring with identity.

(a) Let M,N be free R-modules. Show that M ⊗R N is free.
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(b) Let M,N be projective R-modules. Show that M ⊗R N is projective.

Notes and Comments

Proof of (a). A free R-module is a direct sum of copies of R. In particular, we write M ∼=
⊕
i∈I

R and

N ∼=
⊕
j∈J

R. Then, since R⊗R R ∼= R,

M ⊗R N ∼=

(⊕
i∈I

R

)
⊗R

(⊕
j∈J

R

)
∼=

⊕
(i,j)∈I×J

R,

which is free.

Proof of (b). A projective module is a direct summand of a free module. In particular, we write M⊕P = E
and N ⊕Q = F , where E and F are free. Then, by part (a), E ⊗R F is free. Furthermore,

E ⊗R F = (M ⊕ P )⊗R (N ⊕Q) ∼= (M ⊗R N)⊕ (M ⊗R Q)⊕ (P ⊗R N)⊕ (P ⊗R Q),

showing that M ⊗RN is a direct summand of the free module E ⊗R F , whence M ⊗RN is projective.

Problem 4.6.3

Suppose that p and q are distinct primes and that G is a group of order p2q. Show that G has either
a normal p-Sylow subgroup or a normal q-Sylow subgroup.

Notes and Comments

Proof. Let np denote the number of p-Sylow subgroups and nq the number of q-Sylow subgroups. Let P
be a p-Sylow subgroup and Q a q-Sylow subgroup.

By the Sylow theorems, we know that np ≡ 1 (mod p) and np|[G : P ]. Since [G : P ] = |G|
|P | = p2q

p2
= q,

we have np|q. Thus np = 1 or np = q. Similarly, nq = 1, p or p2.
If nq = 1 then Q is normal in G and we are done. So we suppose that nq 6= 1. Then nq = p or p2 and

np = q. We will show that P must be normal in this case.
Case 1: Suppose nq = p. Then p ≡ 1 (mod q) and so p > q. Thus [G : P ] = q is the smallest prime

dividing |G|. Hence P E G.
Case 2: Suppose nq = p2. Then there are p2(q− 1) elements of order q and at least p2− 1 elements of

order p or p2 (namely, the nontrivial elements of P ). Including the identity, we have at least p2q−p2 +p2−
1 + 1 = p2q elements. Thus, if there is more than one p-Sylow subgroup, there will be too many elements.
Hence np = 1 and P E G.

In any of the above cases, G has a normal p-Sylow subgroup or a normal q-Sylow subgroup.

Problem 4.6.4
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Let ζ7 ∈ Z be a primitive, complex 7th root of unity. Consider the lattice of fields:

L = Q( 7
√

2, ζ7)

E = Q(ζ7) K = Q( 7
√

2)

Q

(a) Compute the degree of each extension in the diagram, justifying your answers.

(b) Show that L is Galois over Q. Let G = Gal(L/Q) and HE, HK be the subgroups corresponding
to E and K, respectively. Show explicitly that HE and HK are cyclic groups and compute their
orders. Under the Galois correspondence, determine the subgroups HE ∩HK and HEHK.

(c) Show that G is the semi-direct product of cyclic groups.

(d) Let σ ∈ G be characterized by σ( 7
√

2) = 7
√

2ζ5
7 and σ(ζ7) = ζ3

7 . What are the fixed fields
corresponding to σHEσ

−1 and σHKσ
−1?

Notes and Comments

Proof of (a). The extension K/Q has degree 7 as the polynomial x7−2 is irreducible by Eisenstein (p = 2)
and has 7

√
2 as a root. The extension E/Q has degree ϕ(7) = 6 since it is a cyclotomic extension. Since 7

and 6 are relatively prime, we must have the degree of L/Q is 42 (and so L/E is degree 7 and L/K is 6
by multiplicativity of degrees in towers).

Proof of (b). We claim that L is the splitting field of x7 − 2 over Q. The extension is automatically
separable since Q has characteristic 0. We noted in part (a) that x7−2 is irreducible, so it remains to show

that its roots generate L. This is clear by noting that ζ7
7
√

2 is a root of the polynomial and
ζ7

7
√

2
7
√

2
= ζ7.

To see that the fixed fields are cyclic, we note HK
∼= (Z/7Z)× which is cyclic (generated by 3). Similarly,

HE is cyclic because there is only one group of order 7, Z7.
From part (a) and basic Galois theory, we see that E ∩ K = Q and EK = L. Thus, by the Galois

correspondence, HEHK = G and HE ∩HK = {e}.

Proof of (c). This is immediate from part (b) and the semidirect product criterion once we note that E/Q
is normal (actually abelian) as the splitting field of x7 − 1.

Proof of (d). Since HE is normal, σHEσ
−1 = HE, so its fixed field remains unchanged. On the other hand,

σHKσ
−1 = HσK is the fixed field of σK = Q( 7

√
2ζ5

7 ).
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Problem 4.6.5

Finite Galois extensions.

(a) Let K/Q be a field extension of degree 24. Show that x5 + 2x4 − 16x3 + 6x− 10 has no roots
in K.

(b) Show that α =
√

2 + 3
√

5 is algebraic over Q and determine the degree of α.

Notes and Comments

Proof of (a). By Eisenstein’s Criterion (p = 2), f(x) = x5 + 2x4 − 16x3 + 6x − 10 is irreducible over Q.
Adjoining any root of f results in a degree 5 extension of Q. By multiplicativity of degrees in towers, K
cannot contain a root of f since 5 - 24 = [K : Q].

Proof of (b). Note that α is algebraic over Q since Q(α) ⊂ Q(
√

2, 3
√

5). That is, since both Q(
√

2) and
Q( 3
√

5) are algebraic over Q, their compositum Q(
√

2, 3
√

5) must be as well (since algebraic extensions form
a distinguished class).

Hence the degree of α over Q must divide 6 = [Q(
√

2, 3
√

5) : Q]. Let’s play the algebra game:

α−
√

2 =
3
√

5⇒ (α−
√

2)3 = 5⇒ α3 + 6α− 5 = (3α2 + 2)
√

2 .

This shows that
√

2 =
α3 + 6α− 5

3α2 + 2
. That is,

√
2 ∈ Q(α). Hence 3

√
5 = α −

√
2 ∈ Q(α). Thus Q(α) =

Q(
√

2, 3
√

5) and so α must be of degree 6 over Q.

Problem 4.6.6

Field extensions.

(a) Determine the number of distinct roots of the polynomial xn − 1 in an algebraic closure of
Fp = Z/pZ where p is a prime number and n > 0.

(b) Let K/Q be a finite extension of fields and let α ∈ K. Suppose that there is a monic polynomial
f ∈ Z[x] so that f(α) = 0. Show that the minimal polynomial mα,Q(x) of α over Q lies in Z[x].

Notes and Comments

Proof of (a). We claim there are

n roots if p - n
n

npνp(n)
roots if p | n where νp(n) is the largest power of p dividing n.

In the first case, we note that xn − 1 and nxn−1 have no common roots, so xn − 1 is separable. Thus
we can find n distinct roots in the algebraic closure.

For the second case, let m =
n

pνp(n)
. Then xn − 1 ≡ xm − 1 (mod p) by the Frobenius map and the

result follows from the first case since m and p are relatively prime.

Proof of (b). Let S be the set of all monic polynomials in Z[x] for which α is a root. The hypotheses of
the problem give that S is non-empty. Now let f be a minimum degree element of S.

By definition of minimal polynomial, we must have mα,Q|f . In order to obtain a contradiction, assume
that the degree of f is strictly greater than the degree of mα,Q. Then we must have f = mα,Qh over Q[x],
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with both mα,Q and h monic non-constant polynomials (again by the definition of minimal polynomial).
By Gauss’ Lemma, f must also split in Z[x] but this contradicts the minimality of the degree of f .	Thus
f = mα,Q since they are both monic. That is, mα,Q ∈ Z[x].
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Algebra Exam

Summer 2015

Problem 4.7.1

Let R be a commutative ring with identity (1R) and let S ⊆ R be a multiplicatively closed subset of
R containing 1R and such that 0 /∈ S. Let S−1R denote the ring of fractions of R with respect to S.

(a) For an R-module M , describe the construction of the module of fractions S−1M and its
universal mapping property.

(b) Show that, if

L
φ //M

ψ // N (4.2)

is an exact sequence of R-modules, then the induced sequence

S−1L
S−1φ // S−1M

S−1ψ // S−1N

is an exact sequence of S−1R-modules.

Notes and Comments

Proof of (a). (1) Define S−1M =
{
m
s

: m ∈M, s ∈ S
}

, where we equate m
s

and n
t

if there is u ∈ S such
that ut ·m = us · n. This is an equivalence relation.

(2) For m
s
, n
t
∈ S−1M , define m

s
+ n

t
= t·m+s·n

st
. This makes S−1M an abelian group.

(3) For m
s
∈ S−1M and r

t
∈ S−1R, define r

t
· m
s

= r·m
ts

. This makes S−1M an S−1R-module.
Define the natural inclusion18 i : M → S−1M by i(m) = m

1
. The universal mapping property of S−1M

is: for any S−1R-module N and any R-module map f : M → N , there is a unique S−1R-module map
S−1f : S−1M → N such that the diagram

M
f //

i
��

N

S−1M
S−1f

88

comutes.

Proof of (b). Let l
s
∈ S−1L. Then

S−1ψ

(
S−1φ

(
l

s

))
=
ψ(φ(l))

s
,

and ψ(φ(l)) = 0 as the sequence in (4.2) is exact. Thus S−1ψ ◦ S−1φ = 0, so imS−1φ ⊆ kerS−1ψ .

18Despite being called an inclusion, it is not necessarily injective. Its kernel is a torsion submodule of M , so it is injective
if and only if M is torsion-free.
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Now let m
s
∈ S−1M with S−1ψ

(
m
s

)
= 0. Then

ψ(m) = s · ψ(m)

s
= s · S−1ψ

(m
s

)
= s · 0 = 0.

Thus m ∈ kerψ. By the exactness of (4.2) there is l ∈ L such that φ(l) = m. Then

S−1φ

(
l

s

)
=
φ(l)

s
=
m

s
.

This proves that m
s
∈ imS−1φ, so kerS−1ψ ⊆ imS−1φ .

Problem 4.7.2

Ring theory.

(a) Let R be a PID. Show that a finitely generated R-module is projective if and only if it is free.

(b) Let R be a commutative ring with identity and S = Mn(R) denote the ring of n× n matrices
with entries in R. Observe that M = Rn (as a column space) is a left S-module. Show that
M is a projective S-module but it is not a free S-module.

Notes and Comments

Proof of (a). Every free module is projective, which takes care of one direction.19 For the other, let P be
a finitely generated R-module. Then P is a direct summand of a free R-module, say F = P ⊕ Q with F
free. Since R is a domain, F is torsion-free. But P ⊆ F , so P is torsion-free. Then, since P is finitely
generated and R is a PID, we conclude that P is free by the structure theorem.

Proof of (b). Let I ∈ Mn(R) be the identity matrix. Then Mn(R) is a free module over itself with basis
{I}. Let ei ∈M = Rn be the column with 1 in the ith place and 0 everywhere else. As an Mn(R)-module,
Mn(R) is isomorphic to Mn (the direct sum of n copies of M) by the isomorphism

Φ : I 7→ (e1, . . . , en).20

Thus, since Mn(R) ∼= Mn as Mn(R)-modules, M is a direct summand of a free module; hence M is
projective.

However, M is not a free Mn(R)-module. Indeed, every b ∈M = Rn has many non-zero matrices that

annihilate it. For instance, write b =

b1
...
bn

 and assume that b1 6= 0 (every matrix annihilates the zero

vector). Set

A =


−b2 b1 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 .

19Take the most appropriate definition of a projective module and write a sentence to justify it. You should actually be
able to do this for at least two definitions easily.

20We defined Φ on a basis, but we can examine what it does to any matrix. Given a matrix A ∈ Mn(R), we have
Φ(A) = A ·Φ(I) = A · (e1, . . . , en) = (Ae1, . . . , Aen), and Aei is just the ith column of A. Thus, Φ takes a matrix and returns
the list of its columns.
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Then A 6= 0 but Ab = 0. Thus, b cannot be an element of a basis and, since b was “arbitrary,” M has no
basis.21 So M is not free.

Problem 4.7.3

Group theory.

(a) Compute the order of the group GLn (Fp).

(b) Show there is a natural short exact sequence of groups

1 // SLn (Fp) // GLn (Fp) // F×p // 1

and that the sequence splits.

(c) Given that the sequence splits, we know that GLn (Fp) is a semidirect product of SLn (Fp) and
F×p . Describe this isomorphism.

(d) Note that part (b) implies that [GLn (Fp) : SLn (Fp)] = p − 1, so that the size of the Sylow p-
subgroups is the same in SLn (Fp) and GLn (Fp). Show that every Sylow p-subgroup of GLn (Fp)
is actually a subgroup of SLn (Fp).

Notes and Comments

Proof of (a). An element of GLn (Fp) can be identified with its matrix representation via the standard
basis for Fnp . To be in the general linear group means that this matrix is non-singular. Hence the columns
must be linearly independent.

To count the elements of GLn (Fp), we count the number of linearly independent sets of n vectors in
Fnp . After j − 1 linearly independent column vectors, {v1, ..., vj−1}, have been chosen, we must choose vj
from Fnp\ spanFp {v1, ..., vj−1}. Hence, there are pn − pj−1 = pj−1(pn−j+1 − 1) choices for the jth column.
Multiplying these numbers together and playing around with indicies, we get a clean-ish expression for the
order of GLn (Fp):

|GLn (Fp)| =
n∏
j=1

pj−1(pn−j+1 − 1) =

(
n∏
j=1

pj−1

)(
n∏
j=1

(
pn−j+1 − 1

))

= p
∑n−1
j=1 j

 n∏
(n−j+1)=1

(
p(n−j+1) − 1

) = p
n(n−1)

2

(
n∏
j=1

(
pj − 1

))
.

Thus |GLn (Fp)| = p
n(n−1)

2

(
n−1∏
j=1

(pj − 1)

)
.

21The assumption on b1 is rather stricter than we require but it’s easier to write down. Indeed, the correct assumption is
that some bi 6= 0. Then we move to the ith row of A and do a similar trick.
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Proof of (b). By definition, SLn (Fp) is the subgroup of GLn (Fp) whose elements have determinant equal
to one. That is, SLn (Fp) is the kernel of the surjective group homomorphism det : GLn (Fp) → F×p .
Equivalently, the following sequence is exact:

1 // SLn (Fp) ι // GLn (Fp) det // F×p // 1

where ι : SLn (Fp)→ GLn (Fp) is the inclusion map.
A section of det is given by the map · ⊕ I : F×p → GLn (Fp). Given u ∈ F×p ,

u 7→ u⊕ I :=

(
u 0
0 In−1

)
∈ GLn (Fp) .

Then ·⊕ I is indeed a group homomorphism because we’re multiplying diagonal matrices. As det(u⊕ I) =
u · 1n−1 = u, · ⊕ I is indeed a section of det. Thus the short exact sequence splits as desired.

Proof of (c). Since the short exact sequence splits via a section, we know that there is an action ϕ : F×p →
Aut(SLn(Fp)) such that GLn(Fp) ∼= SLn(Fp) oϕ Aut(F×p ). Specifically, for u ∈ F×p , the action is given by

ϕu(A) = (u⊕ I)A(u⊕ I)−1 = (u⊕ I)A(u−1 ⊕ I).22

So the multiplication on SLn(Fp) oϕ Aut(F×p ) is

(A, u) · (B, v) = (Aϕu(B), uv) =
(
A(u⊕ I)B(u−1 ⊕ I), uv

)
.

Consider the map µ : SLn (Fp) o F×p → GLn (Fp) given by µ(A, u) = A(u⊕ I) . It follows that

µ((A, u) · (B, v)) = µ
(
A(u⊕ I)B(u−1 ⊕ I), uv

)
= A(u⊕ I)B(u−1 ⊕ I)(uv ⊕ I)

= A(u⊕ I)B(u−1uv ⊕ I)

= µ(A, u)µ(B, v).

Therefore µ is a homomorphism.
Now suppose (A, u) ∈ kerµ. Then µ(A, u) = In. Applying det, we have

1 = det(In) = det(µ(A, u)) = detA det(u⊕ I) = u detA = u

since A ∈ SLn(Fp). Thus u = 1 and so In = µ(A, u) = A. Hence µ is injective.
To show that µ is surjective, let B ∈ GLn(Fp). Define u := detB and write B = (b1 b2 · · · bn) where

bi is the ith column of B. Then

µ
(
(u−1b1 b2 · · · bn), u

)
= (u−1b1 b2 · · · bn)(u⊕ I) = B.

Thus µ is surjective and hence the desired isomorphism.

Proof of (d). By the Sylow theorems, there exists a Sylow p-subgroup of SLn (Fp) which we will call P .
Hence P is also a Sylow p-subgroup of GLn (Fp).

Again using the Sylow theorems, we know that the set of Sylow p-subgroups of GLn (Fp) form a
transitive G-set under conjugation. Hence, given any other Sylow p-subgroup P ′ of GLn (Fp), there exists

A ∈ GLn (Fp) such that P ′ = APA−1 .
Let B′ ∈ P ′. Then there is some B ∈ P such that B′ = ABA−1. Because the determinant is

multiplicative, det(B′) = det(ABA−1) = det(B) = 1. Hence P ′ ≤ SLn (Fp) as desired.
22Since the first map in the short exact sequence is an inclusion.
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Problem 4.7.4

Let R be a (commutative) domain with 1 containing C as a subring. Suppose R is a finite-dimensional
C-vector space. Show that R = C.

Notes and Comments

Proof. Consider the map mα : R → R given by β 7→ αβ for α 6= 0. Since R is a vector space, mα is a
linear map. As R is a domain, mα must be an isomorphism. Thus α is invertible.

Since every nonzero element of R is a unit, R must be a field. By finite dimensionality as a vector
space, R is now a finite field extension of C. However, C is algebraically closed, and so R = C.

Problem 4.7.5

Let K1 and K2 be finite fields of characteristic p. Let q1 = #K1 and q2 = #K2. Recall that ring
homomorphisms are required to map 1 to 1. Show that the following are equivalent:

(i) There is a ring homomorphism K1 → K2;

(ii) There is an injective group homomorphism K×1 → K×2 ; and

(iii) q2 is a power of q1.

Notes and Comments

Proof. (i) ⇒ (ii): Assume there is a ring homomorphism φ : K1 → K2. Because K1 is a field, φ is
injective. Since φ is injective, φ maps K×1 into K×2 . Then, since φ preserves multiplication, it is a group
homomorphism.

(ii) ⇒ (iii): Assume there is an injective group homomorphism K×1 → K×2 . Then #K×1 divides
#K×2 . That is, q1 − 1 divides q2 − 1.

Let q1 = pa and q2 = pb. We will show that gcd(a, b) = a using the following cute lemma:

Lemma 4.7.1 For any non-negative integers n, y, z, we have gcd(ny − 1, nz − 1) = ngcd(y,z) − 1.

Proof of Cute Lemma. Let X = gcd(ny − 1, nz − 1) and x = gcd(y, z). Observe that nx − 1 divides both

ny − 1 and nz − 1, so nx − 1 | X .

To see the other divisibility relation, note that n and X are relatively prime and select the smallest e

so that ne ≡ 1 (mod X). Then e | y and e | z, so e | x as well. Thus ne−1 | nx−1 and hence X | nx − 1 .

Thus X = nx − 1 .

Applying the lemma (with n = p, y = a, and z = b), we see that gcd(a, b) = a (since q1 − 1 | q2 − 1).
Hence a | b and so q2 = pb is a power of q1 = pa.

(iii) ⇒ (i): Assume q2 is a power of q1, say q2 = qd1 . Write q1 = pe1 and q2 = pe2 , so e2 = de1 and
q2 = pde1 = qd1 . We claim that xq1 − x divides xq2 − x.

Let α be a root of xq1 − x (in some splitting field). Then αq1 = α, so αq2 = αq
d
1 = (((αq1)q1)···)q1 = α.

Therefore α is a root of xq2 − x. Since every root of xq1 − x is also a root of xq2 − x, it follows that xq1 − x
divides xq2 − x.

Thus, since xq2 − x splits in K2, xq1 − x also splits in K2. But K1 is a splitting field of xq1 − x, so K1

is isomorphic to a subfield of K2 (namely, the smallest subfield of K2 in which xq1 − x splits).
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Problem 4.7.6

The polynomial f(X) = X6 − 4X3 + 1 is irreducible over Q. Let K be a splitting field for f . Show
that Gal(K/Q) ∼= S3 × Z/2Z.

Notes and Comments

Proof. First write

f(X) = X6 − 4X3 + 1 = (X3)2 − 4(X3) + 1 = (X3 − 2−
√

3)(X3 − 2 +
√

3)

in order to find the roots of f . Let α =
3
√

2 +
√

3 and β =
3
√

2−
√

3. Furthermore, let ω = 1+
√

3i
2

be
a primitive cube root of unity. Then the roots of f in K are {α, αω, αω2, β, βω, βω2}. Label these as
1, 2, 3, 4, 5, 6, respectively, to obtain an embedding of G in S6.

Notice that αβ = 3

√
(2 +

√
3)(2−

√
3) = 1. So, for any g ∈ G = Gal(K/Q), we have g(α)g(β) =

g(αβ) = g(1) = 1. Hence g(β) = 1/g(α) . Thus g is completely determined by g(α) and g(ω).

Step 1: Find the generators of G that fix ω.

• Define σ ∈ G by σ(α) = αω and σ(ω) = ω. Then σ corresponds to the permutation (123)(465).

• Define τ ∈ G by τ(α) = β and τ(ω) = ω. So τ(β) = τ(1/α) = 1/τ(α) = 1/β = α. Thus τ
corresponds to the permutation (14)(25)(36).

We claim that σ and τ generate all elements of G that fix ω. To show this, we must show that any
element g ∈ G, which sends α to a root of f such that g(ω) = ω, is generated by σ and τ . There are 6
cases to check:

(1) If g(α) = α, then g = id.

(2) If g(α) = αω, then g = σ.

(3) If g(α) = αω2, then g = σ2.

(4) If g(α) = β, then g = τ .

(5) If g(α) = βω, then g = τ ◦ σ = σ2 ◦ τ .

(6) If g(α) = βω2, then g = τ ◦ σ2 = σ ◦ τ .

Thus the claim is true. Hence the subgroup H = 〈σ, τ〉 of G generated by σ and τ has 6 elements (namely

those listed above) since σ3 = τ 2 = id. Since σ ◦ τ 6= τ ◦ σ, H is not abelian. Hence H ∼= S3 .
Step 2: Find the generator of G that fixes α.
Let γ ∈ G such that γ(α) = α and γ(ω) = ω2.23 Then γ corresponds to the permutation (23)(56).

This is the only element that fixes α but not ω, so any element in G is a composition of σ, τ and γ, i.e.
G = 〈σ, τ, γ〉.

Step 3: Find δ ∈ G such that G = 〈σ, τ, δ〉 where δ commutes with σ and τ and has order 2. (As a
consequence of doing so, we would have G ∼= H × 〈δ〉 ∼= S3 × Z/2Z via h ◦ δ 7→ (h, δ).)

23γ is complex conjugation.
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We claim δ = (τ ◦ γ) satisfies the above conditions. By permutation composition, δ corresponds to the
permutation (14)(26)(35) (which clearly has order 2). Moreover,

G = 〈σ, τ, γ〉 = 〈σ, τ, τ ◦ γ〉 = 〈σ, τ, δ〉.

Therefore, it suffices to show that δ = (14)(26)(35) commutes with σ = (123)(465) and τ = (14)(25)(36).
We can do this by direct computation:

• δ ◦ σ = σ ◦ δ since

(14)(26)(35) ◦ (123)(465) = (163425) = (123)(465) ◦ (14)(26)(35).

• δ ◦ τ = τ ◦ δ since

(14)(26)(35) ◦ (14)(25)(36) = (23)(56) = (14)(25)(36) ◦ (14)(26)(35).

Thus we have G ∼= S3 × Z/2Z as desired.
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Algebra Exam

Fall 2015

Problem 4.8.1

Let M = Zn and denote by pM = (pZ)n. Suppose that L is a submodule of M with pM ⊂ L ⊆M .

(a) Show that L is a free Z-module of rank n.

(b) Show that index [M : L] is finite, and in terms of the index describe the invariant factors (or
elementary divisors) of L in M as a Z-module.

(c) Now we fix n = 2: Let pM = (pZ)2 ( L ( Z2. Count the number of possible submodules L.

Notes and Comments

Proof of (a). Since L is a submodule of a free Z-module of rank n (namely, M) and Z is a PID, L must
also be free of rank m ≤ n. Now pM is also a free Z-module, so it is free and its rank is n.24 Thus pM is
a submodule of a free Z-module (L), so pM is free of rank n ≤ m. Hence m = n and so L has rank n.

Proof of (b). Note that [M : pM ] = pn since Zn/(pZ)n ∼= (Z/pZ)n (which has size pn). Now

[M : L][L : pM ] = [M : pM ] = pn

and thus [M : L] | pn <∞. So we have [M : L] = pm with m < n is finite.
The Invariant Factor Theorem says that there exists a basis {b1, . . . , bn} forM such that {a1b1, . . . , anbn}

is a basis for L where a1 | a2 | · · · | an are the invariant factors. Thus

M/L ∼= Z/a1Z⊕ · · · ⊕ Z/anZ,

and so [M : L] = a1a2 · · · an = pm. Note that {pb1, . . . , pbn} is a basis for pM , so we must have ai|p for all
i. Thus we have a1 = · · · = am = 1 and am+1 = · · · = an = p.

Proof of (c). Since p is prime, [M : L] | p2, so [M : L] = 1, p or p2. Note that [M : L] 6= 1, p2 since
L 6= M, pM . Indeed, if [M : L] = 1 then L = M ; if [M : L] = p2 = [M : pM ] then [L : pM ] = 1 and

so L = pM .	Thus [M : L] = p . The only possible invariant factors are 1 and p, so we have a1 = 1 and
a2 = p.

Let L be such that (pZ)2 ( L ( Z2. Consider a Z-basis {b1, b2} of Z2 such that {b1, pb2} is a basis for
L. Then the change of basis matrix from {b1, b2} to {e1, e2} is

Q1 =

(
a b
c d

)
.

That is, b1 = ae1 + be2 and b2 = ce1 + de2. Moreover, since these bases generate the same lattice, Q1 must

have detQ1 = ±1. Hence gcd(a, b) = gcd(c, d) = 1 (∗) (otherwise, some prime q | ad− bc = ±1).

We now have that

L = span{b1, pb2} = span{ae1 + ce2, pbe1 + pde2} = span{Q2e1, Q2e2},
24A basis is given by pe1, . . . , pen where {ei} is the standard basis for Zn.
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where Q2 =

(
a pb
c pd

)
. Note that detQ2 = p detQ1 = ±p. Thus, by (∗), either gcd(a, pb) = 1 or

gcd(c, pd) = 1.

• Assume gcd(a, pb) = 1. By the Division Algorithm, a = q(pb) + 1. So, by elementary integer column
operations25, we obtain (

a pb
c pd

)
→
(

1 pb
c− q(pd) pd

)
→
(

1 0
t ±p

)
where t = c − qpd. We know that pd − pb(c − qpd) = ±p since the only operations used involved
integer multiples of columns being added to each other and hence the determinant is preserved. By
further application of such operations, we may assume 0 ≤ t < p and, changing the determinant,
obtain the form

Q3 =

(
1 0
t p

)
.

Since only column operations were used, we have

L = span {Q2e1, Q2e2} = span {Q3e1, Q3e2} = span {e1 + te2, pe2}

for 0 ≤ t < p.

• Assume gcd(c, pd) = 1. Analogously, we obtain

Q4 =

(
p t
0 1

)
from elementary integer column operations on Q2 where 0 ≤ t < p. Thus

L = span {Q4e1, Q4e2} = span {pe1, te1 + e2} .

In each case above, we generate p distinct submodules of Z2 containing (pZ)2. Hence there are 2p

different submodules such that (pZ)2 ( L ( Z2.

Problem 4.8.2

Let F be a field and f ∈ F [x] a polynomial with deg(f) = n ≥ 1, and suppose that f = f e11 · · · f ett is
the (unique) factorization of f into a product of irreducibles (i.e., fi is irreducible and gcd(fi, fj) = 1
for i 6= j). Let

S = {A ∈Mn(F ) | χA = f},

where χA denotes the characteristic polynomial of A.

(a) Show that S is the union of a finite number of similarity (conjugacy) classes.

(b) Show that the number of similarity classes in S is one if and only if e1 = e2 = · · · = et = 1.

Notes and Comments

25So we may swap columns, multiply a column by −1, or add an integer multiple of one column to another.
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Proof of (a). We know that S consists of similarity classes as similar matrices have the same characteristic
polynomial. To show that S contains only finitely many similarity classes, note that each matrix M ∈ S
is in the same similarity class as a matrix in rational canonical form. Thus it suffices to show there are
only finitely many possibilities for the set of invariant factors, since these determine the rational canonical
form uniquely (up to reordering).

Any given set of invariant factors are of the form g1, . . . , gk, where g1 | g2 | · · · | gk and g1 · · · gk = f .

Since f has only finitely many factors and k ≤
t∑
i=1

ei, there are only a finite set of invariant factors. Thus

there are a finite number of matrices in rational canonical form with characteristic polynomial f . Hence
S is a union of finitely many similarity classes.

Proof of (b). (⇒) Assume that the number of similarity classes in S is one. To obtain a contradiction,
suppose that ei > 1 for some i. Consider the matrices A1, A2 where A1 has invariant factors g1 = fi, g2 =
f/fi and A2 is the companion matrix of f , i.e. it corresponds to the single invariant factor f . Then, since
the rational canonical form of a matrix is uniquely determined by the list of invariant factors, A1 and A2

have different rational canonical forms and therefore are not in the same similarity class.	
(⇐) Assume e1 = · · · = en = 1. Suppose there are invariant factors g1 and g2 for some similarity class

in S. Then we may assume g1 | g2 and g1g2 | f . Since f = f1 · · · fn, we have fi | g1 for some i. Thus fi | g2

as well. However, this means f 2
i | f but ei = 1 and the factorization of f is unique.	Thus all matrices in

S have the same rational canonical form.26 Therefore S contains only one similarity class.

Problem 4.8.3

Simple groups.

(a) Let G be a finite group and let H be a subgroup with index [G : H] = n ≥ 2. Show that if G
is a simple group, then there exists an injective group homomorphism ϕ : G→ Sn where Sn is
the symmetric group on n letters.

(b) Show that no group of order 96 = 3 · 25 is simple.

Notes and Comments

Proof of (a). Write G/H = {g1H = H, g2H, . . . , gnH}. Define ϕ : G → Sn by ϕ(g) = σg where σg is the
permutation of G/H given by σg(giH) = ggiH. Then

ϕ(g1g2) = σg1g2 = σg1 ◦ σg2 = ϕ(g1) ◦ ϕ(g2)

and so ϕ is a group homomorphism.
We now show that ϕ is injective. Indeed, since G is simple, it has no nontrivial proper normal subgroups.

As kerϕ / G, kerϕ is either trivial or all of G. However, the latter cannot hold since

g ∈ kerϕ⇒ σg = Id⇒ gH = H ⇒ g ∈ H

and H < G is a proper subgroup. Thus kerϕ = {e} and so ϕ is an injective group map as desired.

Proof of (b). Suppose there was a simple group G of order 96. Then G has a Sylow-2 subgroup S of order
32 = 25. Thus [G : S] = 3. By part (a), G embeds into S3, a group of order 6.	Thus no such simple group
exists.

26Namely the companion matrix C(f) of f .
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Problem 4.8.4

Let G be a finite group. Let G′ ≤ G be the subgroup generated by all elements of the form στσ−1τ−1

for σ, τ ∈ G. (We call G′ the commutator subgroup of G.)

(a) Show that G′ E G is normal and that G′ is the smallest normal subgroup of G such that G/G′

is abelian.

(b) Now suppose K ⊇ F is a Galois extension with Galois group G. Show that the fixed field of G′

corresponds to the maximal subextension K ⊇ M ⊇ F such that M/F is Galois with abelian
Galois group.

Notes and Comments

Proof of (a). To show G′ is normal in G, we must show that, for all g ∈ G, σ ∈ G′, we have gσg−1 ∈ G′.
We know that a := gσg−1σ−1 ∈ G′ by definition. Then gσg−1 = aσ ∈ G′ since a, σ ∈ G′. Thus G′ is
normal.

Now we show that G/G′ is abliean. Let g1, g2 ∈ G. Then, since g−1
2 g−1

1 g2g1 ∈ G′,

g1G
′ · g2G

′ = g1g2G
′ = g1g2(g−1

2 g−1
1 g2g1)G′ = g2g1G

′ = g2G
′ · g1G

′.

Finally, to show that G′ is the smallest such subgroup, let N E G be another normal subgroup of G
with G/N abelian. We will show that G′ ≤ N .

Let σ = aba−1b−1 ∈ G′. Then, since G/N is abelian, we have a−1b−1N = b−1a−1N , so aba−1b−1N =
σN = N . Thus σ ∈ N and so all generators of G′ are in N , i.e., G′ ≤ N . Therefore G′ is the smallest
normal subgroup of G such that G/G′ is abelian.

Proof of (b). Let M be the fixed field of G′. Since M ⊆ K and K/F is separable, we know that
M/F is separable. Also, M/F is normal because G′ E G. Thus M/F is Galois and Gal(M/F ) ∼=
Gal(K/F )/Gal(K/M) ∼= G/G′, which is abelian from part (a).

Now we show that M/F is the maximal such Galois extension. Let M ′ ⊇M be another such extension,
corresponding to a subgroupH ≤ G. By the Galois correspondence, H ≤ G′. SinceM ′/F is Galois, H E G.
Moreover, Gal(M ′/F ) ∼= G/H is abelian by hypothesis. By part (a), we also have G′ ≤ H and so G′ = H.
Thus M = M ′ and hence M is the maximal subextension such that M/F is Galois with abelian Galois
group.

Problem 4.8.5

Let f(X) = (X4 − 2X2 − 1)(X2 − 2)(X2 + 1).

(a) Show that g(X) = X4 − 2X2 − 1 is irreducible over Q.

(b) Exhibit a splitting field K = Kf for f and show that it is equal to the splitting field for g.

(c) Show that Gal(f) is nonabelian.

Notes and Comments
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Proof of (a). By the Rational Root Test, the only roots of can be ±1. As neither of these are roots, if g
has a nontrivial factorization over Q, it must have two quadratic factors.

Suppose (X2 + a1X + a0)(X2 + b1X + b0) = g(X). Then

g(X) = X4 + (a1 + b1)X3 + (a0 + b0 + a1b1)X2 + (a1b0 + a0b1)X + a0b0

where


a1 + b1 = 0

a0 + b0 + a1b1 = −2

a1b0 + a0b1 = 0

a0b0 = −1

.

Combining the first and third equations, we get a1b0 − a0a1 = 0 . Then either a1 = 0 or a0 = b0.

• If a1 = 0 then a0 + b0 = −2 by the second equation. Substituting into the fourth equation, we have

a0b0 = a0(−a0 − 2) = −a2
0 − 2a0 = −1,

and so a2
0 + 2a0 − 1 = 0. However, there is no a0 ∈ Q that satisfies this equation since Y 2 + 2Y − 1

is irreducible over Q by the Rational Root Test.	

• If a0 = b0. Then we have a2
0 = a0b0 = −1. However, Y 2 + 1 is irreducible over Q.	

Therefore g cannot be factored into quadratics. Hence g is irreducible over Q.

Proof of (b). The roots of g are ±α and ±β, where α =
√

1 +
√

2 and β =
√

1−
√

2. Thus the splitting
field for g is Kg = Q(α, β).

The roots of f are ±α,±β,
√

2, and i. Thus Kf = Kg(
√

2, i). To show Kf = Kg, we must show that√
2, i ∈ Kg. Indeed, note that

√
2 = α2 − 1 ∈ Kg and i = αβ ∈ Kg since α, β ∈ Kg. Thus Kf = Kg.

Proof of (c). Consider σ, τ ∈ Gal(f) where:

• σ(α) = β and σ(β) = α,

• τ(α) = −α and τ(β) = β.

Then
σ ◦ τ(α) = σ(−α) = −β and τ ◦ σ(α) = τ(β) = β.

Thus στ 6= τσ and so Gal(f) is nonabelian.

Problem 4.8.6

Let F be a field with charF 6= 2. Let a ∈ F×\F×2, and let K = F (
√
a). Then Gal(K/F ) = 〈σ〉 ' Z/2Z.

Let b = x + y
√
a ∈ K× \K×2 with x, y ∈ F and let L = K(

√
b). Show that L is Galois over F if and

only if bσ(b) = x2 − ay2 ∈ K×2.
Notes and Comments
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Proof. (⇒) Assume L/F is Galois. Then, L/F is a normal extension and so L contains all roots of f , where
f is the minimal polynomial of

√
b over F . In particular,

√
σ(b) ∈ L and so

√
bσ(b) =

√
x2 − ay2 ∈ L.

Now
√
x2 − ay2 = α + β

√
b for some α, β ∈ K. Squaring both sides, we get

x2 − ay2 = α2 + 2αβ
√
b+ β2b ∈ K.

However 2αβ
√
b /∈ K, so either α = 0 or β = 0.

If α = 0, then
bσ(b) = x2 − ay2 = β2(x+ y

√
a) = β2b ∈ K.

Thus σ(b) = β2. Since σ2 = Id, we have σ(β)2 = b. But b ∈ K× \K×2.	Thus we must have β = 0. So√
x2 − ay2 = α2 ∈ K. Hence x2 − ay2 ∈ K×2.
(⇐) Assume that bσ(b) = x2 − ay2 ∈ K×2, i.e., γ2 = bσ(b) for some γ ∈ L. Let f be the minimal

polynomial of
√
b over F . To show L = K(

√
b) is normal, it suffices to show that all roots of f are in L.

The roots of f are
√
b,−
√
b,
√
σ(b) and −

√
σ(b). We already know that

√
b (and hence −

√
b) are in L.

As bσ(b) = γ2, we have
√
bσ(b) =

√
b
√
σ(b) = ±γ ∈ L. Therefore

√
σ(b) = γ/

√
b ∈ L. Thus

√
σ(b) ∈ L

and so −
√
σ(b) ∈ L. Hence L/F is normal.

Note that f is separable because it has no double roots (the four roots are distinct).27 Thus L/F is
Galois as desired.

27Here we need charF 6= 2. Otherwise σb = b and so
√
σ(b) =

√
b.
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Algebra Exam

Summer 2016

Problem 4.9.1

Let V be a 3-dimensional Q-vector space, and let T : V → V be a linear operator that has eigenvalues
1 and 2 but is not diagonalizable.

(a) What are the possible rational canonical forms of T?

(b) What are the possible Jordan canonical forms of the operator Id⊗T : C⊗Q V → C⊗Q V on the
complexification?

Notes and Comments

Proof. This problem is an exact duplicate of Fall 2013 Problem 1.

Problem 4.9.2

Let G be a finite p-group for a prime p, and let H CG be a nontrivial normal subgroup.

(a) Show that H ∩ Z(G) 6= {1}, where Z(G) is the center of G.

(b) Show that the hypothesis that H is normal in G cannot be omitted above.

Notes and Comments

Proof of (a). Recall that G acts on a normal subgroup H by conjugation, g.h := ghg−1.28 Consider H as
a G-set. Then we have

HG = {h ∈ H : g.h = h for all g ∈ G}
= {h ∈ H : ghg−1 = h for all g ∈ G}
= {h ∈ H : gh = hg for all g ∈ G}
= H ∩ Z(G).

Since G is a finite p-group, the Class Equation says that

|H ∩ Z(G)| = |HG| ≡ |H| (mod p).29

Since H is nontrivial, |H| ≡ 0 (mod p). Thus p | |H ∩ Z(G)|. That is, H ∩ Z(G) has order at least p.

Proof of (b). We want a finite p-group G with a nontrivial non-normal subgroup H which intersects Z(G)
trivially.30 The smallest such group is the dihedral group of order 8:

G := D4 = 〈a, b : a4 = 1 = b2, ab = ba−1〉

with the non-normal subgroup H = {1, b}. We have a.b = aba−1 = a2b /∈ H, so |H ∩ Z(G)| = 1.
28That is, since H C G, we have ghg−1 ∈ H for all h ∈ H, g ∈ G. Moreover, it satisfies the axioms for a group action:

1.h = h and g1.(g2.h) = g1.(g2hg
−1
2 ) = g1g2hg

−1
2 g−11 = (g1g2).h for all g1, g2 ∈ G, h ∈ H.

29In general, if X is a G-set, then we can write X = O1 t O2 t · · · t Os tXG, for {Oi}si=1 the set of nontrivial orbits of
the G action. Since each Oi is transitive as a G-set, it is isomorphic as a G-set to G/Ai for some proper subgroup Ai of G.
Since p | |G/Ai| for a p-group, this version of the Class Equation follows.

30In particular, such a group must be nonabelian. As there are no nonabelian groups of order p or p2 for any prime p, we
must look for a nonabelian group of order at least p3. The easiest such group to write down will probably be good enough.
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Problem 4.9.3

Let A and B be finitely generated abelian groups. Let x ∈ A and y ∈ B be elements of infinite
order. Prove that x⊗ y is a non-zero element of A⊗Z B.

Notes and Comments

Proof. A finitely generated abelian group is the direct sum of a free abelian group and a torsion group. In
particular, we say A = Ze ⊕ At and B = Zf ⊕Bt, where At, Bt are torsion groups.

Let x ∈ A have infinite order and write x = (m1, . . . ,me, xt), with each mi ∈ Z and xt ∈ At. As x ∈ A
has infinite order, it is not in the torsion subgroup of A, so (m1, . . . ,me) 6= 0. Without loss of generality,
m1 6= 0. Similarly, for y ∈ B with infinite order, we can write y = (n1, . . . , nf , yt) with n1 6= 0.

Define the projection maps p : A → Z and q : B → Z onto the first Z summand, so p(x) = m1 and
q(y) = n1. Then we obtain a map p ⊗ q : A ⊗Z B → Z ⊗Z Z such that (p ⊗ q)(x ⊗ y) = m1 ⊗ n1. But
m1 ⊗ n1 = m1n1 · (1 ⊗ 1), which is non-zero because m1n1 6= 0 and (1 ⊗ 1) is a basis of Z ⊗Z Z. Thus
(p⊗ q)(x⊗ y) 6= 0 and so x⊗ y 6= 0.

Problem 4.9.4

Let k be a field, and k[x, y] a polynomial ring in two variables with coefficients in k.

(a) The polynomials y2 − (x3 − x) and y2 − x3 are both irreducible in k[x, y]. Pick one of these
polynomials and prove that it is irreducible. In parts (b) and (c), you may assume both
polynomials are irreducible in k[x, y].

(b) Show that the quotient ring k[x, y]/(y2 − x3) is a Noetherian integral domain.

(c) Show that the principal ideal (y2−x3) is not maximal in k[x, y], but (y2−x3) is a maximal ideal
in k(x)[y].

Notes and Comments

Proof of (a). Let F (x, y) = y2 − (x3 − x) and G(x, y) = y2 − x3. Consider them as elements of k[x][y].31

F is irreducible: This is an application of Eisenstein’s Criterion.32. Indeed, we know that x is
irreducible in k[x]. Furthermore:

• The leading coefficient of F (as a polynomial in y) is 1. Thus it is not divisible by x.

• The remaining coefficients of F are divisible by x.

• The constant term is x3 − x, which is not divisible by x2.

We conclude by Eisenstein’s Criterion that F is irreducible in k(x)[y].33 We know that F is primitive as
a polynomial over k[x] (because its leading coefficient is 1) and so, by Gauss’s Lemma, F is irreducible in
k[x][y].

31That is, consider F and G as polynomials in one variable y with coefficients from k[x].
32Eisenstein’s Criterion is always the first way you should try to prove a polynomial is irreducible because it is easy.
33Be careful! If you need to know that a polynomial is irreducible in A[y] but A is not a field, then Eisenstein’s Criterion

is not quite enough. Eisenstein’s Criterion would just tell you that the polynomial is irreducible in F [y], where F is the field
of fractions of A.
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G is irreducible: We can also prove that G is irreducible in k[x, y], using an argument that would
apply for F as well. Write G(x, y) = y2 − g(x) for g(x) ∈ k[x] that is not a perfect square. Suppose G
factors into two non-constant (with respect to y) polynomials,

G(x, y) = y2 − g(x) = (y − p(x))(y − q(x))

for p(x), q(x) ∈ k[x]. Expanding this yields

y2 − g(x) = y2 − (p(x) + q(x))y + p(x) q(x).

The coefficient of y is 0, so p(x) + q(x) = 0, so q(x) = −p(x). Now we get

y2 − g(x) = y2 − p(x)2.

So g(x) = p(x)2, contradicting the fact that g(x) is not a perfect square. Therefore G = y2 − g(x) is not
a product of non-constant (with respect to y) polynomials. Hence G is irreducible in k(x)[y]. Now, as
before, G is primitive and Gauss’s Lemma tells us that G is irreducible in k[x][y].

Proof of (b). By the Hilbert Basis Theorem, k[x, y] is Noetherian. Any quotient of a Noetherian ring is
Noetherian34, so k[x, y]/(y2 − x3) is Noetherian.

Since y2 − x3 is irreducible and k[x, y] is a UFD, y2 − x3 is prime. Thus (y2 − x3) is a prime ideal and
so k[x, y]/(y2 − x3) is a domain.

Proof of (c). Here are some proper ideals of k[x, y] that properly contain (y2 − x3):

(x, y), (x, y2), (x2, y), (x2, y2), (x3, y), (x3, y2).35

Thus (y2 − x3) is not maximal in k[x, y].
Now we show that (y2 − x3) is a maximal ideal in k(x)[y]. We know y2 − x3 is irreducible in k[x][y]

from part (a). So, by Gauss’s Lemma, it is irreducible in k(x)[y]. This means that (y2 − x3) is maximal
among proper principal ideals of k(x)[y].36 Since k(x)[y] is a PID (because k(x) is a field), (y2 − x3) is
maximal among all proper ideals.

Problem 4.9.5

Consider a tower of fields K ⊂ F ⊂ E.

(a) Show that the extension E/K is algebraic if and only if E/F and F/K are algebraic.

(b) Suppose that E/K is an algebraic extension of fields, and F/K is any extension of K (and
E,F lie in some common field). Show that the extension EF/F is algebraic.

Notes and Comments

Proof. This problem is an exact duplicate of Summer 2013 Problem 4.

34This fact is proved on the problem 6(b) of the 2014 summer algebra (8.5.6). However, in the context of this problem,
just assume it.

35Notice that none of these is a principal ideal. Indeed, no proper principal ideal can properly contain (y2 − x3) (see the
next footnote).

36That is, no proper principal ideal properly contains (π) if π is irreducible. Indeed, if (d) ⊇ (π), then d | π. So either d is
a unit (meaning (d) is the whole ring) or d is associate to π (meaning (d) = (π)).
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Problem 4.9.6

Let L be the splitting field of x4 − 2 over Q.

(a) Determine the degree [L : Q], and generators for Gal(L/Q). Also determine the isomorphism
class of this Galois group (e.g., a standard group like Z/2Z× Z/2Z).

(b) Write down the complete lattice of subgroups of the Galois group, and the corresponding
lattice of intermediate fields between L and Q. Identify a majority of the intermediate fields,
both as an appropriate fixed field, and with generator(s) over Q.

Notes and Comments

Proof of (a). Since the 4th roots of unity are {1, i,−1,−i}, the roots of x4−2 are {± 4
√

2,±i 4
√

2}. Consider
the following lattice of extensions:

Q(i, 4
√

2)

Q(i) Q( 4
√

2)

Q

2

2 4

Since Q(i) and Q( 4
√

2) are simple extensions, it is easy to see that [Q(i) : Q] = 2 and [Q( 4
√

2) : Q] = 4.
The extension Q(i, 4

√
2) definitely contains the splitting field for the polynomial since all the roots are in

this field. The key fact to notice here is that, since Q( 4
√

2) ⊂ R, it cannot contain the complex roots of
the polynomial.

Since [Q(i) : Q] = 2, it follows that [Q(i, 4
√

2) : Q( 4
√

2)] ≤ 2 and, since i 6∈ Q( 4
√

2), we know [Q(i, 4
√

2) :
Q( 4
√

2)] 6= 1. Thus the index is 2.
We know that Q( 4

√
2) ( L ⊂ Q(i, 4

√
2). Furthermore, [Q(i, 4

√
2) : Q( 4

√
2)] = 2 tells us there cannot be

another field between these two. Hence L = Q(i, 4
√

2) is the splitting field of x4 − 2 and

[L : Q] = [Q(i,
4
√

2) : Q(
4
√

2)][Q(
4
√

2) : Q] = 8.

That is, [L : Q] = 8 .

Because L is the splitting field of an irreducible polynomial over a field of characteristic zero, we know
that the extension L/Q is Galois. So |Gal(L/Q)| = [L : Q] = 8. To determine the structure of the group,
first notice that Q ⊂ Q( 4

√
2) ⊂ L and Q( 4

√
2)/Q is not normal.37 By the Galois Correspondence, this

extension corresponds to a subgroup of Gal(L/Q) which is not normal and so Gal(L/Q) cannot be abelian.
There are only two nonabelian groups of order 8, namely D4 and the quaternions.

One way to see that Gal(L/Q) is not isomorphic to the quaternions is that the quaternion group has
only one subgroup of order 2. However, [L : Q( 4

√
2)] = [L : Q(i 4

√
2)] = 2 and Q( 4

√
2) 6= Q(i 4

√
2) (one is

purely real) and so Gal(L/Q) has at least two subgroups of order 2. Thus, Gal(L/Q) ∼= D4 .38

37Indeed, Q( 4
√

2) contains 4
√

2 but not all of the roots of its minimal polynomial over Q.
38Within the time constraints of the actual qual, we thought “I bet it’s going to be D4” and then found elements that

would generate D4 in the group via a little guess and check and intuition. We’re adding some more concrete ways to know
it’s D4 in case you find “follow your nose” to be rather unhelpful and/or obnoxious advice.
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Recall that to define automorphisms in Gal(L/Q), we need only consider what these automorphisms
do to i and 4

√
2 (since the base field must be fixed). Also, remember that roots x4 − 2 must map to other

roots of the polynomial under the automorphisms. We can define automorphisms by how they act on the
generators of the extension, so we take τ to be the automorphism such that τ(i) = −i and τ( 4

√
2) = 4

√
2

and take σ such that σ(i) = 1 and σ( 4
√

2) = i 4
√

2. This gives us the following table of group elements:

id σ σ2 σ3 τ τσ τσ2 τσ3

i i i i i −i −i −i −i
4
√

2 4
√

2 i 4
√

2 − 4
√

2 −i 4
√

2 4
√

2 −i 4
√

2 − 4
√

2 i 4
√

2

We can now check that Gal(L/Q) satisfies the presentation for D4 = 〈σ, τ : σ4 = id, τ 2 = id, στσ = τ〉.

Proof of (b). The lattice of subgroups and corresponding subfields is below. Most of it is straightforward,
but we think the reason this question asked for a “majority of the intermediate fields” is that two of the
subfields, Q( 4

√
2− i 4

√
2) and Q( 4

√
2 + i 4

√
2), are pretty nonobvious.

To see that these are each extensions of degree 4 over Q, you can show that 4
√

2± i 4
√

2 are not roots of
any quadratic polynomials over Q but they are roots of quartic polynomials, so they are not contained in
any degree 2 extensions but are contained in degree 4 extensions. To see that Q( 4

√
2−i 4
√

2) 6= Q( 4
√

2+i 4
√

2),
we can use the Galois Correspondence as follows:

• Each subfield is a degree 4 extension, so each corresponds to a subgroup of Gal(L/Q) of order 2
which fixes the field.

• Note that 4
√

2− i 4
√

2 is fixed by τσ, while 4
√

2 + i 4
√

2 is not. So 4
√

2− i 4
√

2 is in the degree 4 fixed field
corresponding to {id, τσ} and 4

√
2 + i 4

√
2 is not.

• Therefore Q( 4
√

2 − i 4
√

2) 6= Q( 4
√

2 + i 4
√

2) and Q( 4
√

2 − i 4
√

2) corresponds to {id, τσ}. Similarly, we
find that Q( 4

√
2 + i 4

√
2) corresponds to {id, τσ3}.

Q(i, 4
√

2)
{id}

Q(i 4
√

2)
{id, τσ2}

Q( 4
√

2)
{id, τ}

Q(i,
√

2)
{id, σ2}

Q( 4
√

2− i 4
√

2)
{id, τσ}

Q( 4
√

2 + i 4
√

2)
{id, τσ3}

Q(
√

2)
{id, τ, σ2, τσ2}

Q(i)
〈σ〉

Q(i
√

2)
{id, τσ, σ2, τσ3}

Q
Gal(L/Q)
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Algebra Exam

Fall 2016

Problem 4.10.1

A linear operator E on a finite-dimensional k-vector space V is a projection if V admits a direct
sum decomposition V = U ⊕W where U and W are E-invariant subspaces such that E|U = Id and
E|W = 0.

(a) Let E,F ∈ Endk(V ) be projections. Show that, if E and F commute, EF is a projection.

(b) Is the converse true? That is, if E and F are projections such that EF is also a projection,
must E and F commute?

Notes and Comments

Proof of (a). Since E is a projection, V admits a direct sum decomposition V = UE ⊕ WE such that
Eu = u for u ∈ UE and Ew = 0 for w ∈ WE. Thus, if (b1, . . . , bk) is a basis of UE and (bk+1, . . . , bn)
is a basis of WE, then (b1, . . . , bn) is a basis of V and, with respect to this basis, E can be written as a
block-diagonal matrix in the following way:

[E] =

(
I

0

)
where I denotes the k-by-k identity matrix and 0 denotes the (n− k)-by-(n− k) zero matrix. This shows
that E is diagonalizable, with diagonal matrix consisting of 1s and 0s. Clearly the same holds for F , in
some basis.

Because E and F are diagonalizable and they commute, they are simultaneously diagonalizable, say in
basis (v1, . . . , vn). In this basis, E is a diagonal matrix consisting of 1s and 0s in some order, and the same
holds for F in this basis. Let’s write [E] = diag(ε1, . . . , εn) and [F ] = diag(ε′1, . . . , ε

′
n), where each εi and

each ε′i is either 0 or 1. Then [EF ] = diag(ε1ε
′
1, . . . , εnε

′
n), so [EF ] is also a diagonal matrix consisting of

1s and 0s.
Let U = span {vi | εiε′i = 1} and W = span {vi | εiε′i = 0}. Then V = U ⊕ W , EF |U = Id, and

EF |W = 0. (Hence U and W are EF -invariant subspaces.) Thus EF is a projection as desired.

Proof of (b). No . For example, set E =

(
1 0
0 0

)
and set F =

(
1 1
0 0

)
. These are both projections:

• E is the identity on the span of

(
1
0

)
, and E is zero on the span of

(
0
1

)
;

• F is the identity on the span of

(
1
0

)
, and F is zero on the span of

(
−1
1

)
.

However EF = F and FE = E, showing that E and F do not commute although EF and FE are both
projections.
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Problem 4.10.2

Consider the group SL2(F3) of 2-by-2 matrices of determinant 1 over the 3-element field F3.

(a) Determine the order of SL2(F3).

(b) How many Sylow 3-subgroups does SL2(F3) have? What is an example? What is the structure
of its normalizer?

Notes and Comments

Proof of (a). First we count the elements of GL2(F3) — the invertible matrices over F3. Each column of a
matrix in GL2(F3) is a vector in (F3)2. There are nine vectors in (F3)2 and any of them, except (0, 0), can
be the first column of an invertible matrix. So there are eight options for the first column. For the second
column, we can choose any of the nine vectors except the three multiples of the first column, so there are
six options for the second column. Therefore |GL2(F3)| = 8 · 6 = 48.

Recall that SL2(F3) is the kernel of the (surjective) homomorphism det : GL2(F3) → F×3 . As a result,

GL2(F3)/SL2(F3) is isomorphic to F×3 . So |GL2(F3)/SL2(F3)| = 2 and thus |SL2(F3)| = |GL2(F3)|/2 = 24 .

Proof of (b). Let n3 be the number of Sylow 3-subgroups. By the Sylow Theorem, n3 | 8 and n3 ≡ 1
mod 3. These conditions require that n3 be either 1 or 4. Perhaps the easiest way to see that n3 6= 1

is by finding more than one Sylow 3-subgroup:

(
1 1
0 1

)
and

(
1 0
1 1

)
generate two different subgroups of

SL2(F3), each of order 3. Thus n3 6= 1, so n3 = 4 . Thus there are four Sylow 3-subgroups. (We have
already shown two examples of such subgroups.)

The Sylow Theorem also tells us that any two Sylow 3-subgroups are conjugate, so in particular their
normalizers will be isomorphic. Thus it suffices to describe the normalizer of just one Sylow 3-subgroup,

say H =

{
1,

(
1 1
0 1

)
,

(
1 2
0 1

)}
.

By the Sylow Theorem, the normalizer N(H) has index n3 = 4 and so its order is 6. By inspection,

we determine that

(
2 1
0 2

)
generates a cyclic subgroup U of order 6 that contains H. In fact, U is the

subgroup of all upper-triangular matrices in SL2(F3). We know H is normal in U because [U : H] = 2.
Therefore U is the normalizer of H and it is cyclic of order 6.

Problem 4.10.3

Let k be a field, let V be a finite-dimensional k-vector space, and let T : V → V be a linear operator
on V . Show that V admits a direct sum decomposition V = U ⊕W , where U and W are subspaces
satisfying

(a) T (U) ⊆ U and T (W ) ⊆ W .

(b) The restriction T |U : U → U is nilpotent.

(c) The restriction T |W : W → W is invertible.

Notes and Comments
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Proof. Consider V as a k[x]-module. Since k is a field, k[x] is a PID. Thus V has a primary decomposition
V = U ⊕W where U is the x-primary component of V and W is the sum of all other primary components.
That is, U and W are T -invariant subspaces and U is annihilated by xn (when n = dimV ). Thus T |U is
nilpotent.

Finally, suppose T (w) = 0 for some w ∈ W . Then 〈w〉, the 1-dimensional subspace generated by
w, is annihilated by x. Hence w ∈ U . Thus w ∈ W ∩ U = {0}. Hence T |W is injective. As V is
finite-dimensional, this means that T |W is an isomorphism (hence invertible).

Problem 4.10.4

Unique factorization.

(a) Show that Z[
√
−5] is a Noetherian integral domain, but not a UFD.

(b) Show that Noetherian integral domain in which every irreducible element is a prime element
is a UFD.

Notes and Comments

Proof of (a). We first note that Z[
√
−5]× = {±1}. Since

(1 +
√
−5)(1−

√
−5) = 6 = 2 · 3

and no factor is an associate of another, we know that Z[
√
−5] is not a UFD.

To show that Z[
√
−5] is a Noetherian integral domain, note that Z[

√
−5] ∼= Z[x]/〈x2 + 5〉. Since Z is

a UFD, so is Z[x]. Hence all irreducibles are prime and so x2 + 5 is prime in Z[x]. Thus Z[
√
−5] can be

realized as the quotient of a ring by a prime ideal and is thus an integral domain.
Furthermore, Z[x] is Noetherian by the Hilbert Basis Theorem. As the quotient of a Noetherian ring

is Noetherian, Z[
√
−5] is Noetherian.

Proof of (b). Let A be a Noetherian integral domain. Then there is factorization into irreducibles in A.39

Assume all irreducibles in A are prime.
Let a ∈ A with a 6= 0 and a /∈ A×. Suppose we have two factorizations of a:

a = π1 · · · πr = π′1 · · · π′s

where πi, π
′
j are irreducibles in A and r ≤ s. We will proceed by induction on r.

Base case: If r = 1, then π1 is being split into irreducible factors. That is, s = 1 and π′1 is an associate
of π1.

Induction: If r > 1, then we know that π1 divides the second factorization. Since π1 is also prime
(by assumption), π1 divides one of the irreducibles in the second factorization. Without loss of generality,
π1 | π′1. Then π′1 = uπ1 where u ∈ A×. Dividing by π1 (which is reasonable in an integral domain), we
have

π2 · · · πr = uπ′2 · · · π′s.

By the inductive hypothesis, r = s and the remaining factors are associates of one another. Hence, up
to unit multiples, a has a unique factorization as desired.

39This is a worthwhile problem on its own and, in fact, made an appearance on the Summer 2014 exam.
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Problem 4.10.5

Let L be the splitting field of x9 − 53 over Q and ζ9 a primitive 9th root of unity in C.

(a) Determine the degree of [L : Q], giving reasons to support your statements.

(b) Determine the isomorphism classes of Gal(L/Q(ζ9)) and Gal(L/Q( 3
√

5)).

(c) Show that G = Gal(L/Q) has a normal subgroup H with G/H ∼= S3, the symmetric group on
3 letters.

Notes and Comments

Proof of (a). The degree of [L : Q] is 18. The reasoning follows precisely from problem 2 on the Summer
2012 exam (4.1.2).

Proof of (b). We claim that Gal(L/Q(ζ9)) = Z/3Z and Gal(L/Q( 3
√

5)) = Z/6Z. Since there is an isomor-
phism of Galois groups (Theorem 1.12 in Lang) this follows immediately from noticing that Gal(Q(ζ9)/Q) =
(Z/9Z)× = Z/6Z and |Gal(L/Q(ζ9))| = 3. Alternatively, we could write G = Gal(L/Q) as a semidirect
product and realize that these are the component quotients.

Proof of (c). The subextension Q(ζ3,
3
√

5)Q is the splitting field of x3 − 5 which is irreducible and has
Galois group S3. One way to see that this is the Galois group is to note that it has order 6 and cannot be
abelian since Q( 3

√
5)/Q is not normal. Thus, by the Fundamental Theorem of Galois Theory, we can find

the desired subgroup H corresponding to the splitting field of Φ9(x) = x6 + x3 + 1 over Q.

Problem 4.10.6

Let f ∈ Q[x] be a polynomial of degree n ≥ 3, and let K be the splitting field of f over Q. Suppose
that Gal(K/Q) ∼= Sn, the symmetric group.

(a) Show that f is irreducible.

(b) If α is a root of f in K, show that Aut(Q(α)/Q) is trivial, that is show that every automorphism
of Q(α) which fixes Q pointwise is the identity.

(c) If n ≥ 4, show that αn /∈ Q.

Notes and Comments

Proof of (a). In order to obtain a contradiction, assume that f is not irreducible. So f = gh with both
0 < deg(g), deg(h) < n. Then deg(g) + deg(h) = n and the maximum possible degree of K/Q is deg(g)! ·
deg(h)! < n!.	Hence f is irreducible.

Proof of (b). Let σ ∈ Aut(Q(α)/Q). Then σ(α) ∈ Q(α) must be a root of f since f is irreducible. However,
if Q(α) contains a root of f other than α, then [K : Q(α)] < (n − 2)!. As [K : Q] = n!, it must be that
σ(α) = α. Hence σ = Id.

Proof of (c). To the contrary, suppose that αn ∈ Q. Let k ∈ Z be the smallest positive integer such that
αk ∈ Q. By part (a), we know that f is irreducible and so we must have k = n. Moreover, f = c(xn−αn)
for some c ∈ Q×. However, this would imply that the degree of the extension L/Q is at most nϕ(n) < n!
since n ≥ 4.	Thus αn /∈ Q.

79



The Written Qual Book Algebra: Summer 2017

Algebra Exam

Summer 2017

Problem 4.11.1

Let p be an odd prime. Let O2(Fp) = {A ∈ GL2(Fp) : AAt = AtA = I}. Then O2(Fp) ≤ GL2 is a
subgroup called the (standard) orthogonal group in GL2(Fp).

(a) Let p = 5. Show that #O2(Fp) = 8 and classify O2(Fp) up to isomorphism (i.e., give it a more
familiar name).

(b) For p an arbitrary odd prime, show that O2(Fp) always has a nontrivial normal subgroup of
index 2 and write down the corresponding exact sequence of groups. Does this sequence split?

Notes and Comments

Proof of (a). This solution is rather computational.
If A ∈ O2(F5), then

det(A)2 = det(A) det(At) = det(AAt) = det(I) = 1,

so det(A) = ±1.40

Let W =

(
−1 0
0 1

)
and note that WW t = I, i.e., W ∈ O2(F5). For any A ∈ SO2(F5), we have

WA ∈ O2(F5) with det(WA) = −1. Thus #O2(F5) = 2#SO2(F5). So it suffices to show #SO2(F5) = 4.

Let A ∈ SO2(F5) where A =

(
a b
c d

)
. By definition, At = A−1 =

(
d −b
−c a

)
. Thus a = d and

b = −c , and so A =

(
a b
−b a

)
, 1 = det(A) = a2 + b2.

Now we can find all the matrices in SO2(F5) by finding solutions to a2 + b2 = 1 over F5. Computing a
table of squares, the only solutions are {(1, 0), (0, 1), (4, 0), (0, 4)}. Thus

SO2(F5) =

{(
1 0
0 1

)
,

(
4 0
0 4

)
,

(
0 4
1 0

)
,

(
0 1
4 0

)}
,

and we see that B =

(
0 4
1 0

)
generates this group. By our earlier argument, O2(F5) = 〈B,W 〉. Through

another check, we see that this group is non-abelian. There is only one group of order 8 with a cyclic

subgroup of order 4, namely D8. Hence O2(F5) ∼= D8 .

Proof of (b). Using W as in part (a), SO2(Fp) ≤ O2(Fp) has index 2. Since any subgroup of index 2 is
normal, SO2(Fp) is normal in O2(Fp). Moreover, SO2(Fp) is nontrivial because a2 + b2 = 1 always has
{(1, 0), (0, 1)} as solutions.

As the determinant is multiplicative, det is a homomorphism from O2(Fp)→ {±1} with kernel SO2(Fp).
This forms the exact sequence of groups

1 SO2(Fp) O2(Fp) {±1} 1ι det .

40The polynomial x2−1 has at most 2 roots, regardless of the field, and we have 2 solutions. Since 5 is odd, these solutions
are distinct.
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Consider p = 5 and suppose the sequence splits. Then O2(F5) = SO2(F5) × {±1}, the direct product of
abelian groups. Hence O2(F5) is abelian, but we proved in part (b) that it is not.	So this sequence does
not split in general.41

Problem 4.11.2

Let R be a commutative ring, let M be an R-module, and let φ : M → M be an R-module
homomorphism.

(a) Show that φ2 = 0 if and only if φ(M) ⊆ kerφ.

(b) Suppose R = F is a field and M = V is finite dimensional as an F -vector space. Show that

there is an ordered basis β for V such that [φ]β has the block form

(
O A
O O

)
, i.e., has zeros in

all blocks except possibly the upper right-hand corner.

Notes and Comments

Proof of (a). Note that

φ2 = 0 ⇔ φ(φ(x)) = 0 ∀x ∈M ⇔ φ(M) ⊆ kerφ.

Proof of (b). Assume φ2 = 0.42 Write M = kerφ ⊕ N , where N is a complement of kerφ, and let
{v1, . . . , vm} be a basis for kerφ, {w1, . . . , wn} a basis for N .

Consider the ordered basis β = {v1, . . . , vm, w1, . . . , wn}. Since φ2 = 0 and wj /∈ kerφ, we know that
φ(wj) 6= 0 but φ2(wj) = 0. Hence φ(wj) can be written as a linear combination of the vi’s. Since vi ∈ kerφ,
φ(vi) = 0. Thus the matrix for φ in the ordered basis β has the desired form.

To be more explicit, because that is loved by all, the column vectors (generically) appear as:

[φ(vi)]β =

0
...
0

 , [φ(wj)]β =



a1j

a2j
...
amj
0
...
0


.

Stringing these together, [φ]β =

[
O A
O O

]
where A = [aij] with i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

41While this sequence admits a section (s : {±1} → O2(Fp) given by 1 7→ I and −1 7→ W ), this does not imply that the
short exact sequence splits in the category of groups.

42This is implicitly assumed. No, it isn’t explicitly stated anywhere.
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Problem 4.11.3

Let V,W be finite dimensional vector spaces over a field F , and let φ : V → W be an F -linear map.
Let φ∗ : V ∗ → W ∗ be the dual map. Show that φ is surjective if and only if φ∗ is injective.

Notes and Comments

Proof. Assume that φ is surjective. Suppose φ∗(f1) = φ∗(f2), where f1, f2 ∈ V ∗. We want to show that
f1 = f2. Let w ∈ W . Since φ is surjective, w = φ(v) for some v ∈ V . Now

f1(w) = f1 ◦ φ(v) = φ∗(f1) = φ∗(f2) = f2 ◦ φ(v) = f2(w).

As w was arbitrary, f1 = f2. Hence φ∗ is injective.
Conversely, assume that φ∗ is injective. Let w ∈ W with w 6= 0 (trivially, 0 ∈ φ(V )). We want to show

∃v ∈ V such that φ(v) = w.
Extend {w} to a basis β for W . Let β∗ be the dual basis to β, where f ∈ β∗ such that f(w) = 1 and

f vanishes on all other elements of β. So f 6= 0 and, by injectivity, φ∗(f) 6= 0. Thus ∃v ∈ V such that

φ∗(f)(v) = f(φ(v)) 6= 0.

By definition of f , φ(v) = cw. In particular, by linearity, φ
(

1
c
v
)

= w. Hence φ is surjective.

Problem 4.11.4

Polynomials

(a) Characterize (and determine the number of) all proper, non-trivial ideals of the quotient
rings Q[x]/(x4 − 1) and Q[x]/(x4 + 1), where (f) denotes the ideal of Q[x] generated by f .

(b) Characterize the structure of the quotient ring Q[x, y]/(x2 + 1, x2 + y4) by showing it is
isomorphic to something involving simple rings (in both senses of the word simple).

Notes and Comments

Solution for (a). The ideals of Q[x]/(x4−1) correspond canonically to ideals of Q[x] that contain (x4−1).
Since Q[x] is a PID, every ideal that contains (x4−1) is generated by an element of Q[x] that divides x4−1.
Now x4 − 1 factors into irreducibles in Q[x] as x4 − 1 = (x− 1)(x+ 1)(x2 + 1), so the ideals that contain
(x4− 1) are (x− 1), (x+ 1), (x2 + 1), ((x− 1)(x+ 1)), ((x− 1)(x2 + 1)), and ((x+ 1)(x2 + 1)). By applying
the quotient map, these ideals of Q[x] correspond to all the proper, non-trivial ideals in Q[x]/(x4 − 1):

((x+ 1)(x2 + 1)), ((x− 1)(x2 + 1)), ((x− 1)(x+ 1)), (x2 + 1), (x+ 1), (x− 1).

Now let’s consider x4 + 1, which we claim is irreducible in Q[x]. By Gauss’ Lemma, it’s equivalent to
show that x4 + 1 is irreducible in Z[x]. It clearly has no linear factors (as there are no rational roots), and
factoring into monic quadratics generates no solutions. Hence irreducibility follows.

Since x4 + 1 is irreducible in Q[x] and Q[x] is a PID, (x4 + 1) is a maximal ideal in Q[x]. Thus
Q[x]/(x4 + 1) is a field, and so it has no proper, non-trivial ideals.
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Solution for (b). First of all, x2+y4 = (y4−1)+(x2+1), so the two ideals (x2+1, x2+y4) and (x2+1, y4−1)
are the same. So the quotient ring in question is equal to Q[x, y]/(x2 + 1, y4 − 1).

First we will examine Q[x]/(x2+1). Since x2+1 is irreducible in Q[x] with root i, we have Q[x]/(x2+1) ∼=
Q(i). Thus we have

Q[x, y]/(x2 + 1, y4 − 1) ∼= (Q[x]/(x2 + 1))[y]/(y4 − 1) ∼= Q(i)[y]/(y4 − 1).

Now y4 − 1 splits over the field Q(i), as y4 − 1 = (y − 1)(y − i)(y + 1)(y + i). Therefore, by the Chinese
Remainder Theorem, we have

Q[x, y]/(x2 + 1, y4 − 1) ∼= Q(i)[y]/(y − 1)×Q(i)[y]/(y − i)×Q(i)[y]/(y + 1)×Q(i)[y]/(y + i).

Each of the four factors is isomorphic to Q(i), so the whole thing is isomorphic to the ring Q(i)4.
The two senses of the word “simple” are the colloquial sense (Q(i) is not a complicated ring) and the

technical sense (Q(i) is a ring with no proper, non-trivial ideals).

Problem 4.11.5

Let E be the splitting field of x5− 3 over Q, F the splitting field of x5− 7 over Q, and put L = EF ,
their compositum. Note: You may assume that x5 − 7 has no roots in E and x5 − 3 has no roots in
F .

(a) Determine the degree [L : Q].

(b) Determine the isomorphism class of Gal(L/F ).

(c) Determine the number of Sylow p-subgroups for each prime p dividing the order of Gal(L/Q).

Notes and Comments

Proof of (a). By a standard argument, E = Q( 5
√

3, ζ5) and F = Q( 5
√

7, ζ5) where ζ5 is a primitive 5th root
of unity. Hence [F : Q] = 20. Since F does not contain any roots of x5−3, we obtain L = EF by adjoining
5
√

3 to F .
By multiplicativity of degrees in towers,

[L : Q] = [L : F ][F : Q] = 5 · 20 = 100.

Proof of (b). Since L = F ( 5
√

3), we know that |Gal(L/F )| = 5 by the Galois correspondence. Hence
Gal(L/F ) is isomorphic to the cyclic group of order 5.

Proof of (c). Let G = Gal(L/Q). Then |G| = 100 = 22 · 52. Let np be the number of Sylow p-subgroups.
By the Sylow theorems, we know that np ≡ 1 mod p and that np divides |G|/p2 (since all our primes

occur in squares). Consequently, n5 = 1 and n2 ∈ {1, 5, 25}.
Note that G has a cyclic subgroup of order 4 generated by % where % fixes 5

√
3 and 5

√
7 and sends ζ5 7→ ζ2

5 .
Hence G has a cyclic Sylow 2-subgroup. By the Sylow theorem, all Sylow 2-subgroups are conjugate and
hence cyclic of order 4.
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Suppose n2 = 25. Then G has 25 cyclic subgroups of order 4, each having two generators. Thus G has
50 distinct elements of order 4. Additionally, G has at least 25 elements of order 2.43 Counting the Sylow
5-subgroup, we have at least 100 elements of prime power order. However, G must also contain elements
of order 10, 20, and so on. So |G| > 100.	Hence n2 6= 25 .

Suppose n2 = 1. Let P be the unique Sylow 5-subgroup and Q the unique Sylow 2-subgroup. Then
P,Q / G. Since P,Q are of prime-squared order, they are abelian. By normality and the fact that
P ∩Q = {e}, P and Q commute. Hence G = PQ is abelian, which we claim is false.

Consider σ, τ ∈ G given by
σ(

5
√

3) =
5
√

3ζ5, σ(ζ5) = ζ2
5

and
τ( 5
√

(3)) =
5
√

3, τ(ζ5) = ζ4
5 .

Then στ( 5
√

3) = 5
√

3ζ5 but τσ( 5
√

3) = 5
√

3ζ4
5 . Hence στ 6= τσ and so G is not abelian.	Thus n2 6= 1 .

As n2 ∈ {1, 5, 25}, we must have n2 = 5 .

Problem 4.11.6

Let i =
√
−1 ∈ C, let ζ5 ∈ C be a primitive 5th root of unity, and put E = Q(ζ5).

(a) Show that i /∈ E.

(b) Let L = E(i). Consider the norm, NL/E, from L to E. Show that the image of the norm
consists of those elements in E which can be written as the sum of two squares in E.

(c) Determine the isomorphism class of Gal(L/Q).

(d) Determine whether a regular 20-gon is constructible by straightedge and compass.

Notes and Comments

Proof of (a). Let F = Q(ζ5 + ζ−1
5 ) be the maximal real subfield of E. Then [E : F ] = 2. Recall that

Gal(E/Q) ∼= (Z/5Z)× ∼= C4, the cyclic group of order 4. Since C4 has only one subgroup of order 2, the
Galois correspondence tells us that F is the only subfield of E with [E : F ] = 2.

Now suppose i ∈ E. Then Q ⊂ Q(i) ⊂ E. By multiplicativity of degrees in towers,

4 = [E : Q] = [E : Q(i)][Q(i) : Q] = 2[E : Q(i)],

and thus [E : Q(i)] = 2. Thus Q(i) = F by the above. However, Q(i) is not a real subfield of E, and so

Q(i) 6= F .	Hence i /∈ E .

Proof of (b). Every element of L = E(i) can be written in the form a + bi with a, b ∈ E. Since i /∈ E,
we have [L : E] = 2, so i 7→ −i defines the one non-trivial automorphism of L over E. Consequently, the
norm is given by NL/E(a+ bi) = (a+ bi)(a− bi) = a2 + b2.

43Take σ(m,n) for m,n ∈ {1, . . . , 5} where 5
√

3 7→ 5
√

3ζm5 , 5
√

7 7→ 5
√

7ζn5 , and ζ5 7→ ζ45 .
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Proof of (c). We have L = Q(ζ5, i). Since i = ζ4 and lcm(4, 5) = 20, we have L = Q(ζ20). Thus
Gal(L/Q) ∼= (Z/20Z)× as groups. By the Chinese Remainder Theorem, Z/20Z ∼= (Z/4Z) × (Z/5Z) as
rings. So

Gal(L/Q) ∼= (Z/4Z)× × (Z/5Z)× ∼= C2 × C4 ,

the product of cyclic groups.

Proof of (d). We prove that a regular 20-gon (or icosagon) can be constructed with straightedge and
compass. This is the case if and only if cos(2π/20) is a constructible real number. Observe that

2 cos(2π/20) = e2πi/20 + e−2πi/20,

so cos(2π/20) ∈ Q(ζ20) = L. We have the tower of fields Q ⊂ Q(ζ5 + ζ5
−1) ⊂ Q(ζ5) ⊂ L, and each field in

this tower has degree 2 over the field it covers. This means that every real number in L is constructible,
so cos(2π/20) is constructible.
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Analysis

Analysis Exam

Summer 2012

Problem 5.1.1

Let f : A ⊂ R → R be a function. Give three criteria (ε/δ, open sets, sequences) for f to be
continuous on A. Show that these definitions are equivalent.

Notes and Comments

Proof. The three equivalent versions of continuity are:

(1) (ε and δ): For every a ∈ A and ε > 0, there exists δ > 0 such that |x − a| < δ implies that
|f(x)− f(a)| < ε.

(2) (Sequential): For a ∈ A and every sequence {xn}∞n=1 ⊂ A such that lim
n→∞

xn = a, we have

lim
n→∞

f(xn) = f(a).

(3) (Open Sets): For every open U ⊂ R, the set f−1(U) is open in A (with respect to the subspace
topology).

We prove the equivalence by showing that the second and third conditions are equivalent to the first.
(1)⇔(2): Suppose that (1) holds and let a ∈ A and {xn} ⊂ A such that xn → a.
Let ε > 0. By (1), there exists a δ such that |x − a| < δ implies that |f(x) − f(a)| < ε. Choose

N ∈ N such that, for n ≥ N , we have |xn − a| < δ. Then n ≥ N also implies that |f(xn) − f(a)| < ε, so
f(xn)→ f(a) as n→∞.

To show that (2) implies (1) we argue by contraposition. Assume that there exists an a ∈ A and ε > 0
such that, for all δ > 0, there exists x ∈ A such that |x− a| < δ but |f(x)− f(a)| ≥ ε.

Thus we can take the sequence δn = 1
n

to obtain a sequence of {xn} with |xn−a| < δn but |f(xn)−f(a)| ≥
ε. Clearly xn → a but f(xn) 6→ f(a), proving the contrapositive.

(1)⇔(3): Assume that (1) holds and let U ⊆ R be an arbitrary open set. If A ∩ f−1(U) = ∅ we are
done because ∅ is open.
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Let a ∈ f−1(U). Then there exists ε > 0 such that |y − f(a)| < ε implies that y ∈ U . Then, by (1),
we can find a corresponding δ > 0 such that |x− a| < δ implies that |f(x)− f(a)| < ε. Hence f(x) ∈ U .
Thus Bδ(a) ⊆ f−1(U) and so a is an interior point of f−1(U). Since a was arbitrary, all points of f−1(U)
are interior and the set is open in A.

Finally, assume that (3) is true and select an arbitrary a ∈ A and ε > 0. Notice that U = Bε(f(a)) =
{y ∈ R : |y − f(a)| < ε} is open. By (3) we know that f−1(U) is open in A with a ∈ f−1(U). Since it is
open, a is an interior point and there exists a δ > 0 such that |x− a| < δ implies x ∈ f−1(U). This implies
(1), completing our proof.

Problem 5.1.2

Let Ω be an open connected subset of C. Suppose the fn is a sequence of holomorphic functions on
Ω for each n ≥ 1 and that the sequence {fn} converges to a function f uniformly on each compact
subset of Ω.

(a) Show that f is holomorphic on Ω.

(b) Show that the sequence {f ′n} of derivatives converges to f ′ uniformly on compact subsets of
Ω.

Note: We say that g is holomorphic on Ω if g′(z) exists for all z ∈ Ω.
Notes and Comments

Proof of (a). Let T be a triangle contained in a disk of Ω. Then, for any n, we have
∫
∂T
fn(z)dz = 0 by

Cauchy’s Theorem. By uniform convergence on the disk in Ω,

lim
n→∞

∫
∂T

fn(z)dz =

∫
δT

lim
n→∞

fn(z)dz =

∫
∂T

f(z)dz = 0.

By Morera’s Theorem, this is sufficient to show that f is holomorphic on the arbitrary disk; hence on
Ω.

Proof of (b). Let K be a compact subset of Ω. Let ε > 0 and consider K ′ =
⋃
z∈K

D(z, ρ) ⊆ Ω where

K ⊂ K ′ and K ′ is compact. Then fn
unif.→ f on K ′. Thus by definition of uniform convergence, ∃N ∈ N

such that |fn(z) − f(z)| < ερ for all n ≥ N and z ∈ K ′. Thus on each disk, |fn − f | < ερ. Hence by
Cauchy estimates, we have |f ′n − f ′(z)| < ε.

Problem 5.1.3

Let C([0, 1]) be the complex vector space of continuous complex-valued functions on [0, 1].

(a) Suppose that {fn} is a sequence in C([0, 1]) and that f is a function on [0, 1] such that fn
converges uniformly to f . Show that f ∈ C([0, 1]).

(b) Assume without proof that
‖f‖∞ := sup{|f(t)| : t ∈ [0, 1]}

is a norm on C([0, 1]). Show that C([0, 1]) is a Banach space with respect to ‖·‖∞.

Notes and Comments
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Proof of (a). To show that f ∈ C([0, 1]), we must show that, for any p ∈ [0, 1] and any ε > 0, ∃δ > 0 such
that, whenever |x− p| < δ, we have |f(x)− f(p)| < ε.

Let p ∈ [0, 1] and ε > 0. Since {fn}
unif.→ f , ∃N ∈ Z+ such that for all m > 0 and all x ∈ [0, 1],

|fn(x)− f(x)| < ε

3
(∗).

Let M > N . Then, by (∗),

|fM(x)− f(x)| < ε

3
and |fM(p)− f(p)| < ε

3
.

Since fM is continuous, ∃δ such that

|x− p| < δ =⇒ |fM(x)− fM(p)| < ε

3
.

Thus, whenever |x− p| < δ,

|f(x)− fM(x)|+ |fM(x)− fM(p)|+ |fM(p)− f(p)| < ε

3
+
ε

3
+
ε

3
= ε.

So, by the triangle inequality, we have

|f(x)− f(p)| ≤ |f(x)− fM(x)|+ |fM(x)− fM(p)|+ |fM(p)− f(p)| < ε.

Hence f is continuous at p. Since p was arbitrary, f is continuous on [0, 1], i.e., f ∈ C([0, 1]).

Proof of (b). To show that C([0, 1]) is a Banach space with respect to ‖·‖∞, it suffices to show that every
Cauchy sequence converges to an element in C([0, 1]) with respect to ‖·‖∞.

Let {fn}∞n=1 be a Cauchy sequence with respect to ‖·‖∞. Then, for any ε > 0, ∃N ∈ Z+ such that, for
all n,m > N ,

‖fn − fm‖∞ < ε.

Thus for any p ∈ [0, 1], the sequence {fn(p)}∞n=1 is a Cauchy sequence in R (a complete metric space)
and so {fn(p)}∞n=1 converges to some value f(p). Thus {fn}∞n=1 converges pointwise to some function f on
[0, 1].

Claim: The sequence {fn}∞n=1 converges uniformly to f .

Proof of Claim. Let ε > 0. Then ∃N ∈ Z+ such that, for all n,m > N ,

‖fn − fm‖∞ < ε (∗).

For M > N and p ∈ [0, 1], |fM(p)− fn(p)| < ε for n > N by (∗). Thus

{fn(p) | n > N, p ∈ [0, 1]} ⊆ (fM(p)− ε, fM(p) + ε)

and so f(p) ∈ [fM(p)− ε, fM(p) + ε]. Hence, for any n > M , fn(p) ∈ [f(p)− ε, f(p) + ε] for all p. That is,

|fn(p)− f(p)| < ε for all p. Since ε was arbitrary, {fn}∞n=1 converges uniformly to f .

By the claim and part (a), f is continuous. Thus every Cauchy sequence converges and so C([0, 1]) is
a Banach space with respect to ‖·‖∞.
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Problem 5.1.4

Let H be a complex Hilbert space and T : H → H a linear map.

(a) Show that if T is bounded, then there is a linear map S : H → H such that (Tv | w) = (v | Sw)
for all v, w ∈ H. (In other words, show that T has an adjoint.)

(b) Conversely, show that if there is a (not necessarily bounded) map S : H → H such that
(Tv | w) = (v | Sw) for all v, w ∈ H, then T is bounded.

Notes and Comments

Proof of (a). Let y ∈ H and define Sy : H → C by Sy(x) = (Tx | y) ∈ C. Then, since T is linear, Sy is
also linear. Furthermore,

|Sy(x)| = |(T (x) | y)|
CS≤
≤ ‖T (x)‖‖y‖

T bdd

≤ ‖T‖‖x‖‖y‖ = ‖T‖‖y‖︸ ︷︷ ︸
M

‖x‖.

Hence Sy is bounded. Thus Sy ∈ H∗, the dual of H. By the Riesz–Fréchet Theorem, there is a unique
zy ∈ H such that

(T (x) | y) = Sy(x) = (x | zy)

for all x ∈ H. Define S : H → H by S(y) = zy . Then S has the adjoint property.

We now wish to show that S is a linear map. Indeed, for y1, y2 ∈ H and α, β ∈ C, we have

(x | S(αy1 + βy2))
unique

= (T (x) | αy1 + βy2)

= α(T (x) | y1) + β(T (x) | y2)
unique

= α(x | S(y1)) + β(x | S(y2))

= (x | αS(y1) + βS(y2))

for all x ∈ H. Using conjugate linearity in the second component, we find that S(αy1 + βy2)− (αS(y1) +
βS(y2)) is orthogonal to H for all x ∈ H. That is, this quantity must be 0 and so S is linear.

Proof of (b). This result is a quick application of the Closed Graph Theorem. Suppose xn → x and
T (xn)→ y. We want to show that T (x) = y. For any z ∈ H, we have

(T (x) | z) = (x | S(z)) = lim
n→∞

(xn | S(z)) = lim
n→∞

(T (xn) | z) = (y | z).

Thus T (x)− y is orthogonal to all of H. That is, T (x) = y and so the graph of T is closed. By the Closed
Graph Theorem, as H is (more than) a Banach space, T is continuous (hence bounded).

Problem 5.1.5

Let f be a complex function on an open connected subset Ω of the complex plane.

(a) What are the Cauchy–Riemann equations for f at z0 ∈ Ω?
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(b) Discuss the existence of the complex derivative f ′(z0) in terms of the Cauchy–Riemann equa-
tions at z0. (Ideally, you should give both necessary as well as sufficient conditions for f ′(z0)
to exist. Note that you are not asked to prove anything here.)

(c) Show that a real-valued function on Ω is holomorphic if and only if it is constant.

Notes and Comments

Proof of (a). Write f = u + iv where u and v are real-valued. Then the Cauchy–Riemann equations are
ux = vy and −uy = vx.

Proof of (b). As above, write f = u+ iv.
Necessary condition: If f is differentiable at z0 then fR (f viewed as a map R2 → R) is differentiable

at z0 and u, v satisfy the Cauchy–Riemann equations.
Sufficient condition: If u, v (viewed as maps R2 → R) have 1st-order partials in a neighborhood of

z0 = (x0, y0), are continuous at z0, and satisfy the Cauchy–Riemann equations, then f is differentiable at
z0.

Proof of (c). If f is constant then it is obviously differentiable (with derivative 0).
Conversely, if it is holomorphic on Ω, then f = u + iv satisfies the Cauchy–Riemann equations. Since

f is real-valued, v ≡ 0. Hence the Cauchy-Riemann equations guarantee ux = 0 = uy since v = 0. Thus u
is a constant function.

Problem 5.1.6

Let H be a complex Hilbert space and T : H → H a linear map.

(a) What does it mean for T to be bounded?

(b) Define the operator norm, ||T ||, of T and show that ‖Th‖ ≤ ‖T‖ · ‖h‖ for all h ∈ H.

(c) Show that T is bounded if and only if T is continuous from H to H.

Notes and Comments

Solution to (a). T is bounded if there exists M > 0 such that ||Tx|| ≤M ||x|| for all x ∈ H.

Solution to (b). The operator norm is ||T || = sup
x∈H
{||Tx|| : ||x|| = 1}. By submultiplicativity of the operator

norm,

||T x

||x||
|| ≤ ||T ||.

Multiplying through by ||x|| gives the desired result.

Proof of (c). Assume that T is bounded and let ε > 0 be arbitrary. For any x and y with ||x− y|| < ε
||T || ,

we have
||Tx− Ty|| = ||T (x− y)|| ≤ ||T ||||x− y|| = ||T || ε

||T ||
= ε

and so T is actually Lipschitz continuous (hence continuous).
Conversely, assume that T is continuous. Then, in particular, it is continuous at 0. Let ε = 1. Then

∃δ such that, for all x with ||x|| < δ, we have ||Tx|| < 1. By scaling x with 1
δ

we can extend this to the
unit ball, thus completing the proof.
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Analysis Exam

Fall 2012

Problem 5.2.1

State the Hahn–Banach Theorem and use it to show that if B is a Banach space, then its dual,
B∗∗, of bounded linear functionals separates points of B. (That is, you are asked to show that if a
and b are distinct elements of B, then there is a φ ∈ B∗ such that φ(a) 6= φ(b).)

Notes and Comments

Theorem 5.2.1 (Hahn–Banach): Let V be a Banach space and W ⊆ V a subspace of V . Then for any
ϕ ∈ W ∗ there exists a ϕ ∈ V ∗ such that ϕ|W = ϕ and ||ϕ|| = ||ϕ||.

Proof. To separate the points of B, we let a 6= b ∈ B be arbitrary and exhibit ϕ ∈ B∗ such that ϕ(a) 6= ϕ(b).
Define ϕ̂ on span {a− b} by ϕ̂(a− b) = ||a− b|| 6= 0. By Hahn–Banach, we can extend ϕ̂ to a functional
ϕ on all of B with the property that ϕ(a− b) = ϕ(a)− ϕ(b) = ||a− b|| 6= 0 as desired.

Problem 5.2.2

State the Residue Theorem (from Complex Analysis) and use it to evaluate

∫ ∞
0

x2

(x2 + a2)2
dx for

a > 0. Be sure to justify any limits required.

Notes and Comments

Theorem 5.2.2 (Residue Theorem): Let D be a domain and suppose f : D → C is analytic except
for a finite collection of isolated singularities at z1, . . . , zn ∈ D. Let γ be a closed curve in D that is
homotopically trivial in D and assume zj /∈ γ for all j. Then

1

2πi

∫
γ

f(z) dz =
n∑
j=1

ind(γ; zj) Res(f ; zj)

Proof. Consider the function f(z) =
x2

(x2 + a2)2
which has poles at ±ia and is holomorphic on the rest of

C. As f is even, we can integrate over all of R and divide the result by two. Define the following paths:

• αR(t) = Reπit (t ∈ [0, 1]) is the semi-circle of radius R centered at the origin in the upper half plane,
oriented counterclockwise,

• βR(t) = 2Rt−R (t ∈ [0, 1]) is the line from −R to R,

• γR is the concatenation of αR and βR, oriented counterclockwise. For R > |a|, we have∫
βR

f(z) dz =

∫
γR

f(z) dz −
∫
αR

f(z) dz.
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Note that

∫
αR

f(z) dz → 0 (∗) as R → ∞. That is, for sufficiently large R, |f(γR(t))| < 1

|γR(t)|2
.

Hence
∣∣∣∫αR f(z) dz

∣∣∣ < ∫αR
∣∣∣∣ 1

z2

∣∣∣∣ dz and this does indeed go to 0.

Now we need only evaluate the first integral. To do so, we use the Residue Theorem. The index is the

winding number, so ind(γR, ia) = 1 . Since ai is the only pole and it has order two, we have

Res(f, ai) =
1

(2− 1)!
lim
z→ai

d

dz

(
(z − ai)2 z2

(z2 + a2)2

)
= lim

z→ai

d

dz

z2

(z + ai)2

= lim
z→ai

2z(z + ai)2 − 2(z + ai)z2

(z + ai)4

=
−i
4a

Finally, we can compute the integral∫ ∞
0

f(x)dx =
1

2

∫
R
f(z)dz =

1

2
lim
R→∞

(∫
γR

f(z)dz −
∫
αR

f(z)dz

)
(∗)
=

1

2
lim
R→∞

∫
γR

f(z)dz

=
1

2
lim
R→∞

2πi ind(γR; ai) Res(f ; ai)

= πi lim
R→∞

−i
4a

=
π

4a

Thus

∫ ∞
0

f(x) dx =
π

4a
.

Problem 5.2.3

Consider a power series
∞∑
n=1

anx
n(†) for real constants an ∈ R. Show that there is a ρ ∈ [0,∞] such

that either

(i) ρ = 0 by which we mean (†) converges only for x = 0, or

(ii) ρ =∞ by which we mean (†) converges absolutely for all x, or

(iii) 0 < ρ <∞ and (†) converges absolutely if |x| < ρ and diverges if |x| > ρ.

Give examples (with all an 6= 0) where ρ = 0, ρ =∞, and 0 < ρ <∞.
Notes and Comments

Proof. Define ρ = sup{r ∈ R : (anr
n)∞n=1 is bounded} .

If ρ = 0, then
∞∑
n=1

anx
n diverges for all x 6= 0 since the sequence (anx

n)∞n=1 is unbounded. If ρ =∞ or

0 < ρ <∞, choose any r < ρ. We will show that the series converges absolutely on Dr(0).
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Let R be such that r < R < ρ. By definition of ρ, we have that (anR
n)∞n=1 is bounded and hence there

exists M ∈ N such that |an|Rn ≤M . For any x ∈ Dr(0), we have

|anxn| ≤ |an|rn = |an|Rn

(
rn

Rn

)
≤M

( r
R

)n
.

As R > r, we have
r

R
< 1. Hence

∞∑
n=1

|anxn| ≤
∞∑
n=1

M
( r
R

)n
=

M

1− (r/R)
.

Thus the series converges absolutely on Dr(0) as desired.
For the converse (for (iii)), note that |x| = ρ will give us a geometric series (r = 1). That is, the series

will blow up.
Examples

(i) an = 2n!

(ii) an = 2−n!

(iii) an = (−1)n (here ρ = 1)

Problem 5.2.4

Give a precise statement of the theorem which implies that a holomorphic function on an open
subset of the complex plane is locally represented by a power series. Use your theorem to calculate

the radius of converges of the MacLaurin series for f(z) =
1

1 + ez
. (The MacLaurin series is just the

Taylor series for f about z = 0.)

Notes and Comments

Theorem 5.2.3 Let U be an open subset of C and f ∈ H(U). Then, for each z0 ∈ U , there exists a

sequence (an) and a radius r > 0 such that f(z) =
∞∑
n=0

an(z − z0)n for |z − z0| < r.

Proof. Note that f has poles at z = ±πi. Hence, about z0 = 0, f has a radius of convergence r = π.

Problem 5.2.5

Let µ be a measure on the Borel sets of R such that, for any Borel set E ⊆ R, we have

µ(E) = inf{µ(U) : U is an open set containing E}

and µ([a, b]) <∞ for an interval [a, b].

(i) Show that for any ε > 0 there is an open set O and a closed set C such that C ⊆ E ⊆ O and
µ(O \ C) < ε.
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(ii) Using the above, show that there are Borel sets G and F such that F ⊆ E ⊆ G with µ(G\F ) = 0.

(Hint: Finding a neighborhood O of E such that µ(O \ E) < ε is pretty easy if µ(E) <∞.)
Notes and Comments

Proof of (i). Note that µ is σ-finite because closed intervals have finite measures.
Claim: For any Borel set E, we can find an open set U with E ⊆ U such that µ(U \ E) < ε.

Proof. Let ε > 0.1

If µ(E) < ∞ then, by definition of µ, there is an open set U with µ(U) < µ(E) + ε. Since measures
are additive on disjoint sets, we have

µ(U ∩ E) + µ(U \ E) = µ(U) < µ(E) + ε.

As E ⊆ U , we get
µ(E) + µ(U \ E) < µ(E) + ε.

Hence µ(U \ E) < ε .

Assume µ(E) = ∞. By σ-finiteness, E =
∞⋃
n=1

En where µ(En) < ∞ for all n. For each En, choose Un

such that µ(Un \ En) <
ε

2n
. Let U =

∞⋃
n=1

Un. Then, by subadditivity of µ and since Un \ E ⊆ Un \ En, we

have

µ(U \ E) ≤
∞∑
n=1

µ(Un \ E) ≤
∞∑
n=1

µ(Un \ En) <
∞∑
n=1

ε

2n
= ε.

That is, µ(U \ E) < ε .

Now we can tackle the general problem. By the claim, there is an open set O such that µ(O \ E) <
ε

2
.

Consider Ec. Since the Borel sets form a σ-algebra, Ec is also a Borel set. Hence, by the claim, we have

an open set U such that µ(U \ Ec) <
ε

2
.

Let C = U c. Then C is a closed set and

µ(E \ C) = µ(E ∩ Cc) = µ(E ∩ U) = µ(U \ Ec) <
ε

2
.

Since U \ C = ((U ∩ E) \ C) ∪ ((U \ E) \ C) = (E \ C) ∪ (U \ E), subadditivity tells us that

µ(U \ C) ≤ µ(E \ C) + µ(U \ E) < ε

as desired.

1How else would a good analysis proof start?
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Proof of (ii). By part (i), there are open sets On and closed sets Cn with Cn ⊆ E ⊆ On such that

µ(On \ Cn) <
1

n
. Define F =

∞⋃
n=1

Cn and G =
∞⋂
n=1

On. Since Borel sets form a σ-algebra, F and G are

both Borel sets. Note that G \ F ⊆ On \ Cn for all n.2 Thus

µ(G \ F ) ≤ µ(On \ Cn) <
1

n

for all n. Hence µ(G \ F ) = 0 as desired.

Problem 5.2.6

Show that a continuous function f : (0, 1] → R is uniformly continuous if and only if there is a
continuous extension g : [0, 1]→ R. (That is, g is a continuous function such that g(x) = f(x) for all
x ∈ (0, 1].)

Notes and Comments

Proof. (⇒): If g is a continuous extension of f to [0, 1], then g is uniformly continuous by the Heine–Cantor
Theorem (i.e., since [0, 1] is compact). Since f = g|(0,1], f is also uniformly continuous.

(⇐): Consider a Cauchy sequence {xn} ⊆ (0, 1] such that xn → 0. Since f is uniformly continuous, it
maps Cauchy sequences to Cauchy sequences. Thus {f(xn)} is a Cauchy sequence.

By the completeness of R, f(xn) → a ∈ R. Define g(0) = a. From the uniqueness of limits, g is
continuous at 0; hence on [0, 1]. Thus g is the desired continuous extension of f .

2It can take a minute to realize this, depending on when you’re thinking about it.
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Analysis Exam

Summer 2013

Problem 5.3.1

Suppose that f : C→ C is everywhere analytic (i.e., entire).

(a) Show that the function g(z) = f(z) is entire only if f is a constant function.

(b) Show that the function h(z) = f(z) is entire.

Notes and Comments

Proof of (a). Write f = u+ iv where u, v are real-valued functions. Since f is entire, the Cauchy–Riemann
equations give

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0)

for all (x0, y0) ∈ R2.
Write g(x, y) = f(x,−y) = u(x,−y) + iv(x,−y) and assume g is entire. Then the Cauchy–Riemann

equations hold and so

ux(x0,−y0) = −vy(x0,−y0) and − uy(x0,−y0) = −vx(x0, y0).

However, by the Cauchy–Riemann equations for f , we have

ux(x0,−y0) = −vy(x0,−y0) = −ux(x0,−y0) and − uy(x0,−y0) = −vx(x0, y0) = uy(x0,−y0).

Hence ux = uy = 0 on all of R2. Thus u is constant on R2. Similarly v is constant on R2. Hence f is
constant as desired.

Proof of (b). Write f as in part (a). Then h(x, y) = u(x,−y)− iv(x,−y). Checking the partials of the real
and imaginary parts of h, the Cauchy–Riemann equations hold. Also, the partials are continuous since
u, v are smooth (and hence have continuous partials). Thus h is differentiable at any point in C, i.e., h is
entire.

Problem 5.3.2

Let C[0, 1] denote the vector space of all continuous complex-valued functions f : [0, 1]→ C.

Show that
S = {f ∈ C[0, 1] : f(0) = 0}

is a linear subspace of C[0, 1]. Give C[0, 1] the supremum (uniform) norm ‖·‖∞:

‖f‖∞ = sup
x∈[0,1]

|f(x)| .

Is S a closed subspace? Why or why not?
Notes and Comments

96



The Written Qual Book Analysis: Summer 2013

Proof. Since C[0, 1] is a vector space, we know that the scalar product and sum of continuous functions
are continuous. For any functions f, g ∈ C[0, 1] such that f(0) = g(0) = 0, we have

af(0) + bg(0) = a0 + b0 = 0.

So S is a linear subspace of C[0, 1].
S is a closed subspace under ‖·‖∞: Assume (fn)∞n=1 is a sequence in S that converges to f ∈ C[0, 1].

We want to show that f ∈ S. By definition, ‖f − fn‖∞ → 0 as n → ∞. For any x ∈ [0, 1], we have
|f(x)− fn(x)| ≤ ‖f − fn‖∞. As fn ∈ S, we have fn(0) = 0. Thus, for all n,

|f(0)| = |f(0)− fn(0)| ≤ ‖f − fn‖∞ .

Taking limits, |f(0)| ≤ 0. Hence f(0) = 0 and we have f ∈ S. Thus S contains all its limit points and is
thus closed.

Problem 5.3.3

Let (X,M, µ) be a measure space. Let h : X → [0,∞] be an M-measurable function on X. Define
λ : M → [0,∞] by

λ(E) =

∫
E

h dµ.

Show that λ is a measure on (X,M).

Notes and Comments

Proof. Given that h ≥ 0, we know that λ(E) =
∫
E
h dµ ≥ 0. Note that

λ(∅) =

∫
∅
h dµ =

∫
X

h · χ∅ = 0.

We now prove that λ is countably additive on disjoint sets. Let {Ej}∞j=1 be disjoint sets in M . Define

hj = h · χEj for j ∈ N, let fn =
∑n

j=1 hj for n ∈ N, and let f = lim
n→∞

fn.

Since fn ≤ fn+1 for each n, the Monotone Convergence Theorem implies that∫
X

f dµ
(MCT )

= lim
n→∞

∫
X

fn dµ = lim
n→∞

∫
X

n∑
j=1

hj dµ = lim
n→∞

∫
X

n∑
j=1

h · χEj dµ.

Therefore ∫
X

f dµ = lim
n→∞

(
n∑
j=1

∫
X

h · χEj dµ

)
= lim

n→∞

(
n∑
j=1

λ (Ej)

)
=
∞∑
j=1

λ (Ej) .

Thus

∫
X

f dµ =
∞∑
j=1

λ (Ej) (∗). On the other hand,
∞∑
j=1

h · χEj ≡ 0 on X\
∞⋃
j=1

Ej. Since {Ej}∞j=1 is a disjoint

collection, we have
∞∑
j=1

h · χEj ≡ h on
∞⋃
j=1

Ej. Hence

∞∑
j=1

λ (Ej)
(∗)
=

∫
X

f dµ =

∫
X

(
∞∑
j=1

h · χEj

)
dµ =

∫
∞⋃
j=1

Ej

h dµ = λ

(
∞⋃
j=1

Ej

)
.

Thus λ is a measure on (X,M).
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Problem 5.3.4

Let H be a Hilbert space with inner product (·, ·). If S is any nonempty subset of H and V the closed
subspace generated by S, i.e., V = Span(S), show that S⊥ = V ⊥, i.e., their orthogonal complements
are equal.

Notes and Comments

Proof. We show that S⊥ = V ⊥ by showing both set containments.
(S⊥ ⊇ V ⊥): Let v⊥ ∈ V ⊥. Then for any v ∈ V , we have (v, v⊥) = 0 by definition. Since S ⊂ V , we

have (s, v⊥) = 0 for all s ∈ S. Thus v⊥ ∈ S⊥. That is, S⊥ ⊇ V ⊥ .

(S⊥ ⊆ V ⊥): Let s⊥ ∈ S⊥. Then (s, s⊥) = 0 for all s ∈ S.

Consider x ∈ Span(S). Then x =
n∑
i=1

λisi for si ∈ S. By linearity3 of (·, ·),

(
x, s⊥

)
=

(
n∑
i=1

λisi, s
⊥

)
=

n∑
i=1

λi(si, s
⊥) =

n∑
i=1

λi · 0 = 0.

Thus (x, s⊥) = 0 (∗) for all x ∈ Span(S).

Let v ∈ V . Then there is a sequence {vn}∞n=1 in Span(S) such that vn → v. By continuity of the inner
product,

(v, s⊥) =
(

lim
n→∞

vn, s
⊥
)

= lim
n→∞

(vn, s
⊥)

(∗)
= lim

n→∞
0 = 0.

Thus (v, s⊥) = 0. That is, S⊥ ⊆ V ⊥ .

Problem 5.3.5

Let {an}∞n=1 be a sequence in R. We state two definitions of lim sup an below. Show definition (a)
implies the statement in (b). (You don’t have to prove the converse.)

(a) lim sup an = lim
n→∞

(sup {ak : k ≥ n}).

(b) lim sup an is the largest subsequential limit of {an}∞n=1. (Recall that a ∈ [−∞,∞] is said to be
a subsequential limit of {an}∞n=1 if some subsequence {ank}

∞
k=1 satisfies lim

k→∞
ank= a.)

Notes and Comments

Proof. Let bn = sup {ak : k ≥ n}. Observe that (a) implies that bn ↘ lim sup an . We proceed by consi-
dering the different possibilities for lim sup an.

(I) lim sup an = −∞ .

For n fixed, infk≥n {ak} ≤ supk≥n {ak}, so

−∞ ≤ lim inf an = lim
n→∞

(
inf
k≥n
{ak}

)
≤ lim

n→∞

(
sup
k≥n
{ak}

)
= lim sup an = −∞.

This means that equality holds throughout, so −∞ is the only subsequential limit.

3In at least the first component.
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(II) lim sup an =∞ .

Given that bn ↘ lim sup an = ∞, it must be that bn = ∞ for all n. Therefore it is possible
to construct ank → ∞ as k → ∞ (at each stage, choose a term larger than the previous). No
subsequential limit is larger than ∞.4

(III) lim sup an = a ∈ R .

Claim: No subsequential limit is larger than a.

Proof. Suppose b > a is a subsequential limit. Since bn ↘ lim sup an = a, there exists n such that
a ≤ bn < b, so a ≤ sup {ak : k ≥ n} < b. This means that ak ≤ bn < b for k ≥ n, so bn < ak holds
only for finitely many values of k. Hence, no subsequence of {ak} converges to b.

Claim: a is a subsequential limit.

Proof. The idea is to inductively construct subsequences {anl}
∞
l=1 of {an}∞n=1 and {bkl}

∞
l=1 of {bn}∞n=1

that are “very close,” and then take advantage of the fact that bn → a.

Since bn ↘ a, we may choose k1 such that a ≤ bk1 < a+1. Now, given that bk1 = sup {an : n ≥ k1},
we may choose n1 ≥ k1 such that |bk1 − an1| < 1.

(Inductive hypothesis) Assume there are

k1 ≤ n1 < k2 ≤ n2 < · · · < kl ≤ nl

such that a ≤ bkj < a+
1

j
and

∣∣bkj − anj ∣∣ < 1

j
.

There exists bkl+1
such that a ≤ bkl+1

< a + 1
l+1

. In fact, since bn ↘ a, we may choose kl+1 so that

kl+1 > nl. Now, choose anl+1
such that nl+1 ≥ kl+1 and

∣∣bkl+1
− anl+1

∣∣ < 1
l+1

. Again, it is possible
to choose nl+1 because bkl+1

= sup {an : n ≥ kl+1}.
Thus, we have inductively constructed subsequences {anl}

∞
l=1 of {an}∞n=1and {bkl}

∞
l=1 of {bn}∞n=1 such

that |a− bkl | < 1
l

and |bkl − anl | < 1
l

for all l.

Let ε > 0 and choose N ∈ N such that 2
N
< ε. For l ≥ N ,

|anl − a| ≤ |anl − bkl |+ |bkl − a| <
2

l
≤ 2

N
< ε.

We conclude that anl → a as l→∞.

Thus lim sup an is the largest subsequential limit in all cases.

4For obvious reasons.

99



The Written Qual Book Analysis: Summer 2013

Problem 5.3.6

Let V and W be Banach spaces. A bounded linear operator A ∈ L(V,W ) is said to be bounded below
if there is a constant C > 0 such that

‖A(x)‖W ≥ C ‖x‖V , ∀x ∈ V.

(a) Show that if A is bounded below, then A is injective and has closed range.

(b) Show that if A is bounded below then A−1 : Range(A)→ V is bounded. Thus, if A has dense
range then A−1 ∈ L(W,V ).

Notes and Comments

Proof of (a). First we show that A is injective. Since A is linear, it suffices to show that kerA = {0}.
If A(x) = 0 then, by assumption, 0 = ‖A(x)‖W ≥ C ‖x‖V . That is, ‖x‖V = 0 and so x = 0. Thus
kerA = {0} as desired.

To show that A has closed range, consider a sequence (yi)
∞
i=1 in Range(A) and suppose it converges to

y. Then (yi)
∞
i=1 is Cauchy. Since A is injective, ∃!xi ∈ V such that A(xi) = yi for all i ∈ N.

We claim that (xi)
∞
i=1 is Cauchy. Since A is bounded below by C, observe that

‖yn − ym‖W = ‖A(xn − xm)‖W ≥ C ‖xn − xm‖V .

Let ε > 0. Since (yi)
∞
i=1 is Cauchy, ∃N such that, for all n,m ≥ N , we have ‖yn − ym‖W < Cε. Thus, by

the above,

C ‖xn − xm‖V < Cε⇒ ‖xn − xm‖V < ε .

Thus (xi)
∞
i=1 is Cauchy. Since V is a Banach space, xi → x ∈ V . Since A is bounded, it is a continuous

map. Hence

y = lim
i→∞

yi = lim
i→∞

A(xi) = A
(

lim
i→∞

xi

)
= A(x).

Thus y ∈ Range(A) as desired.

Proof of (b). Let y ∈ Range(A). By part (a), A−1(y) is well-defined. Since A is bounded below,

‖y‖W ≥ C
∥∥A−1(y)

∥∥
V
.

Thus, since C > 0, we have
1

C
‖y‖W ≥

∥∥A−1(y)
∥∥
V

. That is, ‖A−1‖ ≤ 1
C

and so A−1 : Range(A) → V is

bounded.
Now further assume that A has dense range. By part (a), A has closed range. Thus Range(A) =

Range(A) = W . Hence A−1 ∈ L(W,V ) as desired.
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Analysis Exam

Fall 2013

Problem 5.4.1

Suppose f is entire and lim
z→∞

f(z) ∈ C exists. Show that f is constant.

Notes and Comments

Proof. Assume lim
z→∞

f(z) = z0 ∈ C. Then ∃R > 0 such that, for z with |z| > R, we have |f(z)− z0| < 42.

That is, outside of the disk of radius R about 0, f is bounded by 42 + |z0|. On the closed disk DR(0),
f obtains a maximum M . That is, f(z) ≤ maxM, 42 + |z0| for all z ∈ C. Hence f is a bounded entire
function. By Liouville’s Theorem, f is constant.

Problem 5.4.2

Let (V, (·, ·)) be an inner product space over the field F.

(a) If F = R, show that vectors x, y ∈ V are orthogonal if and only if

‖x+ y‖2 = ‖x‖2 + ‖y‖2 .

(b) Show that (a) is false for any complex (F = C) inner product space V , where x can be any
nonzero vector in V . (Hint: y should be more imaginary than x.)

Notes and Comments

Proof of (a). (⇒) Assume that x, y are orthogonal, so (x, y) = 0 (∗). Then

‖x+ y‖2 = (x+ y, x+ y)

= (x, x+ y) + (y, x+ y)

= (x, x) + (x, y) + (y, x) + (y, y)

= ‖x‖2 + (x, y) + (y, x) + ‖y‖2

(∗)
= ‖x‖2 + ‖y‖2 .

(⇐) Assume that ‖x+ y‖2 = ‖x‖2+‖y‖2. Then from the above computation, we have (x, y)+(y, x) = 0.

Since, by assumption, V is a real vector space, (x, y) = (y, x). Thus we have 2(x, y) = 0, i.e., (x, y) = 0 .

Hence x and y are orthogonal.

Proof of (b). Fix x 6= 0 and consider y = ix. Then by sesquilinearity,

(x, ix) + (ix, x) = −i(x, x) + i(x, x) = 0.

Thus ‖x+ ix‖2 = ‖x‖2 + ‖ix‖2. However, (x, ix) = i(x, x) = i ‖x‖2 6= 0 since x 6= 0. Thus x and ix are
not orthogonal. So (a) is false for any complex inner product space V .
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Problem 5.4.3

In each of the following, you are given a domain D and a function f : D → C. Determine whether
f has an anti-derivative on D.

(a) f(z) = e1/z Log(z) where D is the complex plane with the origin and negative real axis removed.

(b) f(z) =
1

z2 − 1
where D consists of all points in C except for ±1.

(c) f(z) = exp

(
1

z2

)
, where D = C \ {0}.

Notes and Comments

Proof of (a). True The domain D is a simply-connected subset of C \ {0}, so Log(z) is a branch of log
on D. That is, Log(z) is analytic on D. As e1/z is analytic on C \ {0} ⊃ D, f is analytic on D. By the
Global Cauchy Theorem, f has anti-derivative on D.

Proof of (b). False Consider a circular path around one of the poles (±1). By the Residue Theorem, the
integral depends on the index of the path. That is, reversing orientations will give opposite values. Hence
the path integrals of f are not path-independent and so f has no anti-derivative.

Proof of (c). False Same as part (b). The point 0 ∈ C is a pole of f and so f has no anti-derivative.

Problem 5.4.4

Consider C[0, 1] with the uniform norm ‖f‖∞ = supx∈[0,1] |f(x)|. Show that the linear map

V : C[0, 1]→ C[0, 1]

defined by the formula

V (f)(x) =

∫ x

0

f(t)dt

is a bounded linear operator with no eigenvalues.

Notes and Comments

Proof. To show that V is a bounded linear operator, we must find M > 0 such that ‖V (f)‖∞ ≤ M ‖f‖∞
for all f ∈ C[0, 1].

For any x ∈ [0, 1], we know that∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣ ≤ ∫ x

0

|f(t)| dt ≤
∫ x

0

‖f‖∞ dt = x ‖f‖∞ ≤ ‖f‖∞ = ‖f‖∞ .

Thus ‖V (f)‖∞ = sup
x∈[0,1]

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣ ≤ ‖f‖∞. That is ‖V ‖ ≤ 1 and so V is bounded.

Claim: V has no eigenvalues.
To the contrary, suppose λ is an eigenvalue of V . Then ∃f ∈ C[0, 1] with f 6= 0 such that V (f) = λf .

If λ = 0 then we have V (f) = 0. By the Fundamental Theorem of Calculus,

f(x) = V (f)′(x) = 0
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for all x ∈ [0, 1]. However, this means f = 0.	So we may assume λ 6= 0.

Observe that λf(0) = V (f)(0) =
∫ 0

0
f(t)dt = 0. Thus, as λ 6= 0, f(0) = 0 . By the Fundamental

Theorem of Calculus, f =
1

λ
V (f) is differentiable and we have

λf ′(x) = V (f)′(x) = f(x).

Thus f ′(x) =
1

λ
f(x). This ODE has unique solution f(x) = Ce

1
λ
x for some C 6= 0. However, for any

choice of C, f(0) = C 6= 0 . By the above, we have a problem.	Hence V has no eigenvalues.

Problem 5.4.5

Find the limit of each of the following sequences of integrals. Justify fully. (Here m denotes
Lebesgue measure on R.)

(a) lim
n→∞

∫
[0,∞)

fn dm where fn(x) =
sin(nx)

n(1 + x2)
,

(b) lim
n→∞

∫
[0,∞)

fn dm where fn(x) = e−
x
n

1

1 + x
.

Notes and Comments

Proof of (a). First notice that fn converges pointwise to f where f(x) = 0 and each fn is measurable
(since each one is a quotient of continuous functions). To use the Dominated Convergence Theorem, we
must provide an integrable function g such that |fn(x)| ≤ g(x) for all n ≥ 1 and all x ∈ [0,∞). We claim
that g(x) = 1

1+x2
will do.

Indeed, g is integrable and, for n ≥ 1, we have

|fn(x)| = | sin(nx)|
|n(1 + x)2|

≤ 1

n(1 + x)2
≤ 1

(1 + x)2
.

Invoking the Dominated Converge Theorem, we find

lim
n→∞

∫
[0,∞)

fn dm =

∫
[0,∞)

f dm =

∫
[0,∞)

0 dx = 0.

That is, lim
n→∞

∫
[0,∞)

fn dm = 0 .

Proof of (b). First notice that fn converges pointwise to f where f(x) =
1

1 + x
and each fn is measurable

(since each one is a quotient of continuous functions). To use the Dominated Convergence Theorem, we
must produce an integrable function g such that |fn(x)| ≤ g(x) for all n ≥ 1. We claim that g(x) = e−x

will do.
Indeed, g is integrable on this domain (

∫∞
0
e−xdx = 1) and, for n ≥ 1 and x ∈ [0,∞), we have

|fn(x)| =
∣∣∣∣e−xn 1

1 + x

∣∣∣∣ ≤ e−x
1

1 + x
≤ e−x.
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By the Dominated Convergence Theorem, the integral lim
n→∞

∫
[0,∞)

fn dm exists and we have

lim
n→∞

∫
[0,∞)

fn dm =

∫
[0,∞)

f(x) dx =

∫
[0,∞)

1

1 + x
dx.

Since this integral exists, we can use the methods of calculus to calculate the value of the integral. That
is, ∫

[0,∞)

1

1 + x
dx = lim

y→∞

∫
[0,y]

1

1 + x
dx = lim

y→∞

[
ln |1 + x|

∣∣∣∣y
0

= lim
y→∞

ln(1 + y).

Thus

∫
[0,∞)

1

1 + x
dx diverges to infinity. That is, lim

n→∞

∫
[0,∞)

fn dm→∞ .

Problem 5.4.6

Let f, g be 2π-periodic (Lebesgue) measurable functions on R. Let f ∗ g denote the (normalized)
convolution function

f ∗ g(x) =
1

2π

∫ π

−π
f(t)g(x− t)dt.

(a) Show that if (their restrictions) f, g ∈ L2[−π, π] then f ∗ g(x) exists and is bounded on [−π, π],
in fact,

||f ∗ g||∞ = sup
x∈[−π,π]

|f ∗ g(x)| ≤ 1

2π
||f ||2||g||2.

(b) Show that f̂ ∗ g(n) = f̂(n)ĝ(n) for all n ∈ Z, where

f̂(n) =
1

2π

∫ π

−π
f(x)e−inxdx

is the n-th Fourier coefficient of f for n ∈ Z.

Notes and Comments

Proof of (a). The fact that f ∗ g(x) exists and is bounded follows directly from the inequality. Indeed,
f ∗ g(x) is bounded if and only if sup

x∈[−π,π]

|f ∗ g(x)| is finite. and the inequality produces a finite upper

bound on this quantity. Moreover, f ∗ g(x) exists because the value of the integral is bounded on [−π, π].
Now we’ll show the inequality holds.5 Define the auxiliary function hx(t) = g(x − t) for any fixed

x ∈ [−π, π]. Then, using u-substitution (u(t) = x− t),

||hx||22 =

∫ π

−π
|hx(t)|2dt = −

∫ x−π

x+π

|g(t)|2dt =

∫ π

−π
|g(t)|2dt = ||g||22,

where the third inequality follows by flipping the bounds of integration and because the function g is
2π-periodic. Thus

sup
x∈[−π,π]

∣∣∣∣∫ π

−π
f(t)g(x− t)dt

∣∣∣∣ = sup
x∈[−π,π]

∣∣∣∣∫ π

−π
f(t)hx(t)dt

∣∣∣∣ (CS−≤)

≤ ||f ||2||hx||2.

5The equality is just the definition of the supremum norm.
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Putting this all together, we have

||f ∗ g||∞ =
1

2π
sup

x∈[−π,π]

∣∣∣∣∫ π

−π
f(t)g(x− t)dt

∣∣∣∣ ≤ 1

2π
||f ||2||hx||2 =

1

2π
||f ||2||g||2.

Thus the desired inequality holds and the result follows.

Proof of (b). We have

f̂ ∗ g(n) =
1

2π

∫ π

−π

(
1

2π

∫ π

−π
f(t)g(x− t)dt

)
e−inxdx.

We showed in part (a) that the interior integral is bounded, so we may apply Fubini’s Theorem to switch
order of integration. This gives

1

4π2

∫ π

−π

∫ π

−π
f(t)g(x− t)e−inxdxdt =

1

2π

∫ π

−π
f(t)e−int

(
1

2π

∫ π

−π
g(x− t)e−in(x−t)dx

)
dt.

To determine the value of the interior integral, we use u-substitution and the 2π-periodicity of g:

1

2π

∫ π

−π
g(x− t)e−in(x−t)dx =

1

2π

∫ π−t

−π−t
g(x)e−inxdx =

1

2π

∫ π

−π
g(x)e−inxdx = ĝ(n).

Putting the pieces together and collapsing the second integral, we now have

1

2π

∫ π

−π
f(t)e−int

(
1

2π

∫ π

−π
g(x− t)e−in(x−t)dx

)
dt = ĝ(n)

(
1

2π

∫ π

−π
f(t)e−intdt

)
= f̂(n)ĝ(n).

From the first line, we can bring this all together to obtain f̂ ∗ g(n) = f̂(n)ĝ(n) .
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Analysis Exam

Summer 2014

Problem 5.5.1

Let (X,M) be a measurable space.

(a) Let {fn} be a sequence of measurable functions with fn : X → [−∞,∞]. Show that the function
g : X → [−∞,∞] defined by

g(x) = sup{fn(x) : n ≥ 1}
is measurable.

(b) For {fn} as in part (a), show that the function h : X → [−∞,∞] defined by

h(x) = lim sup{fn(x) : n ≥ 1}
is measurable.

(c) Let f : X → R and g : X → R be measurable functions. Let

E = {x ∈ X : f(x) > g(x)}.
Starting with the definition of a measurable function, show that E ∈M.

Notes and Comments

Proof of (a). It suffices to show that g−1((a,∞]) is a measurable set for every a ∈ R. Observe that

g−1((a,∞])) = {x : g(x) > a} = {x : fn(x) > a for some n} =
⋃
n

f−1
n ((a,∞]),

which is a countable union of measurable sets and thus is a measurable set.

Proof of (b). Define hm : X → [−∞,∞] by

hm(x) = sup
n≥m
{fn(x)}.

By (a), each hm is measurable. For each x, {hm(x)} is a non-increasing sequence, so

h(x) = lim
m→∞

hm(x) = inf
m
{hm(x)},

which is measurable by the analog to part (a) (replacing “sup” with “inf”).

Proof of (c). By the definition of a measurable function, f−1((a,∞]) and g−1([∞, a)) are measurable sets
for every a ∈ R. Then f−1((a,∞]) ∩ g−1([∞, a)) is a measurable set, so the countable union

E ′ =
⋃
q∈Q

f−1((q,∞]) ∩ g−1([−∞, q))

is a measurable set. We claim that E = E ′.
Let x ∈ X. Then, by the density of Q in R,

x ∈ E ⇐⇒ f(x) > g(x)⇐⇒ ∃q ∈ Q, f(x) > q > g(x)

⇐⇒ ∃q ∈ Q, x ∈ f−1((q,∞]) and x ∈ g−1([−∞, a))

⇐⇒ x ∈ E ′.
Thus E = E ′ and so E ∈M.

106



The Written Qual Book Analysis: Summer 2014

Problem 5.5.2

Let (X,M, µ) be a measure space, let N be a σ-algebra on a set Y , and let f : X → Y be an
(M,N )-measurable function. Define ν : N → [0,∞] by

ν(A) = µ(f−1(A)).

(a) Show that ν is a measure on (Y,N ).

(b) For g ∈ L+(Y,N ) (i.e., g : Y → [0,∞] is a measurable function), show that∫
Y

g dν =

∫
X

g ◦ f dµ.

(Suggestion: First verify the statement when g is the characteristic function of a measurable
set.)

Notes and Comments

Proof of (a). Notice that, since µ is a measure, we have

• ν(∅) = µ(f−1(∅)) = µ(∅) = 0

• If {En} is a countable collection of pairwise disjoint sets in N , then

ν

(⋃
n

En

)
= µ

(
f−1

(⋃
n

En

))
= µ

(⋃
n

f−1(En)

)
(?)
=
∑
n

µ(f−1(En)) =
∑
n

ν(En).

where equality (?) holds because the sets {f−1(En)} are pairwise disjoint (as {En} are pairwise disjoint)
and f is (M,N )-measurable.

Proof of (b). Let E be a measurable set in Y . Then

χf−1(E)(x) =

{
1 if x ∈ f−1(E)

0 if x 6∈ f−1(E)
=

{
1 if f(x) ∈ E
0 if f(x) 6∈ E

= χE(f(x)),

so χf−1(E) = χE ◦ f . Then∫
Y

χE dν = ν(E) = µ(f−1(E)) =

∫
X

χf−1(E) dµ =

∫
X

(χE ◦ f) dµ.

Thus

∫
Y

χE dν =

∫
X

χE ◦ f dµ(?) for any measurable set E ∈ N .

Now let φ be a simple function, i.e., φ =
n∑
i=1

aiχEi where ai ∈ (0,∞] and Ei ∈ N . Then

∫
Y

φ dν =
n∑
i=1

ai

∫
Y

χi dν
(?)
=

n∑
i=1

ai

∫
X

(χi ◦ f) dµ =

∫
X

(
n∑
i=1

ai (χi ◦ f)

)
dµ =

∫
X

(φ ◦ f) dµ.
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Thus

∫
Y

φ dν =

∫
X

φ ◦ f dµ(??) for any simple function φ.

Finally let g : Y → [0,∞] be measurable. Then g is a pointwise limit of a sequence of simple functions
φ1 ≤ φ2 ≤ · · · . By the Monotone Convergence Theorem,∫

Y

g dν = lim
i→∞

∫
Y

φi dν
(??)
= lim

i→∞

∫
X

(φi ◦ f) dµ.

Now φi ≤ φi+1, so φi ◦ f ≤ φi+1 ◦ f . So we can apply the Monotone Convergence Theorem again to obtain

lim
i→∞

∫
X

(φi ◦ f) dµ =

∫
X

(
lim
i→∞

(φi ◦ f)
)
dµ =

∫
X

g ◦ f dµ.

Hence

∫
Y

g dν =

∫
X

g ◦ f dµ as desired.

Problem 5.5.3

Let f : C→ C be an entire function.

(a) Prove that if f is nonconstant, then the image of f is dense in C.

(b) Suppose lim
z→∞

f(z) =∞. Show that f is a polynomial.

Notes and Comments

Proof of (a). Let w ∈ C and suppose w is not already in the image of f . We will prove that the image of
f has points arbitrarily close to w and so f has dense image.

Let ε > 0. Since f(z) 6= w for all z ∈ C, the function 1
f(z)−w is defined on C, entire, and nonconstant.

By Liouville’s Theorem, 1
f(z)−w is unbounded and so there is z0 such that

∣∣∣ 1
f(z0)−w

∣∣∣ > 1
ε
. Thus |f(z0)−w| <

ε.

Proof of (b). Since f is entire, its Taylor series at 0 converges to f everywhere. That is f(z) =
∞∑
n=0

cnz
n.

Then

f(1/z) =
∞∑
n=0

cnz
−n (5.1)

for all z ∈ C \ {0}. As lim
z→0

f(1/z) = lim
z→∞

f(z) = ∞, we know f(1/z) has a pole at 0. Consequently the

Laurent series of f(1/z) at 0 has only finitely many terms of negative degree. From (5.1), we see that
the Laurent series of f(1/z) has no terms of positive degree. Hence, the Laurent series is a finite sum

f(1/z) =
d∑

n=0

cnz
−n for some d <∞. Thus f(z) =

d∑
n=0

cnz
n and so f is a polynomial.

108



The Written Qual Book Analysis: Summer 2014

Problem 5.5.4

Let (V, || · ||V ) and (W, || · ||W ) be normed vector spaces. Equip the vector space direct product V ×W
with the norm ||(x, y)||1 = ||x||V + ||y||W for x ∈ V and y ∈ W . Suppose that (V, ‖·‖V ) and (W, ‖·‖W )
are Banach spaces. Prove that (V×W, || · ||1) is also a Banach space.

Notes and Comments

Proof. Observe that (V ×W, || · ||1) is a normed vector space. Thus we need only show that (V ×W, || · ||1)
is complete. Let {(vi, wi)}∞i=1 be a Cauchy sequence in V × W . We first claim that the component
sequences are Cauchy. Let ε > 0 be arbitrary. Then there exists N ∈ Z such that, for all m,n ≥ N ,

||(vm, wm)− (vn, wn)||1 < ε . For m,n ≥ N , using the definition of the norm, we see that

||vm − vn||V ≤ ||vm − vn||V + ||wm − wn||W = ||(vm, wm)− (vn, wn)||1 < ε.

Thus {vi}∞i=1 is a Cauchy sequence in V . Since V is Banach, ∃v ∈ V such that {vi}∞i=1 converges to v.
Analogously, ∃w ∈ W such that {wi}∞i=1 converges to w. We claim that {(vi, yi)}∞i=1 converges to (v, w).

Let ε > 0 be arbitrary. Then there exists a Nv ∈ Z such that, for all m,n ≥ Nv, ||vm − vn||V <
ε

2
.

Similarly, there exists a Nw ∈ Z such that, for all m,n ≥ Nw, ||wm − wn||W <
ε

2
. Take N = max(Nv, Nw)

and compute

||(vm, wm)− (vn, wn)||1 = ||vm − vn||V + ||wm − wn||W <
ε

2
+
ε

2
< ε.

Hence the original sequence converges to (v, w). Thus V ×W is complete and hence Banach as desired.

Problem 5.5.5

Consider the real Hilbert space L2(0, 1) with respect to Lebesgue measure on the open unit interval
(0, 1). For each f ∈ L2(0, 1), define M(f) : (0, 1)→ R by

M(f)(x) = x f(x).

(a) Show that M is a well-defined bounded linear operator on L2(0, 1).

(b) Show that M is injective and M is self-adjoint, i.e., (M(f), g) = (f,M(g)) for all f, g ∈ L2(0, 1).

Notes and Comments

Proof of (a). To show M is well-defined, we need to show two things: (i) if f = g almost everywhere, then
M(f) = M(g) almost everywhere; and (ii) if f ∈ L2(0, 1), then M(f) ∈ L2(0, 1).

(i) Suppose f = g everywhere except a set N of measure zero. Then, for x ∈ (0, 1) \ N , we have
x f(x) = x g(x), so M(f) = M(g) everywhere except N .

(ii) Suppose f ∈ L2(0, 1), meaning that f is Lebesgue-measurable and

∫ 1

0

|f(x)|2 dx <∞. Products of

measurable functions are measurable, so M(f)(x) = x f(x) is Lebesgue-measurable. As |x| ≤ 1 on
(0, 1), we have |x f(x)| ≤ |f(x)| on (0, 1) and so∫ 1

0

|x f(x)|2 dx ≤
∫ 1

0

|f(x)|2 dx <∞. (5.2)

Therefore M(f) ∈ L2(0, 1)
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Therefore, M is well-defined.
Next, we show that M is a bounded linear map:

• Linearity: M(λf + µg) = x (λf + µg) = λxf + µxg = λM(f) + µM(g).

• Bounded: By (5.2), ‖M(f)‖2 ≤ ‖f‖2 for all f ∈ L2(0, 1), so ‖M‖ ≤ 1.

Proof of (b). If M(f) = 0, then x f(x) = 0 for almost all x ∈ (0, 1). Then f(x) = 0 for almost all x ∈ (0, 1),
meaning f = 0 in L2(0, 1). Therefore M is injective.

For f, g ∈ L2(0, 1), we have

(M(f), g) =

∫ 1

0

(x f(x)) g(x) dx =

∫ 1

0

(x f(x)) g(x) dx =

∫ 1

0

f(x) (x g(x)) dx = (f,M(g)).

Therefore M is self-adjoint.

Problem 5.5.6

Let (V, ‖ · ‖) be a normed vector space over a field F (either R or C). Let M ( V be a proper closed
subspace of V and let x ∈ V \M .

(a) Show that δ = inf {‖x− y‖ : y ∈M} > 0.

(b) Show that there exists a bounded linear functional f ∈ V ∗ such that ‖f‖ = 1 and f(x) = δ and
f |M = 0. (Hint: Work with M + Fx.)

Notes and Comments

Proof of (a). Suppose δ = 0. Then, for each n ∈ N, there is an element yn ∈M such that ‖x− yn‖ < 1/n.
Then lim

n→∞
‖x− yn‖ = 0, meaning that the sequence {yn} converges to x. But M is closed, so M contains

its limit points and thus x ∈M .	
Proof of (b). First define f : (M + Fx)→ F as follows: given y + λx ∈M + Fx, define

f(y + λx) = λδ.

This is well-defined because x 6∈M so M+Fx is a direct sum of vector spaces. Clearly f is linear, f(x) = δ,
and f |M = 0. Now we show that ‖f‖ = 1.

Let y + λx ∈ M + Fx. If λ = 0, then |f(y + λx)| = 0 ≤ ‖y + λx‖. If λ 6= 0, then −(1/λ)y ∈ M , so
‖x− (−1/λ)y‖ ≥ δ. By the definition of δ,

|f(y + λx)| = |δλ| = |λ| δ ≤ |λ| ‖x− (−1/λ)y‖ = ‖y + λx‖.

This shows that ‖f‖ ≤ 1 . In particular, f is a bounded linear operator.

Now let ε > 0. Then there is y ∈M such that ‖x− y‖ ≤ δ + ε. Then

‖f‖ ≥ |f(x− y)|
‖x− y‖

=
δ

‖x− y‖
≥ δ

δ + ε
.
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Therefore ‖f‖ ≥ δ
δ+ε

for all ε > 0. Now we let ε → 0 and, since δ > 0 by part (a), we conclude that

‖f‖ ≥ 1 . Therefore ‖f‖ = 1 as desired.

Finally, by the Hahn–Banach theorem, f can be extended to a bounded linear functional f̃ : V → F
with ‖f‖ = 1. Since f̃ is an extension of f , we still have f̃(x) = δ and f̃

∣∣∣
M

= 0.
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Analysis Exam

Fall 2014

Problem 5.6.1

Let (X,M, µ) be a measure space. Let {En}∞n=1 be a sequence on M such that E1 ⊂ E2 ⊂ E3 ⊂ . . .

and let E =
∞⋃
n=1

En. Also let {An}∞n=1 be a sequence on M such that A1 ⊃ A2 ⊃ A3 ⊃ . . . and let

A =
∞⋂
n=1

An.

(a) Suppose that f : X → R is integrable. Show that∫
E

f dµ = lim
n→∞

∫
En

f dµ (5.3)

and ∫
A

f dµ = lim
n→∞

∫
An

f dµ. (5.4)

(b) Suppose that f ∈ L+(X,M, µ), i.e., f is a non-negative measurable real-valued function but it
is not necessarily integrable. Show that Equation (5.3) is valid for f .

(c) Give an example of a measure space (X,M, µ) and a function f ∈ L+(X,M, µ) such that
Equation (5.4) fails to hold for f .

Notes and Comments

Proof of (a). Define fn = f · χEn . Then fn → f · χE and, since f is integrable,∫
X

|fn| dµ =

∫
En

|f | dµ ≤
∫
X

|f | dµ <∞.

So fn ∈ L1(X), i.e., fn is integrable. Also we have |fn| ≤ |f |. Since f is integrable, we know that |f | is a
positive integrable function. Thus, by the Dominated Convergence Theorem (∗),∫

E

f dµ =

∫
X

f · χE dµ
(∗)
= lim

n→∞

∫
X

f · χEn dµ = lim
n→∞

∫
En

f dµ.

Hence

∫
E

f dµ = lim
n→∞

∫
En

f dµ .

Similarly, define gn = f · χAn . Then gn → f · χA and, as above, gn ∈ L1(X) and |gn| ≤ |f |. By the
Dominated Convergence Theorem,∫

A

f dµ =

∫
X

f · χA dµ
(∗)
= lim

n→∞

∫
X

f · An dµ = lim
n→∞

∫
An

f dµ.

Hence

∫
A

f dµ = lim
n→∞

∫
An

f dµ .
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Proof of (b). Since f ∈ L+(X), we have fn = f · χEn ∈ L+(X). Since the En’s form a chain, fn ≤ fn+1.
By the Monotone Convergence Theorem (∗), lim

n→∞
fn = f · χE exists and, more importantly,∫

E

f dµ =

∫
X

f · χE dµ
(∗)
= lim

n→∞

∫
X

fn dµ = lim
n→∞

∫
En

f dµ.

That is,

∫
E

f dµ = lim
n→∞

∫
En

f dµ .

Proof of (c). Consider the measure space (R,L, µ) where µ is Lebesgue measure. Define f = χ(0,∞), the
characteristic function on (0,∞). Then f ∈ L+(R).

Choose An = [n,∞) for n ∈ N, a nested sequence of sets. Then A = ∅ and so∫
A

f dµ = 0.

However, ∫
An

f dµ =

∫ ∞
n

1 dµ =∞.

Thus

∫
A

f dµ = 0 6=∞ = lim
n→∞

∫
An

f dµ. .

Problem 5.6.2

Suppose that (X,M, µ) is a measure space satisfying µ(X) <∞. Show that
Lq(X,M, µ) ⊂ Lp(X,M, µ) whenever 0 < p < q. (Be sure to include the case that q =∞.)

Notes and Comments

Proof. First, we will do away with the case q = ∞.6 Assume f ∈ L∞(X). Then ∃M ≥ 1 so that
‖f‖∞ ≤M . That is, |f(x)| ≤M a.e. Then since M ≥ 1, we have Mp ≥ |f |p and so

‖f‖pp =

∫
X

|f |p dµ ≤
∫
X

Mp dµ = Mpµ(X) <∞.

Now assume q < ∞. Define S1 = {x ∈ X | |f(x)| ≥ 1} and S2 = {x ∈ X | |f(x)| < 1}. Then S1 and
S2 partition X into disjoint M-measurable sets7 and, since p < q,

‖f‖pp =

∫
X

|f |p dµ =

∫
S1

|f |p dµ+

∫
S2

|f |p dµ

≤
∫
S1

|f |q +

∫
S2

1 dµ ≤
∫
X

|f |q dµ+

∫
X

1 dµ = ‖f‖qq + µ(X) <∞.

That is, f ∈ Lp(X) in either case.

6As the largest “number,” it gets special treatment.
7We can rewrite S1 and S2 as the preimages of unions of intervals. Specifically, as one graduate student commented,

S2 = f−1((−1, 1)) and S1 is the preimage of “all the other crap.”

113



The Written Qual Book Analysis: Fall 2014

Problem 5.6.3

Let Γ+
R be the semicircle defined by |z| = R and Im(z) ≥ 0, and let Γ−R be the semicircle given by

|z| = R and Im(z) ≤ 0. Give both semicircles the counterclockwise orientation.

(a) Evaluate

lim
R→∞

∫
Γ+
R

eiz

z4
dz

(b) Evaluate

lim
R→∞

∫
Γ−R

eiz

z4
dz

Notes and Comments

Proof of (a). We claim that this limit of integrals is zero. Parametrize Γ+ as Reiθ for 0 ≤ θ ≤ π. This
allows us to rewrite the desired integral (for fixed R) as∫ π

0

eiR(cos θ+i sin θ)

(Reiθ)4
iReiθdθ.

Consider the absolute value of this integral:∣∣∣∣∫ π

0

eiR(cos θ+i sin θ)

(Reiθ)4
iReiθdθ

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣eiR(cos θ+i sin θ)

(Reiθ)4
iReiθ

∣∣∣∣ dθ
=

∫ π

0

e−R sin θ

R3
dθ.

Since 0 ≤ θ ≤ π, we have sin θ > 0 and so the numerator decays exponentially. Let fn(θ) =
e−n sin θ

n3

and g(θ) = 1 (which is integrable and dominates fn). Then fn → f pointwise where f(θ) = 0. By the
Dominated Convergence Theorem, we have

lim
R→∞

∫ π

0

e−R sin θ

R3
dθ = lim

n→∞

∫ π

0

fn(θ)dθ =

∫ π

0

0dθ = 0.

Thus the limit of the integrals is 0, as desired.

Proof of (b). We begin by noting that we can write down the Laurent series for f(z) =
eiz

z4
using the known

series for ez to obtain f(z) = 1
z4

+ i
z3
− 1

2z2
− i

6z
+ 1

24
+O(z). This allows us to determine that the residue

of f at 0 is −i
6

and hence the integral of f over the entire circle of radius R is 2πi · −i
6

= π
3
. Since we know

that the entire integral is the sum of the individual integrals over the two semicircles, and we know that
the upper integral is zero from part (a), the bottom semicircle must give the entire value of π

3
from the

Residue Theorem.

114



The Written Qual Book Analysis: Fall 2014

Problem 5.6.4

Let (V, ‖·‖V ) and (W, ‖·‖W ) be normed vector spaces. Give the Cartesian product

V ×W = {(x, y) | x ∈ V, y ∈ W}

the obvious coordinate-wise defined vector space structure and the norm

‖(x, y)‖V×W = ‖x‖V + ‖y‖W for x ∈ V, y ∈ W.

Prove that the graph G(T ) = {(x, T (x)) | x ∈ V } of a continuous linear mapping T : V → W is a
closed, linear subspace of (V ×W, ‖·‖V×W ).

Notes and Comments

Proof. First, we deal with the linear subspace issue. By the linearity of T ,

α(x, T (x)) + β(y, T (y)) = (αx+ βy, αT (x) + βT (y)) = (αx+ βy, T (αx+ βy)).

Thus G(T ) is a subspace .

Now suppose that lim
n→∞

(xn, T (xn)) = (x, y). Then

‖xn − x‖V + ‖T (xn)− y‖W = ‖(xn, T (xn))− (x, y)‖V×W → 0.

That is, ‖xn − x‖V → 0 and ‖T (xn)− y‖W → 0. Thus xn → x. By the continuity of T , we have

y = lim
n→∞

T (xn) = T
(

lim
n→∞

xn

)
= T (x).

Thus (x, y) = (x, T (x)) ∈ G(T ). So G(T ) is closed .

Problem 5.6.5

Let c denote the C-vector space of all convergent complex sequences. Show that c is a Banach
space when equipped with the supremum norm from `∞:

‖(xn)‖∞ = sup
n∈N
|xn| .

Notes and Comments

Proof. Let (an)∞n=1 be a Cauchy sequence in c. Then (an,i)
∞
n=1 is Cauchy in C. By the completeness of C,

we know that an,i → xi for some xi ∈ C. Define x = (x1, x2, . . . ) .

Let ε > 0. Since (an) is Cauchy, ∃N such that for all n,m ≥ N , we know ‖an − am‖∞ < ε. So for
n ≥ N , we have

‖an − x‖∞ = sup
i∈N
|an,i − xi|

= sup
i∈N

∣∣∣an,i − lim
m→∞

am,i

∣∣∣
= sup

i∈N
lim
m→∞

|an,i − am,i| .

For m ≥ N , we know |an,i − am,i| ≤ ‖an − am‖∞ < ε by definition of the supremum norm and N . Thus
we have ‖an − x‖∞ < ε. Hence an → x, i.e., c is complete. As c is a complete vector subspace of `∞, c is
a Banach space.
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Problem 5.6.6

Let H be a separable infinite-dimensional Hilbert space. Consider the set

F (H) = {T ∈ B(H) : dim(range(T )) <∞}

of bounded finite rank operators. It is easy to see that F (H) is a subalgebra of the algebra B(H),
but it has further structure.

(a) Show that if T ∈ F (H) then T ∗ ∈ F (H) and dim(range(T ∗)) = dim(range(T )).

(b) Show that if T ∈ F (H) then ST, TS ∈ F (H) for all S ∈ B(H).

Notes and Comments

Proof of (a). Assume T is of finite rank. Then T |(kerT )⊥ : (kerT )⊥ → range(T ) is an injective map into a
finite-dimensional vector space. That is, T |(kerT )⊥ is an isomorphism.

As range(T ∗) = ker(T )⊥ ∼= range(T ), we immediately obtain both conclusions. More explicitly, T ∗ ∈
F (H) and its range has the same dimension.

Proof of (b). Let {T (v1), . . . , T (vk)} be a basis for the range of T . Then range(TS) ⊆ range(T ) and so

TS ∈ F (H) .

We also have {S(T (vi))} spanning range(ST ) and so ST ∈ F (H) .
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Analysis Exam

Summer 2015

Problem 5.7.1

Suppose that {fn} is a sequence of analytic functions converging uniformly on compact sets of a
domain D to a function f . Prove that f is analytic on D.

Notes and Comments

Proof. See the solution to problem 2(a) from Summer 2012 (5.1.2).

Problem 5.7.2

Let f be an entire function such that

lim
z→∞

∣∣∣∣f(z)

z2

∣∣∣∣ = L <∞

exists. Prove that there are complex constants a, b and c such that f(z) = az2 + bz + c.

Notes and Comments

Proof. Since f is entire, f(z) =
∞∑
n=0

cnz
n for all z ∈ C. Thus

g(z) =
f(z)

z2
= c0z

−2 + c1z
−1 + h(z)

where h(z) is entire. Since
lim
z→∞
|g(z)| = L,

h(z) must be bounded near ∞. That is, h is bounded on some disk {z ∈ C | |z| ≥ R} for some R > 0. As
h(z) is entire, it is also bounded on {z ∈ C | |z| ≤ R}. Hence h is bounded.

Thus, as h is a bounded entire function, it must be constant by Liouville’s Theorem. Hence

g(z) = c0z
−2 + c1z

−1 + c2.

That is, f(z) = c0 + c1z + c2z
2 .

Problem 5.7.3

Recall that Lebesgue measure m on R has the property that for every measurable set E, we have

m(E) = inf {m(V ) : E ⊂ V and V is open in R} . (5.5)

Given a measurable set E and ε > 0, show that there is a closed set F and an open set V such that
F ⊂ E ⊂ V and m(V \ F ) < ε. Be careful: it is not immediate from (5.5) that there is an open set
V such that m(V \ E) < ε unless m(E) <∞.

Notes and Comments

Proof. See the solution to problem 5 from Fall 2012 (5.2.5).
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Problem 5.7.4

Let E and F be normed linear spaces over C.

(a) State the definitions of a bounded linear map between E and F and of the dual space E∗.

(b) Give an example of a linear map defined everywhere on a normed linear space but that is not
bounded.

(c) Let T : E → F be a linear map such that for all ϕ ∈ F ∗, we have ϕ ◦ T ∈ E∗. Prove that T is
bounded.

Notes and Comments

Proof of (a). A linear map T : E → F is bounded if ∃M ≥ 0 such that ‖T (x)‖F ≤M ‖x‖E for all x ∈ E.
The dual space E∗ = {ϕ : E → C | ϕ is a bounded linear functional}.

Proof of (b). Let E = C1[0, 1] and F = C[0, 1], each equipped with ‖·‖∞.8 Define T : E → F by

T (f) =
df

dx
.

Since the derivative operator is a linear map, it suffices to show that T is not bounded. Indeed, consider
fn(x) = einx ∈ C1[0, 1] for n ∈ Z+. Then ‖fn‖∞ = 1. However, T (fn)(x) = ineinx has norm ‖T (fn)‖∞ = n
for each n. Hence T is not bounded.

Proof of (c). Consider the map S : F ∗ → E∗ given by S(ϕ) = ϕ ◦T .9 We claim that S is a bounded linear
map. Linearity is immediate. For boundedness, first notice that E∗ and F ∗ are both Banach spaces.10

For x ∈ E and ϕ ∈ F ∗ with ‖ϕ‖ = 1, we have

|S(ϕ)(x)| = |ϕ(T (x))| ≤ ‖ϕ‖ ‖T (x)‖F = ‖T (x)‖F <∞.

Thus sup
S(ϕ)

|S(ϕ)(x)| ≤ ‖T (x)‖F <∞. By the Uniform Boundedness Principle (Banach–Steinhaus Theo-

rem), we have
‖S‖ = sup {‖S(ϕ)‖ | ‖ϕ‖ = 1} <∞.

Thus S is bounded as desired.
Finally, we show that ‖S‖ ≥ ‖T‖.11

Let m be any number less than ‖T‖. Then ∃x ∈ E such that ‖T (x)‖F ≥ m ‖x‖E. By the Hahn–Banach
Theorem, ∃ψ ∈ F ∗ such that ‖ψ‖ = 1 and |ψ(T (x))| = ‖T (x)‖F . That is,

|S(ψ)(x)| = |ψ(T (x))| = ‖T (x)‖F ≥ m ‖x‖E .

Thus ‖S(ψ)‖ ≥ m. As ψ is a unit (dual) vector, ‖S‖ ≥ m. Hence the results follows by taking the
supremum over m < ‖T‖.

8That is, E consists of functions f : [0, 1] → C with continuous first derivative and F consists of continuous functions
f : [0, 1]→ C.

9It’s very tempting to write T ∗ to denote a pullback map, but since we’re in functional analysis, that would be horribly
misinterpreted as the adjoint. Also, for point of reference, the map S is called the transpose of T .

10It is a general fact that V ∗ is a Banach space as, by definition, is the bounded linear maps B(V,F).
11Since S is bounded, this implies that T must be as well.
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Problem 5.7.5

Let A be a unital Banach algebra.

(a) Consider a ∈ A with ‖a‖ < 1. Show that 1A − a is invertible. Does the converse hold?

(b) Prove that the set of invertible elements in A is open.

(c) Let a ∈ A and assume that its spectrum SpA(a) is not empty. Prove that SpA(a) is compact.

Notes and Comments

Proof of (a). Since ‖a‖ < 1, we know that ‖an‖ ≤ ‖a‖n < 1 since A is a Banach algebra. Thus

∞∑
n=0

‖an‖ ≤
∞∑
n=0

‖a‖n =
1

1− ‖a‖
<∞.

Since A is complete, this means that b :=
∞∑
n=0

an ∈ A. Now we note that (1A − a)b = 1A since

(1A − a)b =
∞∑
n=0

(an − an+1) = 1A.

Thus 1A − a is invertible as desired.
The converse, however, is decidedly false. Consider A = C with the usual norm. Consider a = 1 + i.

Then 1− a = −i is invertible (a−1 = i). However, ‖a‖ =
√

2 > 1.

Proof of (b). Let GL(A) denote the invertible elements of A and pick a ∈ GL(A). Then a−1 ∈ A and

‖a−1‖ > 0. Define ε :=
1

‖a−1‖
and consider the ball Bε(a).

We will show that Bε(a) ⊂ GL(A). Indeed, let b ∈ Bε(a). Then, by definition, ‖b− a‖ < ε. Since A is
a Banach algebra, we have∥∥1A − a−1b

∥∥ =
∥∥a−1(a− b)

∥∥ ≤ ∥∥a−1
∥∥ ‖a− b‖ < ∥∥a−1

∥∥ ε = 1.

That is, by part (a), a−1b = 1A − (1A − a−1b) ∈ GL(A). Since GL(A) is a group, b ∈ GL(A) as desired.
Hence GL(A) is open.

Proof of (c). Let a ∈ A such that SpA(a) 6= ∅.
For λ ∈ SpA(a), we have |λ| ≤ ‖a‖ and so SpA(a) ⊆ B‖a‖(0). This follows from part (a). Indeed, if

‖a‖ / |λ| < 1 then 1A − a
λ
∈ GL(A). Hence a− λ1A ∈ GL(A).

Moreover, SpA(a) is closed in C.12 Thus SpA(a) is a closed subset of a compact set; hence compact.

12It’s the complement of the resolvent, an open subset of C.
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Problem 5.7.6

Let H be a Hilbert space, T in B(H) and T ∗ its adjoint.

(a) Prove that kerT = (ranT ∗)⊥.

(b) Let A be a subset of H. Prove that A⊥ = span(A)
⊥

.

(c) Show that T is injective if and only if T ∗ has dense range.

Notes and Comments

Proof of (a). Notice that

x ∈ kerT ⇔ 0 = 〈T (x), y〉 = 〈x, T ∗(y)〉 ∀y ∈ H ⇔ x ∈ (ranT ∗)⊥.

Thus kerT = (ranT ∗)⊥.

Proof of (b). (⊆): Let x ∈ A⊥. Then 〈x, a〉 = 0 (∗) for all a ∈ A. Pick y ∈ span(A). Then ∃(yn)∞n=1 ⊂
span(A) such that yn → y. By conjugate linearity in the second component and (∗), 〈x, yn〉 = 0 . Hence,

by continuity of the inner product,

〈x, y〉 = lim
n→∞
〈x, yn〉 = lim

n→∞
0 = 0.

Thus x ∈ span(A)
⊥

as desired.

(⊇): Let x ∈ span(A)
⊥

. Note that A ⊂ span(A) ⊂ span(A). Thus x ∈ A⊥.13

Thus A⊥ = span(A)
⊥

as desired.

Proof of (c). By part (a) and (b), we have

kerT
(a)
= (ranT ∗)⊥

(b)
= span(ranT ∗)

⊥
= ranT ∗

⊥
.

Thus kerT = ranT ∗
⊥

.

If kerT = {0} then ranT ∗
⊥

= {0}. Thus ranT ∗ = H as H is a Hilbert space.

Conversely, if ranT ∗ = H then kerT = H⊥ = {0}. Thus kerT = {0} .

13If a vector is orthogonal to a larger set, it will still be orthogonal to a smaller one.
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Analysis Exam

Fall 2015

Problem 5.8.1

Let {fn} be a sequence of analytic functions converging pointwise to a continuous function f on a
domain D. Show that f is analytic provided each point z ∈ D has a neighborhood V such that there
is a constant MV such that |fn(w)| ≤MV for all n and w ∈ V .

Notes and Comments

Proof. We will prove that the Arzelà–Ascoli Theorem applies to {fn}. The given condition on {fn}
can be restated as: for each z ∈ D, {fn} is bounded by MV on a neighborhood V of z. That is,

{fn} is locally bounded . So it suffices to show that {fn} is locally equicontinuous.

Let z0 ∈ D and ε > 0. By local boundedness, there is a neighborhood V of z0 and an associated MV .
Let r > 0 be such that B2r(z0) ⊂ V ⊂ D. By the Cauchy Integral Formula, we have

fn(z)− fn(w) =
1

2πi

∫
∂B2r(z0)

(
fn(ω)

ω − z
− fn(ω)

ω − w

)
dω =

z − w
2πi

∫
∂B2r(z0)

fn(ω)

(ω − z)(ω − w)
dω

for z, w ∈ B2r(z0). Further considering z, w ∈ Br(z0), we know |(ω − z)(ω − w)| > r2 and so, by the
ML-inequality,

|fn(z)− fn(w)| ≤ |z − w|
2π

· MV

r2
(2πr) = |z − w|MV

r
.

Let δ = min

{
r,
rε

MV

}
. Then, by the above estimate, we have

fn(z)− fn(w) < ε

for all z, w ∈ Bδ(z0). Thus fn is locally equicontinuous for all n.

By Arzelà–Ascoli, {fn} converges uniformly on compact sets. More precisely, Arzelà–Ascoli guarantees
a uniformly convergent subsequence on each compact set (as they are covered by a finite collection of
neighborhoods V and so we get a bound by taking the maximum of each given bound). Then, since
fn → f pointwise, it must be that fn → f uniformly on compact sets.14 Finally, as fn → f uniformly on
compact sets, f is analytic.

Problem 5.8.2

Suppose f has an isolated singularity at z0.

(a) Describe the behavior of |f(z)| near z0 if z0 is removable or a pole.

(b) Use the criteria from part (a) to show that if z0 is an essential singularity for f , then f(B′r(z0))
is dense in C for all r > 0. Here B′r(z0) is the deleted neighborhood {z ∈ C : 0 < |z − z0| < ε}.
(Hint: suppose to the contrary that there is a ω ∈ C and r, ε > 0 such that |f(z) − ω| ≥ ε for
all z ∈ B′r(z0). I hope it is clear that you can’t evoke the Picard Theorem here.)

14Thus we do not need to take subsequences at all.
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Notes and Comments

Proof of (a). If z0 is a removable singularity, then lim
z→z0
|f(z)| = L for some L ∈ R.

If z0 is a pole, then lim
z→∞
|f(z)| =∞.

Proof of (b). Following the hint, suppose that f(B′r(z0)) is not dense in C. Then ∃ω ∈ C and r, ε > 0 such

that |f(z)− ω| ≥ ε (∗) for all z ∈ B′r(z0).

Define g(z) := 1
f(z)−ω . Then g is holomorphic on B′r(z0) and, by (∗), |g(z)| ≤ 1

ε
in this region. Thus g

can be extended holomorphically to a function g which is holomorphic on Br(z0). We consider two cases:

• Suppose that g(z0) 6= 0. Then

lim
z→z0

f(z) = lim
z→z0

1

g(z)
+ ω <∞

and so f has a removable singularity at z0.

• Suppose that g(z0) = 0. Then

lim
z→z0

f(z) = lim
z→z0

1

g(z)
+ ω =∞

and so f has a pole at z0.

In either case, the singularity of at z0 cannot be essential.	Thus the image of f on B′r(z0) is dense.

Problem 5.8.3

If X is a topological space, then B(X) is the σ-algebra generated by the open sets in X – that is,
the Borel sets. If M and N are sigma-algebras in X, then M ⊗N is the σ-algebra generated by
the measurable rectangles A×B with A ∈M and B ∈ N . Show that

B(R× R) = B(R)⊗ B(R)

where R is the real line with its usual topology. (Hint: Consider N = {A : R× A ∈ B(R× R)}.)

Notes and Comments

Proof. Let A×B ⊆ R2 be an open rectangle. Then A,B ∈ B(R) and so A×B is a measurable rectangle,
i.e., A × B ∈ B(R) × B(R). Since {A×B | A,B ∈ TR} (where TR denotes the topology on R) generate

the usual topology on R2 (and thus B(R2)), we have B(R2) ⊆ B(R)⊗ B(R) .

For the reverse inequality, let N = {B | R×B ∈ B(R2)}. We claim that N is a σ-algebra.

Proof. (1) Note that R ∈ N since R× R ∈ B(R2). Thus N 6= ∅ .

(2) Let B ∈ N . We show that Bc ∈ N . Indeed,

R×Bc = (R×B)c ∈ B(R2)

since B(R2) is a σ-algebra. Hence Bc ∈ N .
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(3) Let Bi ∈ N for i ∈ N. Then

R×

(⋃
i∈N

Bi

)
=
⋃
i∈N

(R×Bi) ∈ B(R2)

and so
⋃
i∈N

Bi ∈ N .

Thus N is a σ-algebra.

Now, certainly we have TR ⊂ N and so N ⊃ B(R). Hence, for every B ∈ B(R) ⊂ N , we have
R×B ∈ B(R2). That is

N ′ = {R×B | B ∈ B(R)} ⊂ B(R2) .

Similarly, we have

M ′ = {A× R | A ∈ B(R)} ⊂ B(R2) .

Since B(R2) is closed under intersections,

B(R2) ⊃M ′ ∩N ′ = {A×B | A,B ∈ B(R)} ,

the generating set for B(R)⊗ B(R). Hence B(R2) ⊇ B(R)⊗ B(R) .

Thus we have B(R2) = B(R)⊗ B(R) as desired.

Problem 5.8.4

Let X be a set. Prove the vector space B(X,C) of bounded complex–valued maps on X is a Banach
space for a norm to be specified.

Notes and Comments

Proof. To show that B(X,C) is a Banach space, we must select a norm and show that it is complete
with respect to this norm. Choose the supremum norm, ‖f‖ = sup {|f(x)| : x ∈ X}. Since f is bounded,
‖f‖ <∞ and so ‖·‖ is actually a norm.

Let {fn} ⊂ B(X,C) be a Cauchy sequence. For each x ∈ X, we know that {fn(x)} ⊂ C is a
Cauchy sequence and so, by the completeness of C, it must converge. Thus we can define f : X → C by

f(x) = lim
n→∞

fn(x) .

We claim that {fn} converges to f .15 Note that this is certainly true pointwise by the definition of f .
So let ε > 0. Since {fn} is Cauchy, ∃N ∈ N such that, for all m,n ≥ N , we have ‖fn − fm‖ < ε. Hence,
by the continuity of norms,

‖f − fm‖ =
∥∥∥ lim
n→∞

fn − fm
∥∥∥ = lim

n→∞
‖fn − fm‖ < ε

for m ≥ N . Thus fn converges to f in norm as well. Hence the sequence converges and B(X,C) is a
Banach space as desired.

15If there is any justice in the universe.
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Problem 5.8.5

Let E be a separable Banach space.

(a) Recall the definition of the weak topology on E.

(b) Prove that a norm-convergent sequence is weakly convergent. Does the converse hold?

(c) Recall the definition of the weak-∗ topology on E∗ and show that a weakly convergent sequence
in E∗ is also weak-∗ convergent.

(d) Prove that a bounded sequence in E∗ has a weak-∗ convergent subsequence.

Notes and Comments

Proof of (a). Let E∗ be the topological dual space of E, i.e., the collection of linear functionals ϕ : E → F
which are continuous with respect to the topology on E induced by the norm. The weak topology on E is
the coarsest topology such that each functional ϕ ∈ E∗ is still continuous.

Proof of (b). Let {xn} → x be norm-convergent. We show that {ϕ(xn)} → ϕ(x) for all ϕ ∈ E∗, i.e., that
{xn} weakly converges to x. Indeed, since ϕ is continuous with respect to the norm topology on E, this is
immediate.

We claim that the converse does not hold. Consider E = c0(F), the sequences in F whose limits are 0.
We know that E is a Banach space because it is a closed subset of (`∞(F), ‖·‖∞). For the standard basis
{en}, we have

‖en‖∞ = 1

and thus {en} does not converge to 0 in norm . However, for any ϕ ∈ E∗, we have

lim
n→∞

ϕ(en) = ϕ
(

lim
n→∞

en

)
= ϕ(0) = 0.

Thus {en} weakly converges to 0 .

Proof of (c). Consider the embedding of E into its double dual E∗∗ given by x 7→ Tx where Tx(ϕ) = ϕ(x).
The weak-∗ topology on E∗ is the coarsest topology on E∗ such that {Tx | x ∈ E} is a continuous family
of maps.

Assume {ϕn} is weakly convergent to ϕ ∈ E∗. Then, by definition, for all Tx ∈ E∗∗, we have Tx(ϕn)→
Tx(ϕ). That is, ϕn(x)→ ϕ(x) in F. As x was arbitrary, we have ϕn(x)→ ϕ(x) for all x ∈ E. This is the
definition of weak-∗ convergence, i.e., {ϕn} is weak-∗ convergent to ϕ as desired.

Proof of (d). Assume {ϕn} is a bounded sequence in E∗. Let Q = {q1, q2, . . . } be a countable dense
subset of E.16 By boundedness of the ϕn’s, the collection {ϕn(q)} ⊂ F is a bounded set of elements
of F for each q ∈ Q. By Bolzano–Weierstrass, there is a convergent subsequence {ϕn(q)}n∈Nq such that

lim
n→∞

ϕni(q) = ϕ(q).

Now we consider Nqi . By an inductive construction, we may assume that Nq1 ⊃ Nq2 ⊃ . . . (†). Indeed,

start with Nqi and build Nqi+1
by applying Bolzano-Weierstrass to construct the convergent subsequence.

16Remember, E is separable. That assumption had to come into play eventually.
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Define a subsequence of {ϕn} by taking ϕnj where nj is the jth element of Nqj . Then, by the nested
property (†), we have

lim
j→∞

ϕnj(q) = ϕ(q)

for all q ∈ Q. Thus we have defined a map ϕ : Q → F. Since Q is dense in E, ϕ extends to a bounded
linear functional E → F such that ϕn(x)→ ϕ(x) for all x ∈ E. Thus ϕnj is weak-∗ convergent to ϕ.

Problem 5.8.6

Let S be the map defined on `2(N) by S(u0, u1, . . . ) = (0, u0, u1, . . . ).

(a) Prove that S is a bounded linear map between `2(N) and itself and compute ‖S‖.

(b) Compute the adjoint S∗ of S.

(c) Is S a normal operator? Is S an isometry?

Notes and Comments

Proof of (a). It’s clear that S is a linear map, so it suffices to prove that ‖S‖ <∞. For u = (u0, u1, . . . ),
note that

‖S(u)‖2
2 =

∑
n≥0

(S(u))2
n = 0 +

∑
n≥0

u2
n = ‖u‖2

2 .

Hence ‖S‖ = 1 and S is bounded as desired.

Proof of (b). The adjoint of S is defined by the equation

〈x, S∗(y)〉 = 〈S(x), y〉 = 0 · y0 + x0y1 + x1y2 + . . . .

Define S∗(u0, u1, . . . ) = (u1, u2, . . . ). Then S∗ is linear and satisfies the above equation. Hence, by
uniqueness, S∗ actually is the adjoint of S.

Proof of (c). In part (a), we proved ‖S(u)‖2 = ‖u‖2. Hence S is an isometry. However, S is not normal
because

SS∗(u0, u1, . . . ) = (0, u1, . . . ) 6= (u0, u1, . . . ) = S∗S(u0, u1, . . . ).

That is, SS∗ 6= S∗S.
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Analysis Exam

Summer 2016

Problem 5.9.1

Let (X,M, µ) be a measure space, and suppose that fn : X → R is a measurable function for each
n ≥ 1. Further, suppose that

sup
n≥1
{fn} ∈ L1(X,M, µ).

Show that ∫
X

lim sup fndµ ≥ lim sup

∫
X

fndµ.

Notes and Comments

Proof. Let g = supn≥1{fn}. Certainly fn ≤ g for all n. Thus g−fn is a non-negative sequence of measurable
functions. Using the fact that lim inf(−hn) = − lim sup(hn)(∗) and Fatou’s Lemma (†), we have

∫
X

g dµ−
∫
X

lim sup fn dµ =

∫
X

(g − lim sup fn) dµ

(∗)
=

∫
X

lim inf(g − fn) µ

(†)
≤ lim inf

∫
X

(g − fn) dµ

=

∫
X

g dµ+ lim inf

∫
X

−fn dµ
(∗)
=

∫
X

g dµ− lim sup

∫
X

fn dµ

As g ∈ L1(X,M, µ), we know that
∫
X
g dµ is finite. Subtracting

∫
X
dµ from both sides and flipping the

inequality, we obtain

∫
X

lim sup fn dµ ≥ lim sup

∫
X

fn dµ as desired.

Problem 5.9.2

Let (X,M, µ) be a σ-finite measure space. Let N be the set of natural numbers, let P(N) be
the power set of N, and let ν be the counting measure. Consider the product measure space
(N×X,P(N)⊗M, ν × µ). (Here P(N)⊗M is the product σ-algebra.)

(a) Let E ⊂ N×X and, for n ∈ N, let En = {x ∈ X : (n, x) ∈ E}. Show that E ∈ P(N)⊗M if and
only if En ∈M for every n ∈ N.

(b) Given a function F : N×X → R and n ∈ N, define Fn : X → R by Fn(x) := F (n, x). Show that
F is (P(N)⊗M)-measurable if and only if each function Fn, n ∈ N, is M-measurable.

(c) Interpret Tonelli’s Theorem in this setting. (Recall that Tonelli’s Theorem is the part of
the Fubini–Tonelli Theorem concerning nonnegative functions.) More precisely, indicate what
familiar result is equivalent to the equality of the iterated integrals.
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Notes and Comments

Proof of (a). (⇐): Recall that the product σ-algebra is generated by measurable rectangles. So, if each
En ∈M then

E =
⋃
n∈N

{n} × En

is a countable union of measurable sets. Thus E ∈ P(N)⊗M.
(⇒): Assume E ∈ P(N)⊗M. Then E is the union of measurable rectangles. Since ν is the counting

measure and N is countable, we may assume that each measurable rectangle consists of the n-slice {n} ×
En.17 That is En must be M-measurable for all n.

Proof of (b). Note that, for any measurable U ⊂ R, we have

F−1(U) =
∞⋃
n=1

{n} × F−1
n (U).

(⇐): Assume that Fn isM-measurable for all n. Then F−1
n (U) isM-measurable. So F−1(U) is union

of measurable rectangles and hence (P(N)⊗M)-measurable. Thus F is measurable as desired.
(⇒): Assume F is (P(N) ⊗M)-measurable. Then F−1(U) is (P(N) ⊗M)-measurable. By part (a),

F−1
n (U) is M-measurable. That is, each Fn is M-measurable.

Proof of (c). Let f ∈ L+(N×X). Then Tonelli’s Theorem lets us conclude that∫
N

∫
X

f(n, x) dµ(x)dν(n) =

∫
X

∫
N
f(n, x) dν(n)dµ(x).

That is,
∞∑
n=1

∫
X

f(n, x) dµ(x) =

∫
X

∞∑
n=1

f(n, x) dµ(x).

That is, for absolutely convergent series of integrals, we can interchange the integral and the sum.

Problem 5.9.3

For each of the following, explain why there cannot be a function f : C → C with the stated
properties.

(a) f is an entire function and
∫
C
f(z)dz = 5, where C is the positively oriented circle |z| = 1.

(b) f is entire, f(yi) = yi for 0 ≤ y ≤ 1 and f(7 + 2i) = 2i.

(c) f is entire and |f(x+ yi)| = e−(x4+y4) for all x+ yi ∈ C.

(d) f is entire, f has a zero of order 5 at the origin and
∫
C
f(1

z
)dz = 2πi, where C is the positively-

oriented circle |z| = 1.

Notes and Comments

17Each rectangle Ri splits into a union of {n} ×Ri,n. Then En is the union of Ri,n for i ∈ N. Since M is a σ-algebra, En

is measurable.
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Proof of (a). Since f is entire, we have f ∈ H(C) by definition. As C is a closed curve and C is simply-
connected, we have

∫
C
f(z)dz = 0 by Cauchy’s Theorem.	

Proof of (b). Consider the identity map Id. Then f(z) = Id(z) on S = {yi | 0 ≤ y ≤ 1}. As i, 0 are
accumulation points of S in C, we have f = Id by the Identity Theorem18. Thus f(7+2i) = 7+2i 6= 2i.	
Proof of (c). If |f(x + yi)| = e−(x4+y4), then, since x4 + y4 is non-negative, we have |f(z)| ∈ (0, 1] for all
z ∈ C. By Liouville’s Theorem, all bounded entire functions are constant. However, f is not constant.	

Proof of (d). Since f is entire, it has a power series expansion
∞∑
n=0

anz
n about the origin. Moreover, as f

has a zero of order 5 at the origin, we know a0 = a1 = · · · = a4 = 0. Thus f(1
z
) =

∞∑
n=5

anz
−n is a valid

Laurent expansion on C \ {0}.
Finally, the hypothesis that

∫
C
f(1

z
) dz = 2πi says exactly that the residue about its singularity at zero

of f(1
z
) is 1. That is, f(1

z
) only has a singularity at z = 0 (since f is entire) and C is a closed curve around

0 with winding number 1, so the equality holds by the Residue Theorem.
Since the residue, by definition, is the coefficient of z−1 in the Laurent expansion about 0, we have

1 = Res(f(1
z
); 0) = a1 = 0.	

Problem 5.9.4

Let X and Y be Banach spaces. Suppose that T : X → Y is a linear map such that if (xn) is a
sequence converging weakly to 0 in X, then (T (xn)) converges weakly to zero in Y . Show that T is
bounded.

Notes and Comments

Proof. We use the Closed Graph Theorem. Assume that (sn) → s and (T (sn)) → y in norm. We show
that T (s) = y.

Since (sn)→ s in norm, we have (sn − s)→ 0 in norm. Thus (sn − s)→ 0 weakly. By the hypothesis

on T , we have (T (sn)− s)→ 0 weakly. By linearity of T , we thus have (T (sn))→ T (s) weakly .

On the other hand, since (T (sn)) → y in norm, it must be that (T (sn))→ y weakly . As the weak

topology is Hausdorff, weak limits are unique. Thus T (s) = y . By the Closed Graph Theorem, T is

bounded.

Problem 5.9.5

Let A = C([0, 1]) with the uniform norm. Let K ∈ C([0, 1] × [0, 1]). For each f ∈ A and x ∈ [0, 1],
define

T (f)(x) =

∫ 1

0

K(x, y)f(y) dy.

(a) Show that T (f) ∈ A.

(b) Show that T ∈ L(A).

18If the agreement set of two holomorphic functions D → C has an accumulation point in the domain D, then the two
functions are identical.
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(c) Let B = {f ∈ A : ‖f‖∞ ≤ 1}. Show that T (B) is compact in A.

Notes and Comments

Proof of (a). As K, f are continuous maps defined on compact sets, they obtain maximums ‖K‖∞ and
‖f‖∞ respectively. Then

|T (f)(x)| ≤
∫ 1

0

|K(x, y)f(y)| dy ≤
∫ 1

0

‖K‖∞ ‖f‖∞ dy = ‖K‖∞ ‖f‖∞ .

Define h(y) = ‖K‖∞ ‖f‖∞ for y ∈ [0, 1]. Then h ∈ L1([0, 1]) since [0, 1] is a finite measure space.
If x 6= 1, let gn(y) = K(x + 1

n
, y)f(y) for large n.19 Since K is continuous, lim

n→∞
gn = K(x, ·)f(·).

Moreover, |gn| ≤ h for all n. Hence, by the Dominated Convergence Theorem,

lim
n→∞

∫ 1

0

K

(
x+

1

n
, y

)
f(y) dy = lim

n→∞

∫ 1

0

gn(y) dy =

∫ 1

0

K(x, y)f(y) dy = T (f)(x).

Thus T (f) is continuous at x.
If x = 1, take gn(y) = K(x− 1

n
, y)f(y). Then the same story plays out.

So T (f) ∈ A as desired.

Proof of (b). Since integration is linear, T is a linear map. Now we show that T is bounded.
Indeed, using the bound established in part (a),

‖T (f)‖∞ = sup
x∈[0,1]

|T (f)(x)| ≤ sup
x∈[0,1]

‖K‖∞ ‖f‖∞ = ‖K‖∞ ‖f‖∞ .

As f is arbitrary, ‖T‖∞ ≤ ‖K‖∞ and so T is bounded.

Proof of (c). To show that T (B) is compact, it suffices to show that any sequence {T (fn)}∞n=1 in T (B) has

a convergent subsequence (which will necessarily be in T (B)). Unsurprisingly, we will use the Arzelà–Ascoli
Theorem.

By definition of B, ‖fn‖∞ ≤ 1. Thus, by the bound in part (b), we have ‖T (fn)‖∞ ≤ ‖K‖∞ for all n.

That is, {T (fn)}∞n=1 is uniformly bounded .

To show that {T (fn)}∞n=1 is equicontinuous, let ε > 0 and x1, x2 ∈ [0, 1]. Then

|T (fn)(x1)− T (fn)(x2)| ≤
∫ 1

0

|K(x1, y)−K(x2, y)| |fn(y)| dy ≤
∫ 1

0

|K(x1, y)−K(x2, y)| ‖fn‖∞ dy ≤
∫ 1

0

|K(x1, y)−K(x2, y)| dy.

By the Heine–Cantor Theorem, K is uniformly continuous. Hence ∃δ > 0 such that |x1 − x2| < δ =⇒
|K(x1, y)−K(x2, y)| < ε.20 Therefore, for |x1 − x2| < δ, we have

|T (fn)(x1)− T (fn)(x2)| ≤
∫ 1

0

|K(x1, y)−K(x2, y)| dy <
∫ 1

0

ε dy = ε.

That is, T (fn) is equicontinuous for all n.
By Arzelà–Ascoli, {T (fn)}∞n=1 has a convergent subsequence. Thus T (B) is compact as desired.

19Specifically such that x+ 1
n < 1.

20Since [0, 1]2 is two-dimensional, we should have a different distance function here. However, once we have that, we can
restrict to the one dimension that we care about.
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Problem 5.9.6

Let X be a compact metric space. Suppose that fn : X → R is continuous for each n ≥ 1, and that
for each x ∈ X, fn+1(x) ≤ fn(x). Show that if fn → 0 pointwise on X, then fn → 0 uniformly on X.

Notes and Comments

Proof. Let ε > 0. We want to find N ∈ N such that for n ≥ N , |fn(x)| < ε for all x ∈ X. The idea is to
produce an open cover of X and exploit the fact that X is compact to produce a finite subcover. Consider
Un = f−1

n ((−ε, ε)) for n ∈ N.21

Claim 1: {Un}n∈N is an open cover of X.

Proof. Since fn is continuous, Un is open for each n. Note that if x ∈ X, then fn(x) → 0 by hypothesis.
Therefore ∃n such that |fn(x)| < ε. Thus x ∈ Un. Hence {Un}n∈N is an open cover of X.

By compactness of X, there exists N ∈ N such that {U1, U2, . . . , UN} is an open cover of X.
Claim 2: Un ⊂ Un+1 for any n ∈ N .

Proof. Suppose x ∈ Un. Then −ε < fn(x) < ε, so fn+1(x) ≤ fn(x) < ε. Also fk(x)↘ 0 and so fk(x) ≥ 0
for all k. In particular, −ε < 0 ≤ fn(x). Thus x ∈ Un+1.

By Claim 2, the open cover {U1, U2, . . . , UN} forms an ascending chain U1 ⊂ U2 ⊂ · · · ⊂ UN . This
means that UN covers X. Hence X = UN = UN+1 = UN+2 = . . .. Thus x ∈ Un for all n ≥ N . By definition
of Un, this means |fn(x)| < ε. Therefore, fn → 0 uniformly as desired.

21A hypothetical desperate graduate student solving this problem during a qual would argue that {Un}n∈N is a good
candidate for an open cover. Since there are not many ways to produce a collection of open sets starting with {fn}N, we will
go with this.
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Analysis Exam

Fall 2016

Problem 5.10.1

Let (X,M, µ) be a measure space and let g ∈ L+(X,M), i.e., g : X → [0,∞] is a measurable function.
Define ν :M→ [0,∞] by

ν(E) =

∫
E

g dµ.

(a) Show that ν is a measure on (X,M).

(b) Show that for any nonnegative measurable function f : X → [0,∞], we have∫
X

f dν =

∫
X

fg dµ.

(c) Suppose that g ∈ L2(X,M, µ). Show that

L2(X,M, µ) ⊂ L1(X,M, ν).

Notes and Comments

Proof of (a). First note that ν(∅) =

∫
∅
h dµ = 0 . Now let {En}∞n=1 be a disjoint collection of measurable

sets. Since g ∈ L+(X,M), there is a sequence of simple functions ϕi such that ϕi ↗ g. Furthermore,

E 7→
∫
E

ϕ dµ is a measure for any simple function ϕ. Hence we have

∫
⋃∞
n=1 En

ϕi dµ =
∞∑
n=1

∫
En

ϕi dµ (∗).

By the Monotone Convergence Theorem (MCT) and the fact that our sum converges absolutely (†), we
have

ν

(
∞⋃
n=1

En

)
=

∫
⋃∞
n=1 En

g dµ
(MCT )

= lim
i→∞

∫
⋃∞
n=1 En

ϕi dµ

(∗)
= lim

i→∞

∞∑
n=1

∫
En

ϕi dµ

(†)
=

∞∑
n=1

lim
i→∞

∫
En

ϕi dµ

(MCT )
=

∞∑
n=1

∫
En

g dµ =
∞∑
n=1

ν(En).

Thus ν is a measure.

Proof of (b). First consider a simple function ϕ =
∑

i ziχEi . Then∫
X

ϕ dν =
∑
i

zi

∫
X

χEi dν =
∑
i

ziν(Ei) =
∑
i

zi

∫
Ei

g dµ =

∫
X

ϕg dµ.
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As f ∈ L+(X,M), there is a sequence of simple functions ϕn such that ϕn ↗ f . Hence, by repeated
applications of the Monotone Convergence Theorem,∫

X

f dν = lim
n→∞

∫
X

ϕn dν = lim
n→∞

∫
X

ϕng dµ =

∫
X

fg dµ.

Thus we have the desired equality.

Proof of (c). Let f ∈ L2(X,M, µ) and ‖·‖p denote the p-norm on Lp(X,M, µ). Then we have∫
X

|f | dν (b)
=

∫
X

|f | g dµ =

∫
X

|fg| dµ = ‖fg‖1 ≤ ‖f‖2 ‖g‖2 <∞

by Hölder’s Inequality (p = q = 2 are conjugate) and the fact that ‖f‖2 , ‖g‖2 <∞ by assumption. Thus
f ∈ L1(X,M, ν) by definition.

Problem 5.10.2

Let m∗ be the Lebesgue outer measure on R. Let E be a subset of R with m∗(E) <∞.

(a) Show that there exists a Borel set B such that E ⊂ B and m∗(B) = m∗(E).

(b) Let B be as in part (a). Show that E is Lebesgue measurable if and only if m∗(B−E) = 0. (You
may use the facts that Borel sets are Lebesgue measurable and that the Lebesgue measure is
complete.)

Notes and Comments

Proof of (a). For all n ∈ N, there is a covering of E by {In,k}k such that m∗

(⋃
k

In,k

)
≤ m∗(E) +

1

n
by

the definition of m∗. As each interval In,k is a Borel set (being a closed interval) and Borel sets for a

σ-algebra, we know that Bn =
⋃
k

In,k is a Borel set for each n. Moreover, E ⊂ Bn (∗) for all n.

Consider B =
⋂
n

Bn . Since σ-algebras are closed under countable intersections, we know that B is

Borel. Also, B ⊂ Bn (†) for all n. Thus we have

m∗(E)
(∗)
≤ m∗(B)

(†)
≤ m∗(Bn) ≤ m∗(E) +

1

n

for all n. Taking the limit with respect to n, we obtain m∗(E) = m∗(B) as desired.

Proof of (b). (⇒) Assume E is Lebesgue measurable. Then, since E ⊂M and m∗(E) = m∗(B),

m∗(B) = m∗(B ∩ E) +m∗(B ∩ Ec) = m∗(E) +m∗(B − E) = m∗(B) +m∗(B \ E).

As m∗(E) = m∗(B) <∞ (by the original hypotheses), we obtain m∗(B \ E) = 0 as desired.
(⇐) Assume m∗(B−E) = 0. Since the Lebesgue measure is complete, B−E is Lebesgue measurable.

As Lebesgue measurable sets form a σ-algebra,

E = B − (B − E) = B ∩ (B − E)c

is Lebesgue measurable.

132



The Written Qual Book Analysis: Fall 2016

Problem 5.10.3

(a) State the Cauchy Integral Formulas for analytic functions f and their derivatives f (n)(z).

(b) Use the Cauchy Integral Formulas to derive the Cauchy estimates which give bounds for f and
its derivatives at a point z0 in terms of the maximum of f on a circle |z − z0| = R. Be sure to
state any hypothesis.

(c) State and prove Liouville’s Theorem.

Notes and Comments

Theorem 5.10.1 (Cauchy Integral Formulas): Assume f is analytic on a domain U containing the
closed disk Dr(z0) for some z0 ∈ U and r > 0. Let γ parametrize the circle ∂Dr(z0) with a counterclockwise
orientation. Then, for all z in the open disk Dr(z0) and all n ≥ 0,

f (n)(z0) =
n!

2πi

∫
γ

f(z)

(z − z0)n+1
dz.

Proof of (b). Under the assumptions in (a), suppose also that M = max
z∈∂Dr(z0)

|f(z)|. Then, by the ML-

inequality (∗), we have

|f (n)(z0)| =
∣∣∣∣ n!

2πi

∫
γ

f(z)

(z − z0)n+1
dz

∣∣∣∣ =
n!

2π

∣∣∣∣∫
γ

f(z)

(z − z0)n+1
dz

∣∣∣∣
≤ n!

2π

∫
γ

∣∣∣∣ f(z)

(z − z0)n+1

∣∣∣∣ dz
(∗)
≤
(
n!

2π
· M
rn+1

)
· 2πr =

n!M

rn
.

That is, Cauchy Estimates give |f (n)(z0)| ≤ n!M

rn
.

Theorem 5.10.2 (Liouville’s Theorem): Every bounded entire function is constant.

Proof of (c). Assume f is an entire function which is bounded by M . Let z ∈ C and take r > 0. From
part (b), we have

|f ′(z)| ≤ M

r
.

Taking a limit as r →∞, we see that f ′(z) = 0. As z was arbitrary, it must be that f is constant.

Problem 5.10.4

Suppose that T : X → Y is a linear map between Banach spaces. Show that T is bounded if and
only if T is continuous at 0.

Notes and Comments
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Proof. (⇒) Assume that T : X → Y is bounded. Then there exists some M > 0 such that ||T (x)|| ≤M ||x||
for all x ∈ X.

Let ε > 0. Since T is linear, we know T (0) = 0. Thus ‖T (x)− T (0)‖ = ‖T (x)‖ ≤ M ‖x‖. Take
δ = ε

M
> 0. Then whenever ‖x− 0‖ < δ, we have ‖T (x)− T (0)‖ ≤ M ‖x‖ < ε. Hence T is continuous at

0.
(⇐) Assume that T is continuous at 0. Let ε = 1. Then there exists δ for which ||x|| < δ =⇒

||T (x)|| < 1.
Let x ∈ X with x 6= 0. Then ∥∥∥∥ δ

2 ‖x‖
x

∥∥∥∥ =
δ

2
< δ.

Hence

∥∥∥∥T ( δ

2 ‖x‖
x

)∥∥∥∥ < 1. By linearity, we see

T (x) <
2

δ
‖x‖ .

Thus M =
2

δ
shows that T is bounded.

Problem 5.10.5

Let T : H → H and S : H → H be functions (not necessarily linear) from a Hilbert space H to itself.
Suppose that for each x, y ∈ H we have

(T (x) | y) = (x | S(y)).

Show that T and S are bounded linear maps with S = T ∗.

Notes and Comments

Proof. First we show that T is linear. Indeed, for x, y ∈ H, we have

(T (x+ y) | z) = (x+ y | S(z)) = (x | S(z)) + (y | S(z)) = (T (x) | z) + (T (y) | z) = (T (x) + T (y) | z).

Thus T (x+y)−T (x)−T (y) is orthogonal to H. Hence T (x+y) = T (x)+T (y). Similarly, T (αx) = αT (x)

and so T is linear .
The proof that T is bounded follows from problem 4(b) on the Summer 2012 exam (5.1.4). That is,

we apply the Closed Graph Theorem to conclude that T is bounded. Hence, as S is a map that satisfies
the adjoint property for a bounded linear map T , S is the adjoint of T . (So S is also a bounded linear
map.)

Problem 5.10.6

We say f : [0, 1]→ R is α–Hölder if

hα(f) := sup
x 6=y

|f(x)− f(y)|
|x− y|α

<∞.

For M > 0 and α ∈ (0, 1], let

Hα,M := {f ∈ C([0, 1]) : hα(f) ≤M and ||f ||∞ ≤M}.

134



The Written Qual Book Analysis: Fall 2016

Show that Hα,M is compact in C([0, 1]).

Notes and Comments

Proof. To show that Hα,M is compact, it suffices to show that every sequence contains a convergent
subsequence. We want to apply the Arzelà–Ascoli Theorem, so we need to show that any sequence in
Hα,M is uniformly bounded and equicontinuous.

Let {fn} be a sequence in Hα,M . Uniform boundedness follows from ||fn||∞ ≤M so it remains to show
equicontinuity. Let ε > 0 and take δ = α

√
ε
M

.
Then, for all x, y ∈ [0, 1] with |x− y| < δ and any n ∈ N, we have

|fn(x)− fn(y)| ≤ hα(fn) |x− y|α ≤M |x− y|α < Mδα < ε.

Hence we satisfy the hypotheses of Arzelà–Ascoli and so {fn} contains a convergent subsequence, implying
the compactness of Hα,M .
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Analysis Exam

Summer 2017

Problem 5.11.1

Let p ≥ 1 be an integer and f a holomorphic function on D1(0) such that

(i) |f(z)| ≤ |z|p for all z with |z| < 1;

(ii) f has a zero of order ≥ p at 0.

Assume further the existence of a 6= 0 such that f(a) = ap. What can be said of f?
Notes and Comments

Proof. It follows from (ii) that lim
z→0

f(z)/zp exists and is some finite number c ∈ C, and that the function

g(z) =

{
f(z)
zp

z 6= 0

c z = 0

is holomorphic on D1(0). We know from (i) that |g(z)| =
|f(z)|
|z|p

≤ 1 for all z 6= 0. By continuity of g,

we thus have |g(0)| ≤ 1. Furthermore, since f(a) = ap for some a 6= 0, we have g(a) = 1 . Thus we see

that 1 is the maximum value of g, and this value is attained at a. As the domain D1(0) is open, g must
be constant by the Maximum-Modulus Principle. Hence g(z) = c for all z. Therefore f(z) = czp, where

c = lim
z→0

f(z)

zp
.

Problem 5.11.2

Let (X,M, µ) be a measured space, (Y,N) a measurable space, and f : X → Y a measurable function.
Define for S ∈ N: ν(S) = µ(f−1(S)).

(a) Verify that ν is a measure on (Y,N).

(b) Let u : Y → R be a measurable function. Prove that∫
Y

u dν =

∫
X

u ◦ f dµ.

Notes and Comments

Proof of (a). See the solution to 2(a) from Summer 2014 (5.5.2).

Proof of (b). In the case that u is non-negative, see the solution to 2(b) from Summer 2014 (5.5.2). For the
general case, define u+ = max{u, 0} and u− = max{−u, 0}. Then u+, u− ≥ 0 are non-negative measurable
functions, and u = u+ − u−, so∫

Y

u dν =

∫
Y

u+ dν −
∫
Y

u− dν =

∫
X

u+ ◦ f dµ−
∫
X

u− ◦ f dµ =

∫
X

u ◦ f dµ.
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Problem 5.11.3

Fun with functions.

(a) Give an example of a sequence {fn}n≥1 of measurable functions such that fn
L1−→ f but fn

does not converge to f almost everywhere.

(b,c) For parts (b) and (c), let {fn}n≥1 and f be functions on a measured space X such that
for all n,

||fn − f ||1 ≤ 3−n.

(b) Let En = {x ∈ X : |fn(x)− f(x)| ≥ 1
2n
} and Gk =

⋃
n≥k

En. Prove that

µ(Gk) ≤
2k

3k−1
.

(c) Deduce that fn → f almost everywhere.

Notes and Comments

Proof of (a). For any positive integer n, we can uniquely write n = j+2k for 0 ≤ j < 2k and 2k−1 ≤ n ≤ 2k.

Let Fn =

[
j

2k
,
j + 1

2k

]
and define fn = χFn to be the characteristic function on Fn. Then fn

L1→ f = 0, but

does not converge everywhere.22

Proof of (b). Note that µ(Gk) = µ

( ⋃
n≥k

En

)
≤
∑
n≥k

µ(En). Keeping this in mind, let us first find µ(En).

We can write

||fn − f ||1 =

∫
X

|fn − f |dµ =

∫
En

|fn − f |dµ+

∫
Ecn

|fn − f |dµ ≤ 3−n.

However,

∫
En

|fn − f |dµ ≥
1

2n
µ(En). Rewriting the above, we have

1

2n
µ(En) ≤ 3−n −

∫
Ecn

|fn − f |dµ ≤ 3−n.

Thus, µ(En) ≤ 2n

3n
. Then

µ(Gk) ≤
∑
n≥k

µ(En) ≤
∑
n≥k

2n

3n
≤

∞∑
n=1

2k

3k

(
2

3

)n
=

2k

3k−1

as desired.

22Every point takes on value 1 infinitely often.
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Proof of (c). Let G =
∞⋂
k=1

Gk. Then G is the set of all points x ∈ X such that |fn − f | ≥ 1
2n

for all n ∈ N.

We will show that fn → f pointwise outside of G and that µ(G) = 0.
Let x /∈ G and let ε > 0 be given. Then there exists some Nε such that 1

2Nε
< ε. Furthermore, as

x /∈ G, we know x /∈ GNx for some Nx ∈ N. Hence x /∈ Gn for all n ≥ Nx. That is, there exists Nx ∈ N
such that |fn(x)− f(x)| ≤ 1

2n
for all n ≥ Nx.

Let N = max(Nε, Nx). Then

|fn(x)− f(x)| ≤ 1

2n
< ε

for all n ≥ N . Thus fn(x)→ f(x) for all x /∈ G.
Finally, since Gk+1 ⊂ Gk for all k, continuity of measures from above says that

µ(G) = lim
k→∞

µ(Gk) ≤ lim
k→∞

2k

3k−1
= 0.

Thus fn → f except on a set of measure zero, and so fn → f almost everywhere.

Problem 5.11.4

Let H be a Hilbert space and T a normal operator on H.

(a) Show that, for all h ∈ H, we have ‖Th‖ = ‖T ∗h‖.

(b) Show that if v is an eigenvector for T , then v is an eigenvector for T ∗.

(c) Show that if v and w are eigenvectors for T with eigenvalues λ and µ, respectively, then
v ⊥ w if λ 6= µ.

Notes and Comments

Proof of (a). Recall the definition of normal operator: T ∗T = TT ∗. Then using the definition of the
adjoint repeatedly, we have

‖Th‖2 = 〈Th, Th〉 = 〈h, T ∗Th〉 = 〈h, TT ∗h〉 = 〈T ∗h, T ∗h〉 = ‖T ∗h‖2.

As norms are non-negative, we have ‖Th‖ = ‖T ∗h‖.

Proof of (b). Let λ be the eigenvalue associated to v. Then T − λ is normal.23 By part (a), we have

‖(T − λ)v‖ = ‖(T ∗ − λ∗)v‖,

where λ∗ is the complex conjugate of λ. Thus

‖(T ∗ − λ∗)v‖ = ‖(T − λ)v‖ = ‖λv − λv‖ = 0,

and so T ∗v − λ∗v = 0. Therefore, v is an eigenvector for T with eigenvalue λ∗.

Proof of (c). We have Tv = λv and, by part (b), T ∗w = µ∗w. So

λ〈v, w〉 = 〈λv, w〉 = 〈Tv, w〉 = 〈v, T ∗w〉 = 〈v, µ∗w〉 = µ〈v, w〉,

since the inner product is Hermitian. Thus (λ− µ)〈v, w〉 = 0. Since λ 6= µ, we have 〈v, w〉 = 0.
23It’s a quick check.

138



The Written Qual Book Analysis: Summer 2017

Problem 5.11.5

Let X be a normed vector space such that X∗ is separable. Show that X is separable. (I suggest
letting {φn} be a countable dense subset of X∗ and choose xn ∈ X such that ‖xn‖ = 1 and
φn(xn) ≥ 1

2
‖φn‖. Consider span({xn}).)

Notes and Comments

Proof. Let D = {φn}∞n=1 be a countable dense subset of X∗. By definition of the operator norm, ‖φn‖ =
sup
‖x‖=1

|φn(x)|. So ∃xn ∈ X such that |φn(xn)| ≥ 1
2
‖φn‖. If this inequality doesn’t hold without absolute

values, replace xn by −xn. Define S = {xn}∞n=1.
Let Y = spanQ S. We claim that Y ⊂ X is the desired set. Since S is countable and Q is countable, Y

is also countable. So it suffices to show that Y = X.
As X is a normed space and Y is a linear subspace of X, Y ⊆ X.24

Now suppose that x ∈ X \ Y . Then, by Hahn–Banach, there is some φ ∈ X∗ with φ 6= 0 (specifically
φ(x) 6= 0) and φ|Y = 0. By the density of D in X∗, there is some φk ∈ D such that ‖φ− φk‖ < ε for any
choice of ε.

Note that φ(xk) = 0 since xk ∈ Y . However, by construction,

1

2
≤ |φk(xk)| = |φk(xk)− φ(xk)| ≤ ‖φk − φ‖ ‖xk‖ < ε · 1 = ε.

Choose ε ≤ 1
2

to obtain a contradiction.	Thus no such x can exist and so Y = X as desired. Hence Y is
a countable dense subset of X, i.e., X is separable.

Problem 5.11.6

Let F ⊂ C([0, 1]) be the collection of continuous functions such that f ′(x) exists and satisfies
|f ′(x)| ≤ 2 for all x ∈ (0, 1). Let F0 = {f ∈ F : |f(0)| ≤ 3}.

(a) Show that F is equicontinuous on [0, 1].

(b) Explain why the closure of F is not compact, while the closure of F0 is.

Notes and Comments

Proof of (a). Since |f ′(x)| is bounded on (0, 1) by 2, |f ′(x)| is bounded on [0, 1] by some constant M ≥ 2
where M = max {|f ′(0)| , |f ′(1)| , 2}.

Let ε > 0. Fix x0 ∈ [0, 1] and f ∈ F . Since |f ′(x0)| ≤M , there is some δ′ > 0 such that

|x− x0| < δ′ =⇒
∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ ≤M =⇒ |f(x)− f(x0)| ≤M |x− x0| < Mδ′.

Choose δ = min
{
δ′, ε

M

}
. Then F is equicontinuous on [0, 1].

24This is deserving of its own proof, but we’re hoping that you did this in class already. In some sense, it’s a “follow your
nose” type argument, i.e., one that you shouldn’t do during a qual unless absolutely necessary.
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Proof of (b). Since [0, 1] is a compact metric space, we will use the Arzelà–Ascoli theorem heavily: a family
of functions in C([0, 1]) is compact if and only if it is equicontinuous, closed, and pointwise bounded.

Let f ∈ F . Define fn(x) = f(x) + n. Then {fn}∞n=1 ⊂ F . Thus F is not pointwise bounded. By
Arzelà–Ascoli, F is not compact.

As F is equicontinuous by part (a), so is F0. Thus F0 is closed and equicontinuous. We will show that
F0 is pointwise bounded (and so its closure must be).

Let f ∈ F0 and x ∈ [0, 1]. Define M as in the proof of part (a). By the Fundamental Theorem of
Calculus,

f(x) = f(0) +

∫ x

0

f ′(t) dt.

In absolute value, using the triangle inequality and our favorite integration facts,

|f(x)| ≤ |f(0)|+
∣∣∣∣∫ x

0

f ′(t) dt

∣∣∣∣ ≤ 3 +

∫ x

0

|f ′(t)| dt ≤ 3 +

∫ x

0

M dt = 3 +Mx ≤ 3 +M.

Thus |f(x)| ≤ 3 +M and so f is pointwise bounded. Hence F0 is pointwise bounded.
By Arzelà–Ascoli, F0 is compact.
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Topology

Topology Exam

Summer 2012

Problem 6.1.1

Let p : X ′ → X be a covering map and assume that X ′ is path-connected. Let x0, x1 ∈ X ′ and x ∈ X
such that p(x0) = x = p(x1). Prove that the subgroups p∗π1(X ′, x0) = H0 and p∗π1(X ′, x1) = H1 are
conjugate in π1(X, x).

Notes and Comments

Proof. Since X ′ is path connected, there is a path γ′ from x0 to x1 in X ′. Projecting γ′ by p gives a loop
γ with base point x in X. So γ represents g = [γ] ∈ π1(X, x).

Note that, for any loop ` with base point x0, the path γ′`γ′ is a loop at x1. That is g−1H0g ⊂ H1. By
symmetry of the argument, we also have that gH1g

−1 ⊂ H0. Conjugating this last relation by g−1 gives
our desired equality.

Problem 6.1.2

Of the following smooth manifolds, determine which ones admit a continuous nowhere vanishing
vector field:

(1) S2 minus a point

(2) S2

(3) S3

(4) S1 × S1

(5) SL(n,R)

(6) An oriented, compact surface of genus three with no boundary.

Notes and Comments
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Proof. (1) Yes. S2 minus a point is homeomorphic to R2 by stereographic projection and R2 has many
such vector fields.

(2) No by the Hairy Ball Theorem.

(3) Yes by the Hairy Ball Theorem.

(4) Yes. Apply the Hairy Ball Theorem to each factor and take the product vector field.

(5) Yes. SL(n,R) is a Lie group and thus admits a global frame.

(6) No. This is a consequence of the Poincaré–Hopf Theorem. If such a vector field exists, then the the
Euler characteristic of the surface must be zero. However, the Euler characteristic of this surface is
−4.

Problem 6.1.3

Denote by Sn the unit sphere in Rn+1. If F : Sn → Sn is the antipodal map defined by F (x) = −x,
then show by calculation that the degree of F is (−1)n+1.

Notes and Comments

Proof. Note that, viewed as a map Rn+1 → Rn+1, the map F simply negates each coordinate of x. Thus F
can be written as the composition of n+1 reflections across the hyperplanes perpendicular to the standard
basis vectors. The degree of a composition of maps is equal to the product of the degrees, hence it suffices
to recall that the degree of a reflection is −1.

Problem 6.1.4

Determine the singular homology groups of the standard torus (i.e., regarded as an identification
space of a 2-dimensional rectangle) using the Mayer–Vietoris sequence.

Notes and Comments

Proof. To apply the Mayer–Vietoris construction we need to decompose T2 into two open overlapping sets.
We can decompose T2 into two overlapping cylinders A and B by imagining our torus in its standard
doughnut orientation and removing the left third (for A) or right third (for B). Then A and B are both
homeomorhpic to S1 and A ∩B is homeomorphic to S1 t S1.

Using the homology of spheres we have that

Hn(A) = Hn(B) =

{
Z n ∈ {0, 1}
0 otherwise

and Hn(A ∩B) =

{
Z⊕ Z n ∈ {0, 1}
0 otherwise

In order to compute the homology groups of T2, we consider individual segments of the Mayer–Vietoris
long exact sequence. When n > 2 we have

Hn(A)⊕Hn(B) Hn(T2) Hn−1(A ∩B)
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We know that the outside groups are trivial and thus, by exactness, Hn(T2) = 0 for n > 2 . To compute

H2(T2), we begin with the next portion of the sequence:

H2(A)⊕H2(B) H2(T2) H1(A ∩B) H1(A)⊕H1(B)

0 Z⊕ Z Z⊕ Z

∂ i∗

By exactness of the sequence, we know that ∂ is injective and so our desired group H2(T2) ∼= im(∂).
As the sequence is exact, this is isomorphic to the kernel of i∗ (which is induced by the inclusions of A∩B
into A and B). To construct this map explicitly, we consider the two generators of H1(A ∩ B) and notice
that, after inclusion into A,B, they must map to the same element. Thus i∗ takes the form:[

1 1
1 1

]

and has kernel equal to Z
[

1
−1

]
which is isomorhpic to Z. Thus H2(T2) ∼= Z .

We take a similar approach to computing H1(T2). Beginning with the groups that we know in the
sequence gives:

H1(A ∩B) H1(A)⊕H1(B) H1(T2) H0(A ∩B) H0(A)⊕H0(B)
i∗ p ∂

Taking generators for H0(A ∩ B) again gives that the map i∗ is represented by

[
1 1
1 1

]
. Thus i∗ has

kernel and image both isomorphic to Z. Extracting the relevant short exact sequence, we obtain:

0 ker(∂) H1(T2) im(∂) 0

As above, we can compute im(∂) ∼= ker(i∗) ∼= Z. To characterize ker(∂) we use exactness to note that
ker(∂) ∼= im(p) ∼= Z2/ ker(p) ∼= Z2/ im(i∗) ∼= Z, where the last steps follow from our explicit computations
of i∗. Thus, our short exact sequence becomes

0 Z H1(T2) Z 0

which splits since Z is free. Hence H1(T2) ∼= Z⊕ Z .

Finally, since T2 is connected, we know that H0(T2) = Z. Thus, our final answer is

Hn(T2) =


Z n ∈ {0, 2}
Z⊕ Z n = 1

0 otherwise

.
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Problem 6.1.5

Let ϕ1 and ϕ2 be charts on R defined by ϕ1(t) = t and ϕ2(t) = t3. Are they C∞ compatible? Prove
your answer.

Notes and Comments

Proof. In order to be C∞ compatible we must have that ϕ1(ϕ−1
2 (t)) is smooth on R. Unfortunately,

ϕ1(ϕ−1
2 (t)) = 3

√
t is not differentiable at 0. Thus they are not C∞ compatible.

Problem 6.1.6

Define the wedge product of two differential forms on a manifold. How does one use this operation
to define the cup product of two de Rham cohomology classes? Prove that the cup product is well
defined.

Notes and Comments

Proof. The wedge product is the product in the exterior algebra defined as the quotient of the tensor
algebra by the square ideal I = 〈{x⊗ x : x ∈ A}. Thus the wedge of two differential forms is

u ∧ v := u⊗ v (mod I) .

To define the cup product on de Rham cohomology classes, we note that the classes are formed from

an equivalence relation on differential forms (cocycles mod coboundaries) and define [u] ^ [v] := [u ∧ v] .

To show that this operation is well-defined, let [u] ∈ Ωn
dR, [v] ∈ Ωm

dR be cohomology classes with u, u′ ∈ [u]
and v, v′ ∈ [v]. Thus there are coboundaries ∂x, ∂y such that

u = u′ + ∂x, v = v′ + ∂y.

We show that [u ∧ v] = [u′ ∧ v′]. Computing using the properties of ∧, we have

u ∧ v =(u′ + ∂x) ∧ (v′ + ∂y)

=u′ ∧ v′ + u′ ∧ ∂y + ∂x ∧ v′ + ∂x ∧ ∂y
=u′ ∧ v′ + (u′ ∧ ∂y + (−1)n ∂u′︸︷︷︸

=0

∧y) + (∂x ∧ v′ + (−1)mx ∧ ∂v′︸︷︷︸
=0

) + (∂x ∧ ∂y + (−1)m ∂∂x︸︷︷︸
=0

∧∂y)

=u′ ∧ v′ + ∂((−1)nu′ ∧ y + x ∧ v′ + (−1)m∂x ∧ y)

Taking cohomology classes at both ends of this chain of equalities gives the desired result.
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Topology Exam

Fall 2012

Problem 6.2.1

Let M be a smooth manifold, and let x1, . . . , xn be a local coordinate system defined on an open
set U ⊆M . Consider the (1, 1)-tensor field C defined on U in local coordinates by

C =
n∑
i=1

dxi ⊗ ∂

∂xi
.

Show that C is independent of the choice of local coordinates and hence defines a smooth global
tensor field on M .

Notes and Comments

Proof. Let (y1, ..., yn) be another local coordinate system for M about a point p ∈ U . Pushing forward the
change of coordinate formula in Rn to a change of basis formula for TpM , we get the following formula:

∂

∂xi

∣∣∣
p

=
n∑
j=1

∂yj

∂xi

∣∣∣
p

∂

∂yj

∣∣∣
p
.

Since dxip and dyjp are dual to ∂
∂xi

∣∣∣
p

and ∂
∂yj

∣∣∣
p
, respectively, we get the additional formula:

dykp

(
∂

∂xi

∣∣∣
p

)
= dykp

(
n∑
j=1

∂yj

∂xi

∣∣∣
p

∂

∂yj

∣∣∣
p

)

=
n∑
j=1

∂yj

∂xi

∣∣∣
p
dykp

(
∂

∂yj

∣∣∣
p

)

=
n∑
j=1

∂yj

∂xi

∣∣∣
p
δkj

=
∂yk

∂xi

∣∣∣
p
.

Hence

dykp =
n∑
i=1

∂yk

∂xi

∣∣∣
p
dxip.

Since the change of coordinate function is a diffeomorphism between neighborhoods of (xi(p)) and

(yi(p)) in Rn, the matrix

[
∂yk

∂xi

∣∣∣
p

]
(k,i)

is invertible. Let this matrix be denoted by J(p) with inverse J−1(p).
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Then we can carry out the following substitutions:

C|p =
n∑
i=1

dxip ⊗
∂

∂xi

∣∣∣
p

=
n∑
i=1

(
n∑
k=1

J−1
i,k (p)dykp

)
⊗

(
n∑
j=1

Jj,i(p)
∂

∂yj

∣∣∣
p

)

=
n∑

j,k=1

(
n∑
i=1

Jj,i(p)J
−1
i,k (p)

)
dykp ⊗

∂

∂yj

∣∣∣
p

=
n∑

j,k=1

δj,kdy
k
p ⊗

∂

∂yj

∣∣∣
p

=
n∑
j=1

dyjp ⊗
∂

∂yj

∣∣∣
p
.

Therefore the definition of C is independent of the choice of local coordinates and thus can be used to
define a global tensor field on M .

Problem 6.2.2

Determine the critical points of the determinant mapping det : Mn(R)→ R defined on the space of
n× n matrices. [Hint: The determinant is multilinear as a function of the columns of a matrix.]

Notes and Comments

Proof. Recall that the determinant of X ∈ Mn(R) can be computed by expanding along the jth column
of X via

detX =
n∑
i=1

(−1)i+jxij det(Xij)

where Xij is the (i, j)-minor of X. Then for A = (aij) ∈Mn(R), we have

∂ det

∂xij
(A) = (−1)i+j det(Aij).

Recall that critical points occur whenever the derivative (pushforward) of a map is 0 (in our case, det∗,A =
0). Since we’re working in Euclidean space (Mn(R) ∼= Rn2

), the pushforward is computed via the matrix
of partial derivatives (i.e., the Jacobian matrix). Hence, by our work above

det∗,A = 0⇔ det(Aij) = 0 ∀i, j
⇔ rankA < n− 1.

To see this, note that rankA < n − 1 means that each (i, j)-minor is also not invertible. That is, the
critical points of det are precisely {A ∈Mn(R) | rankA < n− 1}.
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Problem 6.2.3

Let S ⊆ R3 be the surface with boundary given by

S =
{

(x, y, z) : z = x2 + y2, z ≤ 9
}
,

oriented by the unit normal field N = (n1, n2, n3) with n3 < 0. Let ω be the 2-form on R3 given by

ω = ez sin ydy ∧ dz + tan−1(x sinh z)dz ∧ dz + 2dx ∧ dy.

Compute the integral
∫
S
ω.

Notes and Comments

Proof. This problem requires one very important observation: since the cone S is diffeomorphic (just need
smoothly homotopic) to the disk D = {(x, y, 9) | x2 + y2 ≤ 9}, S must have trivial de Rham cohomology
in degree 2. Thus every closed 2-form is exact.

Note that dω = 0 since each term acquires a repeat dx, dy, or dz and thus is 0 (or, as in the last term,
it simply vanishes). Hence ω is a closed 2-form which, by the remark above, means that ω = dη for some
1-form η.

By Stokes’ theorem, ∫
S

ω =

∫
∂S

η =

∫
D

ω

since S and D share the same boundary. On D, ω = 2dx ∧ dy because z is constant. Hence∫
S

ω =

∫
D

2dx ∧ dy = 2 Area(D) = 2(9π) = 18π.

Note that the orientation induced by N did not come into play because it’s the outward unit normal vector
field for S.

Problem 6.2.4

Suppose that a space X is the disjoint union X = U t V of two open subspaces U and V .

(a) Use the Eilenberg–Steenrod axioms to prove that, for any homology theory, the homology
groups of X are given in terms of those of U and V by

Hq(X) = Hq(U)⊕Hq(V ).

(b) Why is this result easier if we take the homology theory to be singular homology?

Notes and Comments

Proof of (a). See the solution given in problem 4 of the Summer 2014 exam (6.5.4).

Proof of (b). Recall that the continuous image of a connected set must be connected. Hence the images
of the basis elements (for singular homology) land in either X or Y and so the homology must split.
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Problem 6.2.5

Let p : Y → X be a covering map. Let Z be any connected space, and let f : Z → X be a continuous
map. Suppose that f1 : Z → Y and f2 : Z → Y are continuous lifts of f (i.e., p ◦ fi = f for i = 1, 2)
that agree at some point z0 ∈ Z. Show that f1 = f2 on all of Z.

Notes and Comments

Proof. Let A = {z ∈ Z | f1(z) = f2(z)}. We will show that A is clopen.

Let z ∈ Z and let U be an evenly covered neighborhood of f(z). Then p−1(U) =
⊔
α∈I

Uα where

p|Uα : Uα → U is a homeomorphism.1 Then f1(z) ∈ Uα1 and f2(z) ∈ Uα2 for some α1, α2 ∈ I.

Let Vi = f−1
i (Uαi). Since fi is continuous, Vi is open in Z. Define V = V1 ∩ V2 which is necessarily a

neighborhood of z. Moreover, fi(V ) ⊂ Uαi for i = 1, 2.

A is open: If z ∈ A then f1(z) = f2(z) and so Uα1 = Uα2 . For any y ∈ V , we have

p ◦ f1(y) = f(y) = p ◦ f2(y).

Since p is injective on Uα1 , this means f1(y) = f2(y) and thus y ∈ A. Hence f1|V = f2|V . That is, V is an

open set such that z ∈ V ⊂ A. So A is open in Z .

A is closed: If z ∈ Z \ A then f1(z) 6= f2(z) and so α1 6= α2. Thus Uα1 ∩ Uα2 = ∅. That is,
f1(y) 6= f2(y) for all y ∈ V . Hence V is an open set such that z ∈ V ⊂ Z \A. So Z \A is open in Z. That

is, A is closed .
As A is clopen in Z and Z is connected, A = ∅ or A = Z. We assumed that z0 ∈ A and so A = Z.

That is, f1 = f2 on Z as desired.

Problem 6.2.6

Consider the space X obtained as the quotient space of a planar hexagon and its interior by
identifying boundary edges of the hexagon in pairs according to the following scheme:

1 2

6 3

5 4

a

bc

b c

a

Compute the homology groups of X.
Notes and Comments

Proof. This cute problem has a very short solution if you can identify X. Note that, by relabeling based

1Here’s our stack of pancakes! Eat up!
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on the end points of our edges, we obtain

1 2

2 2

2 1

a

bc

b c

a

.

Possibility 1: Note that the edges ca repeat in the same order (having the same orientation). This
implies that they can be collapsed to a single new edge d and so we have

2 2

2 2

d

b b

d

This space is better known as the Klein bottle and has homology groups

Hq(X) =

{
Z q = 0

Z⊕ Z/2Z q = 1
.

Possibility 2: Under stress and feeling as though we should write in more details, we might miss out
on the first possibility. However, not all is lost: this CW-complex for X has 2 vertices, 3 edges, and a face.
Let’s use cellular homology!

The cellular chain groups Wq of X are

. . . 0 Z Z3 Z2 0
∂3 ∂2 ∂1 ∂0

where W0 = Z[1, 2], W1 = Z[a, b, c], and W2 = Z[f ] where f is oriented counterclockwise. With respect to
these bases, the boundary maps have matrix representations

[∂0] =
(
0 0

)
, [∂1] =

(
−1 0 1
1 0 −1

)
, [∂2] =

−2
0
−2

 .

The Smith normal form of these maps are, respectively,

(
1 0

)
,

(
1 0 0
0 0 0

)
, and

2
0
0

 .

Hence we have

H0(X) =
ker ∂0

im ∂1

∼=
Z2

Z
∼= Z

H1(X) =
ker ∂1

im ∂2

∼=
Z2

2Z
∼= Z⊕ Z/2Z

H2(X) =
ker ∂2

im ∂3

∼= 0

That is, Hq(X) is as above for all q.
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Topology Exam

Summer 2013

Problem 6.3.1

Prove that the Lie bracket of two vector fields is a vector field.

Notes and Comments

Proof. Let V and W be smooth vector fields on M . It’s enough to show that [V,W ] is a derivation. Let
f, g ∈ C∞(M). Then, since V and W are derivations,

V (W (fg)) = V (fW (g) +W (f)g)

= V (fW (g)) + V (W (f)g)

= fV (W (g)) + V (f)W (g) +W (f)V (g) + V (W (f))g.

Similarly,
W (V (fg)) = fW (V (g)) +W (f)V (g) + V (f)W (g) +W (V (f))g.

Hence

[V,W ](fg) = V (W (fg))−W (V (fg)) = fV (W (g)) + V (W (f))g − fW (V (g))−W (V (f))g

= f(VW (g)−WV (g)) + (VW (f)−WV (f))g

= f [V,W ](g) + [V,W ](f)g.

Thus [V,W ] is a derivation and hence a smooth vector field.

Problem 6.3.2

If 1 ≤ n < m, show that no open subset of Rn is homeomorphic to an open subset of Rm.

Notes and Comments

Proof. Let Uopen ⊆ Rn and V open ⊆ Rm. Assume that ϕ is a homeomorphism. Then, at p ∈ U and ϕ(p),
we may compute the local homologies of U and V . Since local homology is local,

Hq(U | p) ∼= Hq(Rn | p) =

{
Z q = n

0 else
.

Thus, since ϕ is a homeomorphism, Hq(V | ϕ(p)) ∼= Hq(Rm | ϕ(p)) must agree with that of U at p. That
is, n = q = m.

Problem 6.3.3

(a) Does there exist a manifold whose boundary is the disjoint union of two Klein bottles? Con-
struct such a manifold or prove it does not exist.

(b) Does there exist an orientable manifold whose boundary is the disjoint union of two Klein
bottles? Construct such a manifold or prove it does not exist.
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(c) Does there exist a Lie group whose boundary is a torus S1 × S1? Construct such a Lie group
or prove it does not exist.

Notes and Comments

Proof. For (a), let K be the Klein bottle. Then K × [0, 1] is a manifold with boundary ∂(K × [0, 1]) =
K × ∂[0, 1] = K × {0} ∪K × {1}. Thus we have such a manifold.

However, (b) is false. If M is orientable then ∂M must be as well. Since the Klein bottle is non-
orientable, it (and thus unions of copies of it) cannot be the boundary of an orientable manifold.

Additionally, (c) is incredibly false. Lie groups have no boundary and thus the torus2 cannot be the
boundary of a Lie group.

Problem 6.3.4

Let G be a topological group; that is, G is a group equipped with a topology such that multiplication
µ : G × G → G and inversion ι : G → G are continuous. Show that the fundamental group π1(G, e)
is abelian.

Notes and Comments

Proof. Let σ and τ be loops at e. Define, for s ∈ [0, 1],

fs(t) =

{
σ
(

2t
1+s

)
if 0 ≤ t ≤ s+1

2

e if s+1
2
≤ t ≤ 1

and gs(t) =

{
e if 0 ≤ t ≤ 1−s

2

τ
(

2t+s−1
1+s

)
if 1−s

2
≤ t ≤ 1

.

Intuitively, fs is a homotopy from σ ∗ e to σ and gs is a homotopy from e ∗ τ to τ . While the definitions
of fs and gs are seemingly opaque, we construct fs in the Notes for this problem as an example.

Since multiplication is continuous, fsgs is a homotopy between σ ∗ τ and στ . Thus [σ][τ ] = [στ ] (for
any pair of loops). Moreover, gsfs is a homotopy between σ ∗ τ and τσ. Hence [σ][τ ] = [τσ] = [τ ][σ], and
so π1(G, e) is abelian.

Problem 6.3.5

Prove that the wedge product of differential forms gives a well-defined operation on the cohomology
groups of the manifold. (This operation is called the cup product of cohomology classes.)

Notes and Comments

Proof. See the solution to problem 6 of the Summer 2012 exam (6.1.6).

Problem 6.3.6

Suppose that A and B are subspaces of X and that B is a deformation retract of A. Show that
Hq(X,B) ∼= Hq(X,A) for all g ≥ 0. (You may use the 5-lemma without proof.)

Notes and Comments

2Being a surface of sound mind.
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Proof. Since B is a deformation retract of A, the homology groups are isomorphic via the inclusion i :
B → A. Consider the long exact sequences associated to (X,A) and (X,B):

· · · Hq(B) Hq(X) Hq(X,B) Hq−1(B) Hq−1(X) · · ·

· · · Hq(A) Hq(X) Hq(X,A) Hq−1(A) Hq−1(X) · · ·

i∗ Id∗ f i∗ Id∗

Here, the map f : (X,B)→ (X,A) denotes the inclusion of pairs. Since all the non-boundary maps involved
in this diagram are inclusions, we get lovely commuting squares. Since i∗ and Id∗ are isomorphisms (on
both sides), the Five Lemma states that f must also be an isomorphism.
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Topology Exam

Fall 2013

Problem 6.4.1

Let X and Y be topological spaces with x0 ∈ X and y0 ∈ Y . Let X × Y have the product topology.
Show that π1(X × Y, (x0, y0)) is isomorphic to π1(X, x0)× π1(Y, y0).

Notes and Comments

Proof. Since X × Y has the product topology, the projection maps

πX : X × Y → X and πY : X × Y → Y

are continuous and thus induce group homomorphisms

πX∗ : π1(X × Y, (x0, y0))→ π1(X, x0) and πY ∗ : π1(X × Y, (x0, y0))→ π1(Y, y0).

By the universal property of the product, there exists a unique map f such that the diagram

π1(X × Y, (x0, y0))

π1(X, x0) π1(X, x0)× π1(Y, y0) π1(Y, y0)

f
πX∗ πY ∗

pr1 pr2

commutes. Observe that for a path u ∈ π1(X × Y, (x0, y0)),

f([u]) = ([πX(u)], [πY (u)]).

It will suffice to show that f is injective and surjective.
Injective: Let [u] ∈ Ker(f) be represented by u(t) = (px(t), py(t)). Then [πX(u)] = [cx0 ] and [πY (u)] =

[cy0 ].
Note that πX(u)(t) = px(t) and there is a homotopy hX : I × I → X between px and cx0 . Similarly

πY (u)(t) = py(t) and there is a homotopy hY between py and cy0 .
Define a continuous function h : I × I → X ×Y by h(s, t) = (hX(s, t), hY (s, t)) is continuous. Then we

have
h(0, t) = (px(t), py(t)) = u(t), h(1, t) = (x0, y0), and h(s, 0) = h(s, 1) = (x0, y0).

Hence u is homotopic to c(x0,y0) via h. Thus [u] = [c(x0,y0)] and so f is injective.
Surjective: Let [uX ] ∈ π1(X, x0) and [uY ] ∈ π1(Y, y0). Then (uX , uY ) : [0, 1] → X × Y is a loop in

X × Y based at (x0, y0). Moreover,

f([(uX , uY )]) = (πX∗([(uX , uY )]), πY ∗([(uX , uY )])) = ([πX ◦ (uX , uY )], [πY ◦ (uX , uY )]) = ([uX ], [uY ]).

Thus f is surjective.
Hence f is an isomorphism and thus π1(X × Y, (x0, y0)) ∼= π1(X, x0)× π1(Y, y0) as desired.
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Problem 6.4.2

Let M be a smooth manifold, X a continuous vector field on M (i.e., a continuous section of the
tangent bundle TM). There are two reasonable definitions of what it means for X to be smooth
at a point p in M :

(a) Definition 1: Let (x, U) be a local coordinate system defined on an open neighborhood U of p;

then X can be expressed in local coordinates as X =
n∑
i=1

ai
∂

∂xi
for some real-valued functions

a1, . . . , an defined on U . Then X is smooth at p provided that each coordinate function ai is
smooth at p.

(b) Definition 2: The vector field X is smooth at p if, for every smooth function f defined on a
neighborhood of p, the function X(f) is smooth at p.

Notes and Comments

Proof. (a)⇒ (b): Assume f is a smooth function defined on a neighborhood V of p. Let (x, U) be a chart

near p with U ⊆ V .3 Then, in coordinates,

X(f) =
n∑
i=1

ai
∂f

∂xi
.

Since ai is smooth at p by (a) and f is smooth on V 3 p, X(f) is the sum of products of functions smooth
at p. That is, X(f) is smooth at p.

(b)⇒ (a): Let (x, U) be a chart near p. Then the coordinate maps xj are smooth functions on U for

all j = 1, . . . , n.4 so X(xj) is smooth at p by (b). That is, letting δij be the Kronecker delta function,

X(xj) =
n∑
i=1

ai
∂xj

∂xi
=

n∑
i=1

aiδij = aj.

That is, aj is smooth at p. So each of the coordinate maps is smooth at p as desired.

Problem 6.4.3

Show that Sn−1 is not a retract of En = {x ∈ Rn | ‖x‖ ≤ 1} for n ≥ 1. Use this to prove the Brouwer
Fixed-Point Theorem; that is, show that if n ≥ 1, then any continuous map f : En → En must have
a fixed point.

Notes and Comments

Proof. Assume r : En → Sn−1 is a retraction of i : Sn−1 ↪→ En. Then r ◦ i = idSn−1 . On the level of
homology5, we have

idSn−1∗ = (r ◦ i)∗ = r∗ ◦ i∗.
3We may assume U ⊆ V since, otherwise, we could simply intersect U with V .
4Technically this function isn’t defined on U but rather on x(U). However, in the great tradition of differential topology,

we conflate the functions xj and xj ◦ x−1 because it’s “easier.”
5We use reduced homology specifically because we don’t want to single out the case n = 1. Laziness wins.
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Thus we have a commuting diagram (considered in degree n− 1 ≥ 0):

Z = H̃n−1(Sn−1) H̃n−1(En) = 0

H̃n−1(Sn−1) = Z

i∗

idSn−1∗
r∗

That is, IdSn−1∗ factors through the 0 map (r∗), but this is impossible.	Hence En has no retraction onto
Sn−1.

Proof of the Fixed-Point Theorem. Assume f : En → En has no fixed point. For x ∈ En, define r(x) to
be the intersection of the ray from f(x) to x with Sn−1. That is, r(x) is the point of (1− t)f(x) + tx such
that ‖(1− t)f(x) + tx‖ = 1. In particular, r|Sn−1 = IdSn−1 . We know that r : En → Sn−1 is continuous
and thus r is a retraction. However, no such retraction may exist.	Hence f has a fixed point.

Problem 6.4.4

(a) Does a boundary of a parallelizable manifold have to be a parallelizable manifold? Prove your
answer.

(b) Does a product of parallelizable manifolds have to be a parallelizable manifold? Prove your
answer.

(c) Is the Klein bottle a parallelizable manifold? How about the torus S1×S1? Prove your answer.

Notes and Comments

Proof. (a) False Consider the compact orientable 3-manifold better known as the 3-ball, B3. This
manifold is parallelizable but its boundary is S2, which admits no global vector field (let alone
frame) by the Hairy Ball Theorem.

(b) True Let M and N be manifolds with global frames (Ei)
dimM
i=1 and (Fj)

dimN
j=1 respectively. Then

{E1, . . . , EdimM , F1, . . . , FdimN} is a global frame for M ×N .

(c) False, True Since any parallelizable manifold must be orientable, the Klein bottle’s lack of orien-
tability prohibits being parallelizable. However, the torus is parallelizable since it is a Lie group

(alternatively, each S1 factor has a global framing
∂

∂θi
and we may apply (b)).

Problem 6.4.5

Let n ≥ 2 and B ⊂ Sn a wedge of two spheres; that is, B is a closed subspace of Sn homeomorphic
to a figure eight so that B = C ∪D with C and D homeomorphic to S1 and C ∩D a single point.
Compute Hq(S

n \B) for q ≥ 0.

Notes and Comments
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Theorem 6.4.1 With all notation as above we have for n ≥ 2

Hq(S
n \B) =


Z⊕ Z if q = n− 2 > 0

Z if q = 0 and n > 2

Z⊕ Z⊕ Z if q = 0 and n = 2

0 otherwise.

To prove this we will use two tools, the Mayer–Vietoris exact sequence and the following characterization
of reduced homology of Sn \ Sk.
Theorem 6.4.2 (Theorem 6.3, Massey pg. 214): Let A be a subset of Sn which is homeomorphic to

Sk, 0 ≤ k ≤ n− 1. Then H̃n−k−1(Sn \ A) = Z and H̃q(S
n \ A) = 0 if q 6= n− k − 1.

Proof of Theorem 6.4.1. We will separate this into three cases, (1) q > 0, (2) q = 0 and n > 2, and (3)
q = 0 and n = 2. In all cases we will use the fact that we can write Sn \ B as an intersection of spaces
that Theorem 6.4.2 already tells us about. To this end let W1 = Sn \ C and W2 = Sn \D, so W1,W2 are
n-spheres with a circle deleted. Also W1 ∩W2 = Sn \ B is the space we’re actually aiming for. Finally
W1 ∪W2 is just Sn with a single point removed so it has very simple homology (it’s a contractible space).

Mayer–Vietoris gives the long exact sequence

· · · → Hq+1(W1 ∪W2)→ Hq(S
n \B)→ Hq(W1)⊕Hq(W2)→ Hq(W1 ∪W2)→ · · ·

and we will focus on certain finite exact sequences that can be obtained from this long exact sequence.
Case 1: (q > 0) For this case we focus on the finite exact sequence

Hq+1(W1 ∪W2)→ Hq(S
n \B)→ Hq(W1)⊕Hq(W2)→ Hq(W1 ∪W2).

Since q > 0 and W1 ∪W2 is contractible we know Hq+1(W1 ∪W2) ∼= Hq(W1 ∪W2) ∼= 0, meaning that the
middle map above is an isomorphism and so

Hq(S
n \B) ∼= Hq(W1)⊕H1(W2).

But Hq(W1) ∼= Hq(W2) ∼= Z if q = n − 1 − 1 = n − 2 by Theorem 6.4.2. If however q 6= n − 2 then
Hq(W1) ∼= Hq(W2) ∼= 0. This verifies the result for q > 0.

Case 2: (n > 2, q = 0) For this case we first note that the Mayer–Vietoris sequence is slightly longer
(there is 0 at the end is the only difference).

H1(W1 ∪W2)→ H0(Sn \B)→ H0(Sn \W1)⊕H0(Sn \W2)→ H0(W1 ∪W2)→ 0,

and again we use the fact that W1∪W2 is contractible to note that H1(W1∪W2) ∼= 0 and H0(W1∪W2) ∼= Z.
Since n > 2 we must have 0 6= n − 2, meaning that H0(Sn \W1) ∼= H0(Sn \W2) ∼= Z by Theorem 6.4.2.
Then rewriting this exact sequence we get

0→ H0(Sn \B)→ Z⊕ Z→ Z→ 0,

All three of these groups are abelian, so the rank theorem for short exact sequences of abelian groups
means that the rank of H0(Sn \B) must be 2− 1 = 1. But of course H0(Sn \B) is actually a free abelian
group, so H0(Sn \B) = Z.

Case 3: (n = 2, q = 0) The only difference now is that H0(S2 \W1) = H0(S2 \W2) = Z⊕Z (again by
Theorem 6.4.2) and the short exact sequence we obtain for the homology group in question is now

0→ H0(Sn \B)→ Z⊕ Z⊕ Z⊕ Z→ Z→ 0.

Again though the rank theorem tells us that the rank of H0(S2 \ B) must be 4 − 1 = 3, and since this
group is free abelian we have H0(S2 \B) = Z⊕ Z⊕ Z.
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Problem 6.4.6

(a) Let ϕ : S2 → R17 be a smooth map. Let ω be a closed 2-form on R17. Compute the integral∫
S2 ϕ

∗ω.

(b) Let ϕ : S3 → S2 and ψ : S2 → S4 be smooth maps of oriented manifolds. Let ω be a 3-form on
S4. Compute

∫
S3(ψ ◦ ϕ)∗ω.

Notes and Comments

Proof of (a). Since ω is a closed 2-form on R17 and HdR
2(R17) = 0, ω is an exact 2-form. Thus ω = dη.

Hence, since d commutes with “everything” (†) and Stokes’ Theorem (∗),∫
S2

ϕ∗ω =

∫
S2

ϕ∗(dη)
(†)
=

∫
S2

dϕ∗η
(∗)
=

∫
∂S2

ϕ∗η =

∫
∅
ϕ∗η = 0.

That is,

∫
S2

ϕ∗ω = 0 .

Proof of (b). Since S2 is 2-dimensional, Ω3(S2) = 0. Since ϕ∗ω is a 3-form on S2, ϕ∗ω = 0. Hence∫
S3

(ψ ◦ ϕ)∗ω =

∫
S3

ϕ∗ ◦ ψ∗ω =

∫
S3

ϕ∗0 = 0.

Thus

∫
S3

(ψ ◦ ϕ)∗ω = 0 .
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Topology Exam

Summer 2014

Problem 6.5.1

Let M be a smooth manifold, let x0, x1 ∈ M , and let α, β : [0, 1] → M be smooth paths such that
x0 = α(0) = β(0) and x1 = α(1) = β(1). We say that α is smoothly path homotopic to β if there exists
a smooth map h : [0, 1]× [0, 1]→M satisfying the conditions

• For all s ∈ [0, 1], we have h(s, 0) = α(s) and h(s, 1) = β(s).

• For all t ∈ [0, 1], we have h(0, t) = x0 and h(1, t) = x1.

Let ω ∈ Ω1(M) be a closed smooth 1-form on M . Show that if α is smoothly path homotopic to β,
then ∫

α

ω =

∫
β

ω.

Notes and Comments

Proof. Since h is a smooth map [0, 1]2 → M , h is a smooth 2-cube on M . Then the boundary of h is the
1-chain

∂h = α + cx1 − β − cx0
where cz : [0, 1]→M is the constant function cz(t) = z.

Since ω is closed, dω = 0. Hence, by the parametrized Stokes’ theorem,

0 =

∫
h

0 =

∫
h

dω =

∫
∂h

ω =

∫
α

ω +

∫
cx1

ω −
∫
β

ω −
∫
cx0

ω =

∫
α

ω −
∫
β

ω.

Thus 0 =
∫
α
ω −

∫
β
ω and so the result follows.

Problem 6.5.2

Let S be the surface
S =

{
(x, y, z) ∈ R3 | x− yz + z3 = 0

}
⊆ R3.

Let π : R3 → R2 be the projection (x, y, z) 7→ (x, y). Let H be the collection of points p ∈ S such
that π|S : S → R2 is not a local diffeomorphism in a neighborhood of p. Show that H is a smooth
curve in R3 and determine a parametrization for it.

Notes and Comments

Proof. Coordinates on S are given by ϕ : S → R2 where ϕ(x, y, z) = (y, z).6

By the Inverse Function Theorem, p ∈ H is equivalent to the pushforward (π|S)∗,p not being invertible.
In coordinates, we have πS ◦ ϕ−1(y, z) = (yz − z3, y) and we can easily7 compute

(πS ◦ ϕ−1)∗,(y,z) =

(
z y − 3z2

1 0

)
.

6Just note that the x-coordinate is smoothly determined by y and z.
7... when not under qual pressure. Otherwise, all bets are off.
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This matrix has full rank unless y = 3z2. Hence (x, y, z) ∈ H if and only if y = 3z2 and x = yz− z3 = 2z3.
That is

H =
{

(2z3, 3z2, z) | z ∈ R
}
.

Thus we can parametrize H by h(z) = (2z3, 3z2, z) .

Without the parametrization, we can still tell that H is a smooth curve. By the Implicit Function
Theorem, restricting to H, the pushforward has rank 1. So the codimension is 1 and that means that H
is a 1-manifold in S.

Problem 6.5.3

Let M be a smooth n-manifold with smooth atlas of charts A . Suppose that for all charts (x, U)
and (y, V ) in A with U ∩ V 6= ∅, the change of charts map

y ◦ x−1 : x(U ∩ V )→ y(U ∩ V )

has derivative
D(y ◦ x−1)(x(p)) : Rn → Rn

with positive determinant for every p ∈ U ∩ V . Show that there is a nowhere vanishing smooth
n-form ω ∈ Ωn(M).

Notes and Comments

Proof. For a chart (x, U) define
νx = dx1 ∧ dx2 ∧ · · · ∧ dxn

where x = (x1, x2, . . . , xn). Let {ϕx}(x,U)∈A be a partition of unity subordinate to A . Then we can “glue”
the local n-forms together using the partition of unity:

ν =
∑

(x,U)∈A

νx.

Then ν ∈ Ωn(M) .

For charts (x, U) and (y, V ) with U ∩ V 6= ∅, we have D(y ◦ x−1)(x(p)) : Rn → Rn is a linear map for
p ∈ U ∩ V . Thus, on U ∩ V , we have

νy = dy1 ∧ dy2 ∧ · · · ∧ dyn = detD(y ◦ x−1)(dx1 ∧ dx2 ∧ · · · ∧ dxn) = detD(y ◦ x−1)νx

by top-degree pullback.8 By assumption, detD(y ◦ x−1) > 0 and so, in each chart, ν is nowhere vanishing.

That is, ν is nowhere vanishing on M .

8It is, perhaps, improper to talk about the derivative/pushforward without referencing a point of the manifold. However,
the physical and mental space saved by not referencing a point is well worth this disregard for details.
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Problem 6.5.4

Let X and Y be topological spaces. Let X tY denote the disjoint union of X and Y , endowed with
the coproduct topology, and let iX , iY : X, Y → X t Y be the natural inclusion maps.

For any homology theory satisfying the Eilenberg–Steenrod axioms, prove that the induced maps

iX∗ : Hq(X)→ Hq(X t Y ) and iY ∗ : Hq(Y )→ Hq(X t Y )

induce an isomorphism
Hq(X)⊕Hq(Y )

∼→ Hq(X t Y )

for each q ≥ 0.
Notes and Comments

Proof. Consider the pair (X t Y,X). Then we have an associated long exact sequence

· · · Hq(X) Hq(X t Y ) Hq(X t Y,X) Hq−1(X) · · ·iX∗ ∂ i∗

We claim this breaks up into short exact sequences.

Pick a point x0 ∈ X. Define r : X t Y → X by

{
r|X = IdX

r|Y = cx0
. Then r ◦ iX = IdX and so r is a

retraction of iX . By functoriality, this means that

r∗ ◦ iX∗ = (r ◦ iX)∗ = IdX∗ .

Thus iX∗ is injective .

By exactness of the long exact sequence, im ∂ = ker iX∗ = 0. That is, ∂ = 0 . Thus

0 Hq(X) Hq(X t Y ) Hq(X t Y,X) 0
iX∗

r∗

is a split short exact sequence. Hence Hq(X t Y ) ∼= Hq(X)⊕Hq(X t Y,X) .

Consider (Y,∅) = (X t Y \X,X \X)
iY
↪→ (X t Y,X).

Since X is clopen in X t Y ,

X =
◦
X = X

and so by excision9, iY induces an isomorphism iY ∗ : Hq(Y ) → Hq(X t Y,X). That is, we have

Hq(Y ) ∼= Hq(X t Y,X) .

Thus Hq(X t Y ) ∼= Hq(X)⊕Hq(Y ) via iX∗ and iY ∗ as desired.

9The excision axiom states: Let X ⊇ A ⊇ B. If B ⊆
◦
A, then (X \B,A \B) ↪→ (X,A) induces isomorphism on H•.
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Problem 6.5.5

Let f : S2 → T2 be any continuous map from the 2-sphere S2 to the 2-torus T2 = S1×S1. Show that
f is homotopic to a constant map.

Notes and Comments

Proof. Assume f : S2 → T2 is continuous. Note that the universal cover of T2 is R2. Since S2 is path
connected, f lifts to the universal cover of T2 by the Lifting Lemma. That is, there is a continuous map

f̃ : S2 → R2 such that

R2

S2 T2

p
f̃

f

commutes.10

Since π1(R2) = 0, f̃ is nullhomotopic. That is, there is a homotopy of f̃ and a constant map c : S2 → R2.

Then p ◦ h is a homotopy of p ◦ f̃ = f and p ◦ c, which is still a constant map. Hence f is nullhomotopic
as desired.

Problem 6.5.6

See the Fall 2012 exam (problem 6).

Notes and Comments

Proof. The statement and solution for this problem are (effectively) identical.

10For complete precision, we should choose base points x ∈ S2, f(x) ∈ T2, and e ∈ p−1(f(x)) ⊆ R2. ... Eh.
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Topology Exam

Fall 2014

Problem 6.6.1

Let C : R3 × R3 → R3 by C(v, w) = v × w, the usual vector cross product. Determine the critical
points of C. Conclude that for 0 6= u ∈ R3, the set {(v, w) ∈ R3 × R3 | v × w = u} is a smooth
manifold. If {e1, e2, e3} denotes the standard basis for R3, determine a basis of the tangent space
T(e1,e2)(C

−1(e3)) as a vector subspace of T(e1,e2)(R3 × R3) ∼= R6.

Notes and Comments

Proof. For vectors v, w ∈ R3, the cross product is given by C(v, w) =

 v2w3 − v3w2

−v1w3 + v3w1

v1w2 − v2w1

. Thus the

pushforward of C is

C∗,(v,w) =

 0 w3 −w2 0 −v3 v2

−w3 0 w1 v3 0 −v1

w2 −w1 0 −v2 v1 0

 .

The critical points of C correspond to the pairs of vectors such that rankC∗,(v,w) < 3.
Step 1: We claim that C−1(0) = {critical points of C}.
Recall that v × w = 0 is equivalent to v = λw for some λ ∈ R. So we get one containment easily:
(⊆): Assume v = λw. Then

C∗,(v,w) =

 0 w3 −w2 0 −λw3 λw2

−w3 0 w1 λw3 0 −λw1

w2 −w1 0 −λw2 λw1 0

 .

Now the submatrix M =

 0 w3 −w2

−w3 0 w1

w2 −w1 0

 has determinant

detM = −w3(−w3 · 0− (w2w1)) + (−w2)(w3w1 − w2(0)) = 0.

If λ = 0, switching in any other column won’t help the determinant because we would have a column of all
0’s. If λ 6= 0, switching in another column will multiply the determinant by λ or two columns will be linear
combinations of one another. In all cases, we get that the determinant is 0. Thus every 3 × 3 submatrix
of C∗,(v,w) has determinant 0. That is, rankC∗,(v,w) < 3. So (v, w) is a critical point of C.

(⊇): Assume (v, w) is a critical point of C. We will show v×w =

 v2w3 − v3w2

−v1w3 + v3w1

v1w2 − v2w1

 = 0. Consider the

following submatrices of C∗,(v,w):

A1 =

 0 −v3 −w2

−w3 0 w1

w2 v1 0

 , A2 =

 0 w3 v2

v3 0 −v1

−v2 −w1 0
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Then, since (v, w) is a critical point,

0 = detA1 = w2(v1w3 − v3w1) and 0 = detA2 = v2(v1w3 − v3w1).

Thus v1w3 = v3w1 or v2, w2 = 0 . If the latter holds,

C∗,(v,w) =

 0 w3 0 0 −v3 0
−w3 0 w1 v3 0 −v1

0 −w1 0 0 v1 0

 .

Now consider

A3 =

 w3 0 −v3

0 w1 0
−w1 0 v1

 and A4 =

 w3 0 −v3

0 −v1 0
−w1 0 v1

 .

Then
0 = detA3 = w1(v1w3 − v3w1) and 0 = detA4 = v1(v3w1 − v1w3).

Thus v1w3 = v3w1 or w1, v1 = 0 . In either case, v × w = 0.
Going back to our original choices, we must consider the case where v1w3 = v3w1. By appropriate

choices of other submatrices, we get:

( v2w3 = v3w2 or v1, w1 = 0 ) and ( v1w2 = v2w1 or v3, w3 = 0 ).

Analogous arguments show that we obtain the first equality in each pair regardless. Hence v × w = 0.
Thus we have shown that the critical points are precisely C−1(0).
Step 2: For u 6= 0, we know by Step 1 that C|C−1(u) has full rank. By the Implicit Function Theorem,

C−1(u) is a 3-manifold (since 6− rankC∗,(v,w) = 6− 3 = 3).
Step 3: Consider a tangent vector α′(0) ∈ T(e1,e2)(C

−1(e3)). That is, α : (−ε, ε)→ C−1(e3) is a smooth
curve so that α(0) = (e1, e2). As a map into R6, we have that

α(t) = (v1(t), v2(t), v3(t), w1(t), w2(t), w3(t))

where
v1(0) = w2(0) = 1 and v2(0) = v3(0) = w1(0) = w3(0) = 0 .

Moreover, since α(t) ∈ C−1(e3), we know that

v1(t)w3(t) = v3(t)w1(t) , v2(t)w3(t) = v3(t)w2(t) , and v1(t)w2(t)− v2(t)w1(t) = 1 .

Taking the derivatives of these expressions at t = 0, we obtain (in order):

w′3(0) = 0 , v′3(0) = 0 , w′2(0) = −v′1(0) .

Thus α′(0) = (v′1(0), v′2(0), 0, w′1(0),−v′1(0), 0). Hence a basis for T(e1,e2)(C
−1(e3)) is

B = {e1 − e5, e2, e4} .
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Problem 6.6.2

Let p : Y → X be a covering map. Let Z be any connected space and let f : Z → X be a continuous
map. Suppose that f1 : Z → Y and f2 : Z → Y are continuous lifts of f (i.e., p ◦ fi = f for i = 1, 2)
that agree at some point z0 ∈ Z. Show that f1 = f2 on all of Z.

Proof. See the solution to problem 5 on the Fall 2012 exam (6.2.5).

Notes and Comments

Problem 6.6.3

Consider the circle S1 with its usual CW-structure with a single 0-cell e0 and a single 1-cell e1. Let X
be the space obtained from S1 by attaching 2-cells e2

1 and e2
2 by maps of degree 2 and 3, respectively.

Compute the homology groups of X.

Notes and Comments

Proof. The cellular chain groups Wq of X are

· · · 0 Z2 Z Z 0
∂3 ∂2 ∂1 ∂0 .

That is W0 = Z[e0], W1 = Z[e1], and W2 = Z[e2
1, e

2
2]. With respect to these bases, the boundary maps have

matrix representations
[∂0] =

(
0
)
, [∂1] =

(
0
)
, and [∂2] =

(
2 3

)
where the representation of ∂2 uses the assumptions on how e2

1 and e2
2 were attached. The Smith normal

form of [∂2] is
(
1 0

)
and thus we have:

H0(X) =
ker ∂0

im ∂1

∼= Z

H1(X) =
ker ∂1

im ∂2

=
Z
Z
∼= 0

H2(X) =
ker ∂2

im ∂3

=
Z
0
∼= Z.

Hence

Hq(X) =

{
Z if q = 0, 2

0 else
.

Problem 6.6.4

Let f ∈ R[x, y, z] be a homogeneous quadratic polynomial with real coefficients. Let
D3 = {x ∈ R3 | ‖x‖ ≤ 1} be the unit disk and S2 = {x ∈ R3 | ‖x‖ = 1} the unit sphere in Euclidean
space R3. Let ν be the volume form on S2, where S2 is given the orientation induced from the
standard orientation of D3. Prove that ∫

D3

∆f = 2

∫
S2
f · ν
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where ∆f is the Laplacian ∆f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
. [Hint: Write ∆f as a divergence.]

Notes and Comments

Proof. Observe that 2f = x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
(∗) since f is a homogeneous quadratic polynomial (for

instance, one copy of cxy appears in x
∂f

∂x
and the other in y

∂f

∂y
). Also note that νD3 = dx ∧ dy ∧ dz is

the standard orientation on D3 and N = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
is an outward pointing normal vector field (so

ν = NyνD3).

Define the vector field V =
∂f

∂x

∂

∂x
+
∂f

∂y

∂

∂y
+
∂f

∂z

∂

∂z
. Then we have

〈V,N〉 = x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z

(∗)
= 2f.

That is, 〈V,N〉 = 2f (∗∗).
Using the dual basis expansion and omitting the gruesome computations, we obtain11

V yνD3 = dx(V ) dy ∧ dz + (−1)1dy(V ) dx ∧ dz + (−1)2dz(V ) dx ∧ dy

=
∂f

∂x
dy ∧ dz − ∂f

∂y
dx ∧ dz +

∂f

∂z
dx ∧ dy

By definition, div V νD3 = d(V yνD3) and so we obtain12

div V νD3 =

(
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

)
νD3 = ∆f νD3 .

That is, div V = ∆f . Hence by the Divergence Theorem (†),∫
D3

∆f νD3 =

∫
D3

div V νD3
(†)
=

∫
S2
〈V,N〉 ν (∗∗)

=

∫
S2

2f ν = 2

∫
S2
f ν.

Thus we have obtained the desired equality.

Problem 6.6.5

Let RPn denote real projective n-space. Show that if n > 0 is even, then every continuous map
f : RPn → RPn has a fixed point.

Notes and Comments

11The intermediate step shown has been left to give the reader the idea that the jump should be obvious. In reality, writing
down every detail would be tedious, time consuming, and unenlightening.

12This time, it’s worse.
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Proof. Since RPn =
Sn

p ∼ −p
, Sn is the 2-fold cover of RPn with covering map p. So f lifts to a map

f̃ : Sn → RPn and thus we have a wonderful commuting diagram

Sn Sn

RPn RPn
p

f̃

g

p

f

.

Since Sn is path connected, f̃ lifts to the universal cover of RPn (which is Sn since π1(Sn) = 0 for n > 1)
by the Lifting Lemma.13 Call this map g : Sn → Sn.

Assume that f has no fixed points. Then f(p) 6= p for all p ∈ RPn. Consequently, f̃(p) 6= p for all

p ∈ Sn. Hence g(p) 6= p,−p for all p ∈ Sn.

As g is a continuous map between n-spheres, we can compute its Brouwer degree.

• Since g(p) 6= p for all p, g is homotopic to the antipodal map A. As Brouwer degree is preserved

under homotopy, deg g = degA = (−1)n+1.14 Since n is even, deg g = −1 .

• Since g(p) 6= −p for all p, g is homotopic to the identity map. Thus deg g = 1 .

The contradiction is stunningly apparent and so f must have a fixed point.

Problem 6.6.6

Let M be a smooth n-manifold whose smooth structure is defined by a maximal atlas M of charts
(x, U), where U ⊆M is open and x : U → x(U) ⊆ Rn is a homeomorphism of U with an open subset
of Rn. Suppose that there is a nowhere vanishing smooth n-form ω ∈ Ωn(M). Show that there is a
subcollection A of B such that

• The collection {U | (x, U) ∈ A } cover M .

• For any two overlapping charts (x, U), (y, V ) ∈ A , i.e., any two charts in A such that U∩V 6= ∅,
the derivative D(y ◦ x−1)(x(p)) : Rn → Rn of the mapping y ◦ x−1 : x(U ∩ V ) → y(U ∩ V ) has
positive determinant for every p ∈ U ∩ V .

Notes and Comments

Proof. On a chart (x, U), ω = fx dx
1 ∧ dx2 ∧ · · · ∧ dxn where fx 6= 0 since ω is nowhere vanishing. Since

fx is smooth (in particular, continuous), either fx > 0 or fx < 0.
Let A = {(x, U) ∈M | fx > 0}. We will show that A is the desired collection.

• (A is an atlas) Suppose that fx < 0 for a chart (x, U). Since M is a maximal atlas, the chart (x′, U)
where

x′ = (x2, x1, x3, x4, . . . , xn)

13Once again, we should specify base points. Hah!
14A quick proof of this follows from the fact that A is the composition of n+ 1 reflections.
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is in M . Then

ω = fx′dx
2 ∧ dx1 ∧ dx3 ∧ dx4 ∧ · · · ∧ dxn = fx′(−1)︸ ︷︷ ︸

fx

dx1 ∧ dx2 ∧ · · · ∧ dxn.

As fx < 0, fx′ = −fx > 0. Hence (x′, U) ∈ A . As the domains of the charts cover M , this shows
that the domains of the charts in A also cover M .

• (A is compatible) For overlapping charts (x, U) and (y, V ), we have

fxdx
1 ∧ dx2 ∧ · · · ∧ dxn = ω = fy dy

1 ∧ dy2 ∧ · · · ∧ dyn

= fy · detD(y ◦ x−1) dx1 ∧ dx2 ∧ · · · ∧ dxn.

That is, fx = fy · detD(y ◦ x−1). Since fx, fy > 0, we have detD(y ◦ x−1) > 0 .

Thus we have the desired atlas.
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Topology Exam

Summer 2015

Problem 6.7.1

Show that any map S2 → S1 × S1 is nullhomotopic. [You may use without proof that S2 is simply
connected.]

Notes and Comments

Proof. See the solution to problem 5 on the Summer 2014 exam (6.5.5).

Problem 6.7.2

Consider the subspace X of R3 defined by X = A ∪B where

A = {(x, y, 0) | x, y ∈ R}

is the xy-plane and
B = {(0, y, z) | y, z ∈ R, z ≥ 0}

is the upper half of the yz-plane. Show that X is not a topological manifold. [Hint: Consider local
homology.]

Notes and Comments

Proof. If a space Y is a topological n-manifold, its local homology groups must agree with those of Rn.15

That is, for y ∈ Y , Hq(Y | y) =

{
Z q = n

0 else
. We show that this is not true for X.

Recall that Hq(X | x) = Hq(X,X \ {x}). Picking our special point to be 0 ∈ R3, we want to consider
the reduced homology16 associated to the pair (X,X \ {0}). Then the associated long exact sequence is:

· · · H̃q(X \ {0}) H̃q(X) Hq(X | 0) H̃q−1(X \ {0}) · · ·∂

The space X is rather wonderfully constructed. Via the straight-line homotopy, X is contractible and so its

reduced homology vanishes: H̃q(X) = 0 . On the other hand, X \ {0} is homotopy equivalent to S1 ∨ S1:

• Consider Y = S2 ∩X. This space consists of 3 semicircles joined at the points (0,±1, 0). Then the

map r : X \ {0} → Y given by r(x) =
x

‖x‖
is a deformation retraction of X onto Y . That is, X and

Y are homotopy equivalent.

• Y and S1 ∨ S1 are homotopy equivalent by contracting one semicircle to a point (thus joining the
two endpoints of the remaining semicircles together).

15One can show that local homology on the whole space is the same as that in a neighborhood of a point. Since manifolds
are locally Rn, we can do a little dance and move on.

16One might reasonably ask: why reduced homology? Is the full-fat homology not good enough? No, it’s not. Hold on!
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Consequently, since S1 is well-pointed and the reduced homology of the wedge product is the direct sum
of reduced homologies, we have

H̃q(X \ 0) = H̃q(S
1 ∨ S1) = H̃q(S

1)⊕ H̃q(S
1) =

{
Z2 q = 1

0 else
.

Hence our long exact sequence simplifies tremendously:

· · · H̃2(X) = 0 H2(X | 0) Z2 0 = H̃1(X) · · ·∂

By exactness, ∂ is an isomorphism and so H2(X | 0) ∼= Z2 . Thus the local homology of X does not agree

with that of Rn and so X is not a manifold.

Problem 6.7.3

See the Fall 2012 written exam (problem 6).

Notes and Comments

Proof. The statement and solution for this problem are (effectively) identical.

Problem 6.7.4

Compute the Lie bracket [V,W ] of two vector fields

V = x
∂

∂y
− y ∂

∂x
and W = y

∂

∂z
− z ∂

∂y
.

Notes and Comments

Proof. 17 By direct computation,

[V,W ] =
3∑

i,j=1

(
vi
∂wj

∂xi
− wi∂v

j

∂xi

)
∂

∂xj

= x
∂

∂z
− z ∂

∂x
.

Alternatively, compute V (Wf) and W (V f):18

V (Wf) = x
∂f

∂z
+ xy

∂2f

∂y∂z
− xz∂

2f

∂y2
− y2 ∂

2f

∂x∂z
+ yz

∂2f

∂x∂y

and

W (V f) = yx
∂f

∂z∂y
− y2 ∂

2f

∂z∂x
− zx∂

2f

∂y2
+ z

∂f

∂x
+ zy

∂2f

∂y∂x
.

17This shouldn’t be called a proof. Who designed this thing anyway?
18Optionally, one can simply ignore the second-order partial derivatives because they necessarily cancel. This makes

computation faster and less messy.

169



The Written Qual Book Topology: Summer 2015

Then

[V,W ] = VW −WV = x
∂

∂z
− z∂f

∂x
.

Problem 6.7.5

Let Mm be a compact m-dimensional manifold without boundary, with m ≥ 1. Show that for all
k ≥ 1 there is no submersion φ : M → Rk.

Notes and Comments

Proof. To the contrary, suppose that such a submersion φ exists for some k ≥ 1. Then φ is a submersion

between smooth manifolds without boundary and hence φ is an open map. Thus φ(M)open ⊆ Rk .

Since M is compact and Rk is Hausdorff, φ(M)closed ⊆ Rk . Thus φ(M) is clopen in Rk. Since Rk

is connected, this means that φ(M) = Rk. However, M is compact and Rk is not. Thus φ cannot be a
submersion.

Problem 6.7.6

Let f : R2 → R2 be a smooth map and ω = dx ∧ dy be a form on R2. Let

G = {(x, y, f(x, y)) : (x, y) ∈ R2} ⊂ R2 × R2 = R4

be the graph of f and let
πi : R4 = R2 × R2 → R2, i = 1, 2,

be the projections to the first and second factors. Let W = π∗1ω − π∗2ω. Show that f ∗ω = ω if and
only if W |TG = 0.

Notes and Comments

Proof. Firstly, by W |TG we mean ι∗GW where ιG : G→ R4 is the inclusion map. Secondly, by chasing an
element through, we can see that the following diagram commutes:

G R4

R2 R2

Id×f

ιG

π1−π2

Id−f

That is,
(π1 − π2) ◦ ιG ◦ (Id×f) = Id−f.

Hence, using properties of the pullback,

ω − f ∗ω = (Id−f)∗ω = ((π1 − π2) ◦ ιG ◦ (Id×f))∗ ω = (Id×f)∗ι∗G(π∗1ω − π∗2ω) = (Id×f)∗ (W |TG) .

Since Id×f : R2 → G is a diffeomorphism, (Id×f)∗ is injective. Therefore W |TG ≡ 0 if and only if
ω = f ∗ω.
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Topology Exam

Fall 2015

Problem 6.8.1

Show that there is a map S1 × S1 → S2 that is not nullhomotopic. [Hint: Consider collapsing the
1-skeleton of a CW structure on the 2-torus to a point.]

Notes and Comments

Proof. Consider the torus T2 as the appropriate quotient of the unit square [0, 1]2 and the 2-sphere as
the quotient obtained by gluing the entire boundary of [0, 1]2 to a single point ∗ via the continuous map

f̃ : [0, 1]2 → S2. Since the f̃ is well-defined on equivalence classes of points in T2 (the only points being
identified are ∂[0, 1]2 and they all map to ∗), we obtain a continuous surjective map f : T2 → S2.

We claim that f induces an isomorphism f∗ : H2(T2)→ H2(S2). To see this, note that f is cellular (it
maps the n-skeleton of T2 into the n-skeleton of S2). In particular, the 2-cell of the torus e2 is mapped to
the 2-cell of the sphere (identically on the interior). Since the boundary of the 2-cell is 0 in both cases,
f∗([e

2]) 6= 0. Moreover, as the interiors are mapped identically, this must be the generator of H2(S2). That
is f∗ maps the generator of H2(T2) to the generator of H2(S2) and so f∗ is an isomorphism on second
homology.

As homotopy preserves homology, f cannot be nullhomotopic (the one-point space has trivial second
homology).

Problem 6.8.2

Let f : Sn → Sn be a map such that f(Dn
+) ⊆ Dn

+ and f(Dn
−) ⊆ Dn

−, where Dn
± are the northern and

southern hemispheres of Sn. Show that f(Sn−1) ⊆ Sn−1, and deg(f) = deg(f |Sn−1).

Notes and Comments

Proof. Since the intersection Dn
+∩Dn

− = Sn−1 and f maps a hemisphere into itself, the points of intersection

must map to other points of the intersection. That is, f(Sn−1) ⊆ Sn−1 . We show that f is homotopic to

the suspension of a self-map on Sn−1.
Consider g = Σ (f |Sn−1). Since Dn

± is contractible, any two continuous maps into Dn
± are homotopic.

As suspension preserves the northern and southern hemispheres, g restricts to self-maps of Dn
±. As f does

this as well, and f and g agree on Sn−1, we obtain homotopies of f |Dn± and g|Dn± relative to Sn−1 which we
call h±.

The map

h : Sn × [0, 1]→ Sn given by h(p, t) =

{
h+(p, t) p ∈ Dn

+

h−(p, t) p ∈ Dn
−

is a homotopy of f and g. That is, h is continuous by the Pasting Lemma (h±(, t) agree on Sn−1).

Since g is the suspension of a map on Sn−1, deg g = deg f |Sn−1 . As we just showed that f ' g, and

homotopy preserves degree, deg f = deg g = deg f |Sn−1 .
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Problem 6.8.3

Let p : Y → X be a covering map. Let Z be any connected space and let f : Z → X be a continuous
map. Suppose that f1 : Z → Y and f2 : Z → Y are continuous lifts of f (i.e., p ◦ fi = f for i = 1, 2)
that agree at some point z0 ∈ Z. Show that f1 = f2 on all of Z.

Notes and Comments

Proof. See the solution to problem 5 on the Fall 2012 exam (6.2.5).

Problem 6.8.4

You are given a smooth map of manifolds π : M → N such that every x ∈ M is in the image of a
local smooth section from a neighborhood Uπ(x) of π(x) into a neighborhood of x. Prove that π is
a submersion.

Notes and Comments

Proof. Let p ∈ M and consider the smooth local section σ : Uπ(p) → M such that σ(π(p)) = p. Since
π ◦ σ = IdUπ(p) , we have

π∗,p ◦ σ∗,π(p) = IdTπ(p)N .

by functoriality. That is, π∗,p is surjective. Since p was arbitrary, π∗ is surjective and thus π is, by definition,
a submersion.

Problem 6.8.5

Show that the 2-sphere S2 admits a continuous vector field with exactly one zero point.

Notes and Comments

Proof. Let N = (0, 0, 1) ∈ R3 and ϕ : S2 \ {N} → R2 be stereographic projection. Then (ϕ, S2 \ {N}) is
a chart on S2.

Let (u, v) be the coordinates in R2 and define a smooth vector field V on R2 by V(u,v) =
∂

∂u
. Then V

doesn’t vanish on R2 and hence W = ϕ−1
∗ V is smoothly defined and nonvanishing on S2 \ {N}. We may

continuously extend W to N since W is continuous on every punctured disk centered at N .
Since the 2-sphere doesn’t admit a global nonvanishing vector field (by the Hairy Ball Theorem), it

must be that the limit of ϕ−1
∗ V along all points going to N is the 0 vector.19 Hence we may define WN = 0.

So we obtain a continuous vector field

Wp =

ϕ−1
∗,ϕ−1(p)

∂

∂u
p 6= N

0 p = N.
.

Since W only vanishes at N , we have the desired vector field.

19What’s more, this is actually a smooth extension of W . However, to see that, we need to move into the coordinates on
R2 for both stereographic projection maps and use the results there to make this conclusion. We doubt that was expected
for this exam.
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Problem 6.8.6

Differential forms.

(a) Let φ : S1 × S1 → R5 be a smooth map defined on the 2-torus, where S1 is the 1-sphere. Let
ω be a closed 2-form on R5. Compute the integral

∫
S1×S1 φ

∗ω.

(b) Let φ : M → S1×S1 and ψ : S1×S1 →M be two smooth maps, where M is a compact oriented
4-manifold. Let ω be a 4-form on M . Compute

∫
M

(ψ ◦ φ)∗ω.

Notes and Comments

Proof. See the solution to problem 6 on the Fall 2013 written exam (6.4.6). The problems are visually
distinct but the solutions are the same.
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Topology Exam

Summer 2016

Problem 6.9.1

Let Mm, Nm be smooth manifolds of the same dimension, and suppose that M is compact and N
is connected. Show that if f : M → N is a submersion, it is a covering.

Notes and Comments

Proof. Since f is a submersion, it is an open map. So f(M) is open in N . Also, since M is compact and
f continuous, f(M) is compact in N . As N is Hausdorff, f(M) is closed in N . That is, f(M) is clopen in
a connected space; hence f(M) = N .

Knowing that f is surjective and open, it is enough to show that f is a local homeomorphism. However,
this is done for us: as f is a submersion, its pushforward is surjective. As dimM = dimN , this means that
f∗ is an isomorphism at any point p ∈ M . That is, f is a local diffeomorphism (hence homeomorphism)
and thus a covering map.

Problem 6.9.2

Let Sn = {x ∈ Rn+1 | ‖x‖ = 1} and consider the map r : Sn → Sn defined by r(x) = −x. Show that
r is orientation-reversing if and only if n is even.

Notes and Comments

Proof. One characterization of orientation is that it’s a choice of non-vanishing n-form. We will compute
the volume form νSn of Sn using the induced orientation from Dn+1, the unit (n + 1)-disk sitting inside
Rn+1.

We know that Dn+1 has volume form ν = dx1 ∧ dx2 ∧ · · · ∧ dxn+1. To compute the induced orientation

of Dn+1 on ∂Dn+1 = Sn, we need a smooth (outward-pointing) vector field on Dn+1. Take N(x) = x .

Letting y denote the interior product,

νSn = Nyν =
n+1∑
i=1

(−1)i−1N(xi) dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1

=
n+1∑
i=1

(−1)i−1xi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1.

Then using our antipodal map r and the wonderful properties of the exterior derivative (d),

r∗νSn =
n+1∑
i=1

(−1)i−1r∗(xi) dr∗x1 ∧ · · · ∧ dr∗xi−1 ∧ dr∗xi+1 ∧ · · · ∧ dr∗xn+1

=
n+1∑
i=1

(−1)i−1(−xi) d(−x1) ∧ · · · ∧ d(−xi−1) ∧ d(−xi+1) ∧ · · · ∧ d(−xn+1)

=
n+1∑
i=1

(−1)i−1(−1)n+1xi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1

= (−1)n+1νSn .
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That is, r∗νSn = (−1)n+1νSn−1 . So r is orientation reversing if and only if (−1)n+1 = −1. That is, if and

only if n is even.

Problem 6.9.3

Let (x1, . . . , xn) be the standard coordinates on Rn and (y1, . . . , yn+1) the standard coordinates on
Rn+1. Let f : Rn → Rn+1 be the map given by

f(x1, . . . , xn) = (x1, . . . , xn,
n∑
i=1

x2
i ).

Compute the induced metric f ∗g on Rn where g =
n+1∑
j=1

dy2
j is the standard metric on Rn+1. Your

answer should be expressed in the form
∑
i,j

gijdxidxj where the gij are smooth real-valued functions

on Rn.

Notes and Comments

Proof. When it comes to Riemannian metrics, it’s enough to know the coefficient functions. That is, to

compute f ∗g, we need to know gij = f ∗g

(
∂

∂xi
,
∂

∂xj

)
.20 By definition of pullback, we have

f ∗g

(
∂

∂xi
,
∂

∂xj

)
= g

(
f∗

(
∂

∂xi

)
, f∗

(
∂

∂xj

))
.

In order to compute these, however, we need to understand the pushforward of f .
At a point x, we can reasonably compute the Jacobian of f :

f∗,x =

 In

2x1 · · · 2xn


Thus we have f∗,x

(
∂

∂xi

)
=

∂

∂yi
+ 2xi

∂

∂yn+1

. Now, using the fact that g is the usual metric on Rn+1 (i.e.,

it arises from the usual inner product), we have

f ∗g

(
∂

∂xi
,
∂

∂xj

)
= g

(
∂

∂yi
+ 2xi

∂

∂yn+1

,
∂

∂yj
+ 2xj

∂

∂yn+1

)
= δij + (2xi)(2xj)

= δij + 4xixj

20This may seem slightly inappropriate given all the other naming conventions around. However, by now, you’ve probably
given in to the morass that is symbology in differential topology and so we will capitalize on that.
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where δij is the Kronecker delta function. Thus gij =

{
4xixj i 6= j

1 + 4x2
i i = j

. Hence

f ∗g =
∑
i 6=j

(4xixj)dxidxj +
n∑
i=1

(1 + 4x2
i )dx

2
i .

Problem 6.9.4

Show that if A is a deformation retraction of X and x0 ∈ A, then the induced map i∗ : π1(A, x0)→
π1(X, x0) is an isomorphism, where i : A→ X is the inclusion map.

Notes and Comments

Proof. Since A is a deformation retract of X, there is a continuous map r : X → A such that r|A = IdA
and i ◦ r 'A IdX .21 By functoriality, since x0 ∈ A ⊂ X, we get

IdX∗ = (i ◦ r)∗ = i∗ ◦ r∗

as maps on π1 with base point x0.22 Thus i∗ is surjective .
Since r ◦ i = IdA, we also obtain

IdA∗ = (r ◦ i)∗ = r∗ ◦ i∗.

That is, i∗ is injective ; hence an isomorphism as desired.

Problem 6.9.5

Let X be the topological space obtained from two copies of the 2-sphere S2 and one copy of the
circle S1 = {z ∈ C | ‖z‖ = 1} by identifying the point 1 ∈ S1 with the north pole of the first 2-sphere
and the point −1 ∈ S1 with the north pole of the second 2-sphere. Draw the universal cover of X.

Notes and Comments

Proof. The important things to realize in this problem are:

• S2 is simply-connected and so its universal cover is itself.

• The universal cover of S1 is R, generally viewed as a helix (cos(2πz), sin(2πz), z).

Now we can draw the universal cover of (S2 ∨−1 S
1) ∨1 S

2 (here −1, 1 ∈ S1 are the points to which the
north poles of respective spheres are attached) by joining a sphere to the helix at z = k and another one
at z = k + 1

2
for k ∈ Z.

21The extra decoration means that the homotopy fixes A. This is important to apply the π1 functor: we need the base
point, which sits in A, fixed.

22That is, r∗ : π1(X,x0) → π1(A, r(x0)) and i∗ : π1(A, x0) → π1(A, i(x0)). Since r(x0) = i(x0) = x0, this is actually the
map we claimed.
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Problem 6.9.6

Use the Mayer–Vietoris sequence to compute all the homology groups of the space X obtained
from the torus S1 × S1 by attaching a Möbius band M via the homeomorphism from the boundary
circle of M to the circle S1 × {x0} ⊂ S1 × S1.

Notes and Comments

Proof. There are two major tricks to working through this problem with the Mayer–Vietoris sequence.
First, we need to determine our sets A and B. Second, and most unfortunately, we need to understand
the maps used in the sequence for the homology to work out.

To solve our first problem, we consider the realization of M as a square. Since the boundary of M is
being glued to the meridian of the torus, we’re going to take N to be a connected neighborhood of the
boundary in the quotient X. Let A = (S1 × S1) ∪N and B be the open Möbius band contained in M .

Now A and B are open sets in X. Pictorially, this corresponds to taking the torus and “a little bit” of
the square for the Möbius band to be A.23

Hence A ' S1 × S1 and B ' M ' S1. That is, A is really just a torus and B is, after a deformation
retraction, just S1. Now A∩B is also important for Mayer–Vietoris and, in this case, N is just a cylinder
and hence homotopy equivalent to S1.

Now A and B are open sets which cover X and so Mayer–Vietoris applies to the pair. That is, we have
a long exact sequence

. . . H2(X) H1(A ∩B) H1(A)⊕H1(B) H1(X)

H0(A ∩B) H0(A)⊕H0(B) H0(X) 0

Since we “know” what A, B, and A∩B are, we can simplify this considerably. That is, we know Hq(A) =

23Really we need to specify more about the neighborhood N but we’ll let the pictures fill in for us.
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Z q = 0, 2

Z⊕ Z q = 1

0 else

and Hq(B) = Hq(A ∩B) =

{
Z q = 0, 1

0 else
. Thus our long exact sequence looks like:24

. . . 0 Z H2(X) Z (Z⊕ Z)⊕ Z H1(X)

Z Z⊕ Z H0(X) 0
f g

Note that we don’t have to go further out in the sequence because Hq(X) is surrounded by 0 for q > 2.

Hence, by exactness, Hq(X) = 0 for q > 2 . Also, X is path connected and so H0(X) = Z .

By exactness, g is surjective. Also, Z = ker g = im f . That is, f is injective and the previous map must
be the 0 map. So we can simplify our sequence more (while naming new maps):

. . . 0 Z H2(X) Z (Z⊕ Z)⊕ Z H1(X) 0α 0

Let’s focus on the map α : Z→ Z3 coming from the map H1(A ∩ B)→ H1(A)⊕H1(B) and think about
what’s going on. The homology class is coming from the loop γ around the meridian S1 × {x0} and the
map sends the meridian to its copy in A and the copy in B.

In A, γ is exactly the map that goes around the meridian once and longitude not at all. In B, the loop
goes around the core of the Möbius band twice. Thus the map α is given by α(1) = (0, 1, 2) (with basis
corresponding to: longitude, meridian, core of the Möbius band). Thus α is injective and so, by exactness,
the previous map is the 0 map. So our sequence splits into short exact sequences:

0 Z H2(X) 0

0 Z Z3 H1(X) 0

0

α

By exactness, H2(X) ∼= Z . Also by exactness,

H1(X) ∼=
Z3

imα
.

Now the image of α is Z. Hence

H1(X) ∼=
Z3

Z
∼= Z2.

Thus we have

Hq(X) =


Z q = 0, 2

Z2 q = 1

0 else

.

24Look! More terms appeared! It’s stunning how much space these sequences can take up.
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Topology Exam

Fall 2016

Problem 6.10.1

Show that the group SL(n,R) consisting of all n × n matrices with determinant 1 is a smooth
manifold.

Notes and Comments

Proof. There are a number of different approaches to this problem. We consider two(ish):
Option 1: Note that GL(n,R) is a smooth manifold since it’s an open subset of Rn2

(which is the
quintessential smooth manifold).25 Moreover, GL(n,R) is actually a Lie group.

Now SL(n,R) ⊆ GL(n,R) is a subgroup. Perhaps more importantly, SL(n,R) is a closed subset. That
is,by determinant considerations, it contains all its limit points. Thus SL(n,R) is a closed subgroup of a
Lie group; hence a Lie group in its own right.

Option 2(a): We may instead show that SL(n,R) = det−1({1}) is an embedded submanifold using
the Implicit Function Theorem. Indeed, consider the determinant map. Since det is a map to R (which is
one-dimensional), it’s enough to show that det |SL(n,R)∗ has nonzero rank.26

Indeed, for A ∈ SL(n,R), the directional derivative agrees with the push-forward and so

det∗,A(A) =
d

dt

∣∣∣
t=0

det(A+ tA) =
d

dt

∣∣∣
t=0

(1 + t)n det(A) =
d

dt

∣∣∣
t=0

(1 + t)n = n.

That is, det∗,A 6= 0 for all A ∈ SL(n,R). Hence by the Implicit Function Theorem, SL(n,R) is an embedded
submanifold of GL(n,R).

Option 2(b): If you already know that the critical points of the determinant map are contained in
the non-invertible matrices (see Fall 2012 #2), then you can immediately make the conclusion using the
Implicit Function Theorem.

Problem 6.10.2

Let p ∈ M be a point in a smooth manifold M and let Fp be the subspace of C∞(M) consisting of
all smooth functions that vanish at p. Let F2

p ⊂ Fp be the subspace spanned by functions of the
form fg for f, g ∈ Fp. Define a map Φ : Fp → T ∗pM by setting

Φ(f) = dfp.

Show that the restriction of Φ to F2
p is zero and that Φ descends to an isomorphism Fp/F2

p → T ∗pM

of vector spaces.

Hint: You can use the following fact without a proof. Let φ be a local chart centered at p (i.e.,
φ is a chart defined on a neighborhood of p such that φ(p) = 0); then f ∈ Fp if and only if

(f ◦ φ−1)(x1, . . . , xn) =
n∑
i=1

xifi(x1, . . . , xn) for some smooth functions fi.

Notes and Comments

25To check this, use the determinant map.
26This will further show that dim SL(n,R) = n2 − 1.
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Proof. Let h ∈ F2
p . We want to show Φ(h) = 0. By definition, h =

k∑
i=1

figi for fi, gi ∈ Fp. Using properties

of the differential d and the definition of Fp, we have

Φ(h) = d

(
k∑
i=1

figi

)
p

=
k∑
i=1

d(figi)p =
k∑
i=1

fi(p)︸︷︷︸
0

d(gi)p + gi(p)︸︷︷︸
0

d(fi)p

 = 0.

Now suppose that h ∈ ker Φ. In a local chart φ centered at p, we have

h ◦ φ−1 =
n∑
i=1

xihi

by the hint (where xi is the projection onto the ith component). Since h ∈ ker Φ and φ(p) = 0, we have
d(h ◦ φ−1)0 = 0. That is

0 = d(h ◦ φ−1)0 =
n∑
i=1

(xi(0)d(hi)0 + hi(0)dxi0) =
n∑
i=1

hi(0)dxi0

since xi(0) = 0. Since the dxi0 are linearly independent (indeed, form a basis for T ∗pM), hi(0) = 0 for all

i. That is, hi ◦ φ ∈ Fp. Thus we have

h =
n∑
i=1

(xi ◦ φ)(hi ◦ φ)

in coordinates centered at p. As xi ◦ φ and hi ◦ φ are locally defined, they can be extended to smooth
maps fi and gi (respectively) defined on all of M using smooth bump functions. Hence fi, gi ∈ Fp and
h =

∑
i figi. That is, h ∈ F2

p .

This shows that ker Φ = F2
p . Finally, Φ descends to an injective linear map

Φ : Fp/F2
p → T ∗pM.

As T ∗pM is finite-dimensional, we conclude that Φ is an isomorphism as desired.

Problem 6.10.3

Let T 2 = S1 × S1 ⊂ R4 be the torus defined by

T 2 =
{

(x, y, z, t) ∈ R4 | x2 + y2 = 1, z2 + t2 = 1
}

with the orientation determined by its product structure, where each circle factor is oriented as the
boundary of the unit disk. Compute

∫
T 2 zdx ∧ dt.

Notes and Comments
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Proof. Notice that ω = zdx ∧ dt is an exact 2-form. Indeed, take the 1-form η = zxdt and note that

dη = zdx ∧ dt+ xdz ∧ dt = ω

since dz ∧ dt is a 2-form on the 1-dimensional manifold S1 (and so the second term vanishes). Thus, by
Stokes’ Theorem, ∫

T 2

ω =

∫
∂T 2

η =

∫
∅
η = 0.

Hence the integral is 0.

Problem 6.10.4

Let A be the curve inside the solid torus S1 ×D2 pictured in the figure below. Show that there is
no retraction of the solid torus onto A.

Notes and Comments

Proof. Suppose we have a retraction r of S1×D2 onto A. Then the inclusion map i : A→ S1×D2 induces
an injective map i∗ on the fundamental groups of these spaces. Since A is simply a circle, π1(A, x) = Z for
any x ∈ A. The generating loop α traverses A exactly as shown in the image. However, i(α) is contractible
in S1 × D2: the “hooked” ends can be homotoped past each other in the solid torus and consequently
the loop can be pulled to the base point x. Thus i∗([α]) is the trivial loop.	Hence no such retraction can
exist.

Problem 6.10.5

Let X be the quotient space of S2 under the identification x ∼ −x for x in the equator of S2.
Compute the homology groups Hi(X;Z) for all i.

Notes and Comments

Proof. Consider the CW-complex structure for X by taking the CW-complex structure for S2 consisting
of 2 vertices, 2 edges, and 2 faces and then identifying the edges (hence the vertices). Then the cellular
chain groups Wi of X are

. . . 0 Z2 Z Z 0
∂3 ∂2 ∂1 ∂0

where W0 = Z[v], W1 = Z[e], and W2 = Z[f1, f2]. We assume that, imagining f1 sitting above the plane
and f2 below, both are oriented counterclockwise (as viewed from above). Furthermore, for convenience,
assume e is oriented counterclockwise as well. The matrix representations of the boundary maps are

[∂0] =
(
0
)
, [∂1] =

(
0
)
, and [∂2] =

(
2 2

)
.
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Hence the Smith normal form of [∂2] is
(
2 0

)
and so the homology groups are

H0(X) =
ker ∂0

im ∂1

∼= Z

H1(X) =
ker ∂1

im ∂2

∼=
Z
2Z

H2(X) =
ker ∂2

im ∂3

∼= Z

That is, we have Hi(X;Z) =


Z i = 0, 2

Z/2Z i = 1

0 else

.

Problem 6.10.6

Show that for finite CW-complexes X and Y , the Euler characteristic χ satisfies

χ(X × Y ) = χ(X)× χ(Y ).

Notes and Comments

Proof. This problem is a matter of writing down the relevant definitions. Let xi be the number of i-cells
of X and yi the number of i-cells for Y . Then

χ(X) =
k∑
i=0

(−1)ixi and χ(Y ) =
k∑
j=0

(−1)jyj

where k is the largest dimension of cell in either X or Y (k exists because they’re both finite complexes).
Then the product X × Y has a CW-structure consisting of dm m-dimensional cells for m ≤ 2k.

Note that the product ei × ej of an i-cell and a j-cell is a (i+ j)-cell. Hence

dm =
∑
i+j=m

xiyj

and so

χ(X × Y ) =
2k∑
m=0

(−1)mdm =
2k∑
m=0

∑
i+j=m

(−1)ixi · (−1)jyj

=

(
k∑
i=0

(−1)ixi

)(
k∑
j=0

(−1)jyj

)
= χ(X)χ(Y ).

Thus we have the desired equality.
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Topology Exam

Summer 2017

Problem 6.11.1

Prove that a nonempty smooth manifold M of dimension m cannot be diffeomorphic to an n-
dimensional manifold N , unless m = n.

Notes and Comments

Proof. Suppose F : M → N is a diffeomorphism and p ∈ M . Then Fp∗ is an isomorphism between
TpM and TF (p)N . Since finite dimensional vector spaces are isomorphic if and only if they have the same
dimension,

m = dimM = dimTpM = dimTF (p)N = dimN = n.

Thus m = n as desired.

Problem 6.11.2

Which of the following manifolds are parallelizable? (Recall that an m-dimensional manifold M is
parallelizable if it admits m vector fields whose values at every point of M are linearly independent.)
Explain your answers.

(a) S2;

(b) S2 minus a point;

(c) S2 minus two points;

(d) SO(n,R);

(e) the Klein bottle;

(f) an oriented compact surface of genus 4 with no boundary.

Notes and Comments

Proof of (a). S2 is not parallelizable by the Hairy Ball Theorem. Any vector field on S2 must vanish at
some point and so any possible collection of vector fields fail to be linearly independent at such points.

Proof of (b). S2 minus a point is diffeomorphic to R2 which is parallelizable by the coordinate vector fields{
∂

∂x
,
∂

∂y

}
.

Proof of (c). S2 minus two points is diffeomorphic to R2 minus the origin, which is parallelizable by taking

the frame consisting of y
∂

∂x
− x ∂

∂y
and the outward-pointing radial vector field.

Proof of (d). SO(n,R) is a Lie group and is thus parallelizable.

Proof of (e). Every parallelizable manifold is necessarily orientable. Thus the Klein bottle is not paralle-
lizable.
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Proof of (f). An oriented compact surface without boundary is parallelizable if and only if its Euler cha-
racteristic is 0. Since a genus 4 surface has Euler characteristic −6, this surface is not parallelizable.

Problem 6.11.3

Let M1, M2 be oriented compact k-dimensional manifolds with no boundary, and let φi : Mi → N ,
i = 1, 2, be smooth maps of manifolds. Assume, moreover, that there exists a (k + 1)-dimensional
oriented compact manifold Σ whose oriented boundary is ∂Σ = M1 t −M2, and a smooth map

F : Σ→ N such that F |∂Σ = φ1 t φ2. Let ω be a closed k-form on N . Prove that

∫
M1

φ∗1ω =

∫
M2

φ∗2ω.

Notes and Comments

Proof. Since ∂Σ = M1 t −M2 and F |∂Σ = φ1 t φ2,∫
∂Σ

F ∗ω =

∫
M1t−M2

F ∗ω =

∫
M1

F |∗M1
ω −

∫
M2

F |∗M2
ω =

∫
M1

φ∗1ω −
∫
M2

φ∗2ω.

So it suffices to show that

∫
∂Σ

F ∗ω = 0. By Stokes’ theorem, we see that

∫
∂Σ

F ∗ω =

∫
Σ

dF ∗ω. As d

commutes with everything and ω is closed,∫
Σ

dF ∗ω =

∫
Σ

F ∗dω =

∫
Σ

F ∗0 = 0.

Thus

∫
M1

φ∗1ω =

∫
M2

φ∗2ω, as desired.

Problem 6.11.4

RP n has a standard CW structure with a single k-cell for k = 0, 1, . . . , n. Prove that there is no
retract from this CW complex onto its 1-skeleton.

Notes and Comments

Proof. Unstated in this problem is that n > 1. Since n > 1, recall that H1(RP n) = Z/2Z.27

Let X1 denote the 1-skeleton of RP n, i the inclusion of X1 into RP n, and suppose r : RP n → X1

is a retraction. Then H1(X1) = Z since X1 is topologically a circle. By the functoriality of homology,

r∗ ◦ i∗ = IdX1∗. In particular, we have

Z Z/2Z

Z

i∗

IdX1∗
r∗ . That is, Z factors through Z/2Z.	Hence no such

retraction can exist.

27This can be derived using cellular homology for anyone interested in a cute computation.
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Problem 6.11.5

Use a Mayer–Vietoris sequence to prove the isomorphism of reduced homology groups H̃k(S
n) ∼=

H̃k−1(Sn−1) for n ≥ 1, k ≥ 1.

Notes and Comments

Proof. For a Mayer–Vietoris sequence, we need to decompose the larger space cleverly. Since we’re working
with X = Sn = {x = (x1, . . . , xn+1) ∈ Rn+1 : |x| = 1}, the natural decomposition X = A ∪ B where
A =

{
x ∈ Sn : xn+1 > − 1

17

}
is the upper hemisphere (and a tiny bit more) and B =

{
x ∈ Sn : xn+1 <

1
17

}
is the lower hemisphere (and a tiny bit more).28 Notice that A,B are both contractible because they’re

homeomorphic to n-balls and so H̃k(A) = H̃k(B) = 0 .

The intersection A∩B is a band Sn−1× (− 1
17
, 1

17
) and thus deformation retracts on Sn−1. Hence A∩B

can be replaced by Sn−1 for the purposes of homology.29

The Mayer–Vietoris sequence for reduced homology associated to (X,A,B) is given by:

. . . H̃k(A)⊕ H̃k(B) H̃k(X) H̃k−1(A ∩B) H̃k−1(A)⊕ H̃k−1(B) . . .∂ .

Using the helpful notes above, this simplifies to

. . . 0 H̃k(S
n) H̃k−1(Sn−1) 0 . . .∂

By exactness of the long exact sequence, ∂ is an isomorphism H̃k(S
n) ∼= H̃k−1(Sn−1) as desired.

Problem 6.11.6

Identify S1 with the complex unit circle S1 = {z ∈ C : |z| = 1}. Let X = S1× [0, 1]/∼ be the quotient
space obtained from the cylinder S1 × [0, 1] by identifying points (z, 0) ∼ (iz, 0) ∼ (−z, 0) ∼ (−iz, 0)
for any z ∈ S1, and likewise (z, 1) ∼ (iz, 1) ∼ (−z, 1) ∼ (−iz, 1) for any z ∈ S1 at the other boundary
component. Here i =

√
−1.

Compute the homology groups Hn(X;Z).
Notes and Comments

Proof. Multiplication by i is a rotation through angle
π

2
about the origin. The equivalence relation on

S1 × [0, 1] is identifying points on the top (resp. bottom) copy of S1 by this action of i. We can give X a
CW structure as follows:

a

b

c

b

p p

qq

f

28We chose 1
17 rather than ε for ε < 1 because we had trouble choosing a fun number. Later editors of this text can be

more clever.
29Formally, the deformation retract induces an isomorphism on homology.

185



The Written Qual Book Topology: Summer 2017

where each 0-cell and 1-cell is attached by degree 1 maps as depicted, and the 2-cell f is attached by
bc4b−1a4. Note that f is attached this way to account for the rotational action of i on the top and bottom
circles.

Now the cellular chain complexes for this CW structure are: 0 Z Z3 Z2 0
∂2 ∂1 0 .

In the bases {a, b, c} for 1-cells and {p, q} for 0-cells, [∂1] =

[
0 −1 0
0 1 0

]
. Thus ker ∂1

∼= Z2 and im ∂1
∼= Z .

Computing the Smith normal form for ∂2 gives

[∂2] =

4
0
4

 ∼
4

0
0

 .
Hence ker ∂2 = 0 and im ∂2 = 4Z .

Thus the homology groups of X are

H0(X;Z) ∼=
Z2

Z
∼= Z, H1(X;Z) ∼=

Z2

4Z
∼= Z⊕ (Z/4Z), H2(X;Z) ∼= 0.
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Applied Exam

Summer 2017

Problem 7.1.1

Let g : R→ R be a smooth function having a fixed point x∗ and the fixed point iteration be defined
by xk+1 = g(xk), k = 1, . . ..

(a) Sketch a proof of the result:

If |g′(x∗)| < 1, then the iteration is locally convergent if |g′(x∗)| > 1 the fixed point
iteration diverges for any starting point other than x∗.

(b) Use your results from part (a) to determine the rate of convergence.

(c) Use Taylor’s theorem to deduce the condition under which the iteration converges qua-
dratically.

(d) Is Newton’s method for finding a zero of a smooth function f : R → R an example of
such a fixed point iteration scheme? If so, what is the function g in this case? If not,
then explain why not.

(e) For the following two functions determine whether the fixed point iteration converges
locally to either of the real roots of x4 = 1/16:

i. g1(x) = x+ x4 − 1/16

ii. g2(x) = 1 + x− 16x4.

Notes and Comments

Proof. (a) The error after the n+ 1 iterations is εn+1 = |xn+1 − x∗| = |g(xn)− g(x∗)| since x∗ is a fixed

point. Taylor expanding g(xn) about x∗, we have εn+1 =
∣∣∣g′(x∗)εn + g′′(x∗)

2
ε2n + · · ·

∣∣∣. Throwing out

higher order terms, we have εn+1 ≈ |g′(x∗)|εn.

For local convergence, we need εn+1

εn
< 1, which we see is satisfied precisely if |g′(x∗)| < 1. For any

initial guess that isn’t x∗, if |g′(x∗)| > 1 then the error will grow with each step.
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(b) In general, following the Taylor expansion procedure, we get an equation for the error εn+1 =
|c · εαn + · · · |. The rate of convergence is α, the lowest power of εn. E.g. if α = 1 we say that
the convergence is linear.

(c) Using (a), we see that if g′(x∗) = 0 then convergence is at least quadratic, i.e. α ≥ 2.

(d) Yes, Newton’s method is a fixed point iteration scheme where g(x) = x− f(x)
f ′(x)

.

(e) The two real roots are ±1
2
.

i. We compute g′1(x) = 1 + 4x3 and find
∣∣g′1 (1

2

)∣∣ = 1.5 > 1 and
∣∣g′1 (−1

2

)∣∣ = 0.5 < 1. Hence the
iteration is divergent for 1

2
and convergent (for good initial guesses) for −1

2
.

ii. We compute g′2(x) = 1 − 64x3 and find
∣∣g′2 (1

2

)∣∣ = 7 > 1 and
∣∣g′2 (1

2

)∣∣ = 9 > 1. Hence the
iteration is divergent for both ±1

2
.

Problem 7.1.2

Let An be the 2× 2 matrix given by

An =

[
1 2
2 4 + 1/n2

]
(a) Find A−1

n and the condition number of An. (Use the one norm to calculate the condition
number).

(b) Let n = 100. Use the Gaussian elimination without pivoting to solve A100

[
1
2

]
= b using 5

significant figures at all stages of the calculation when

b = (1, 2− 1/n2)T .

(c) Repeat part (b) using 2 significant figures in the calculation.

(d) Explain the answers in parts (b) and (c).

Notes and Comments

Proof. (a) First, compute

A−1
n =

[
4n2 + 1 −2n2

−2n2 n2

]
.

Now, compute the condition number

κ(An) = ||An||1||A−1
n ||1 = (6 + 1/n2)(6n2 + 1) = 36n2 + 12 + 1/n2.
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(b) We want to solve the system [
1 2
2 4.0001

] [
x
y

]
=

[
1

1.9999

]
.

Using Gaussian elimination with 5 significant digits, we find the solution x = 3, y = −1.[
1 2 1
2 4.0001 1.9999

]
=⇒

[
1 2 1
0 .0001 −.0001

]
=⇒

[
1 0 3
0 1 −1

]
(c) Using 2 significant digits, we find infinitely many solutions of the form x+ 2y = 1.[

1 2 1
2 4.0001 1.9999

]
=⇒

[
1 2 1
0 0 0

]
(d) In the case of an ill-conditioned system (κ(A100) ≈ 360000� 1), using too few significant digits will

result in round-off error and incorrect solutions.

Problem 7.1.3

Consider the well-posed initial value problem ut = f(t, u), t > 0, with u(0) = u0. Suppose we use the
following scheme to solve this IVP, where h is the (fixed) time step:

yn+1 =
1

2
(yn + yn−1) +

h

4
(4fn+1 − fn + 3fn−1),

(a) Find the order of accuracy of this scheme and the leading term of truncation error.

(b) Does this scheme satisfy the root condition? Explain. Is this scheme zero stable?
Explain.

(c) Define absolute stability. What is the difference between zero and absolute stability?
Derive the equation for the absolute stability region for this scheme. Your solution
should be an explicit expression for time step h. You do not have to solve it.

Notes and Comments

Proof. (a) To find the order of accuracy, we first compute the step error

|un+1 − yn+1| = |un + u′nh+
u′′n
2
h2 +

u′′′n
6
h3 + · · · − 1

2
(yn + yn−1)− h

4
(4fn+1 − fn + 3fn−1)|.

Taylor expand yn−1, fn+1, and fn−1, group terms in powers of h, and cancel to find

|un+1 − yn+1| = |un + u′nh+
u′′n
2
h2 +

u′′′n
6
h3 + · · · − 1

2
(yn + yn−1)− h

4
(4fn+1 − fn + 3fn−1)|

= |un + u′nh+
u′′n
2
h2 +

u′′′n
6
h3 + · · · − 1

2
(yn + un − u′nh+

u′′n
2
h2 − u′′′n

6
h3 + · · · )

− h

4
(4(u′n + u′′nh+

u′′′n
2
h2 + · · · )− u′n + 3(u′n − u′′nh+

u′′′n
2
h2 + · · · ))|

= | − 5

8
u′′′n h

3 + · · · |.

The leading step error term is −5
8
u′′′n h

3, so this is a second order method.
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(b) Yes, this scheme satisfies the root condition since the roots of ρ(r) = r2 − r/2− 1/2 are r = −1/2, 1
which both have modulus less than or equal to 1. Yes, this scheme is zero stable, since satisfying the
root condition is equivalent to zero stability.

(c) A scheme is absolutely stable if all roots of Π(r) have modulus less than or equal to 1. Conversely,
a scheme is zero stable if it satisfies the root condition, i.e. all roots of ρ(r) have modulus less than
or equal to 1.

To get the region, first find the roots of Π(r) = (1 − h)r2 + (−1/2 + h/4)r − 1/2 − 3h/4, which we
obtain using the quadratic formula

r =
h− 2±

√
−47h2 + 12h+ 36

8(h− 1)
.

The absolute stability region is defined by h such that
∣∣∣h−2±

√
−47h2+12h+36
8(h−1)

∣∣∣ ≤ 1. As stated, we don’t

need to solve for the exact region.

Problem 7.1.4

Consider a random walk on the integers such that the transition probabilities pi,i+1 = p, pi,i−1 = q
for all integers i (0 < p < 1, p+ q = 1).

(a) Determine the n-step transition probability p
(n)
00 .

(b) Find the generating function of un = p
(n)
00 , i.e. P (x) =

∑∞
n=0 unx

n.

(c) Determine the generating function of the recurrence time from state 0 to state 0.

(d) What is the probability of eventual return to the origin?

Notes and Comments

Proof. (a) Traveling from the origin to the origin requires an even number of total steps, as well as the
same number of left and right steps. Hence we have the formula

un = p
(n)
00 =

{ ( n
n/2

)
(pq)n/2 n even

0 n odd

(b) Compute the generating function using part (a):

P (x) =
∞∑
n=0

unx
n =

∞∑
n=0
n even

(
n

n/2

)
(pq)n/2xn =

∞∑
n=0
n even

(
n

n/2

)
(
√
pqx)n =

1√
1− 4pqx2

.

(c) Recall the relation P (x) = 1
1−F (x)

, where F (x) =
∑∞

n=0 f
(n)
0 xn is the generating function for the

recurrence time from state 0 to state 0. Compute:

F (x) =
P (x)− 1

P (x)
=

1√
1−4pqx2

− 1

1√
1−4pqx2

= 1−
√

1− 4pqx2.
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(d) The probability of eventual return to the origin is f0 =
∑∞

n=1 f
(n)
0 = F (1). Compute:

F (1) = 1−
√

1− 4pq.

Problem 7.1.5

Consider a critical homogeneous birth-and-death process (birth rate λ = death rate µ), starting
with one single individual.

(a) Write down the Kolmogorov backward equation for the probability p1j(t) that the po-
pulation size transitions from 1 to j at time t.

(b) Using (a), derive the backward recursive equation for the probability generating function
P (x, t) for the population size X(t) distribution at t. And solve P (x, t).

(c) Find the probability p0(t) that the population becomes extinct by time t.

(d) What is the mean extinction time?

(e) What is the probability that the population size ever reaches n?

Notes and Comments

Proof. (a) Let λ = µ = r. The backward Kolmogorov equation is

dp1j(t)

dt
= −2rp1j(t) + rp2j(t) + rp0j(t).

(b) We know the general formula for the probability generating function,

P (x, t) =
∞∑
j=0

p1j(t)x
j.

Using (a), we find the backward recursive equation for P (x, t)

d
∑∞

j=0 p1j(t)

dt
= −2r

∞∑
j=0

p1j(t) + rp2j(t) + r
∞∑
j=0

p0j(t)

=⇒ dP (x, t)

dt
= −2rP (x, t) + rP (x, t)2 + r

with initial condition P (x, 0) = x. Solve using separation of variables:

dP

dt
= −2rP + rP 2 + r

=⇒ dP

(P − 1)2 = rdt

=⇒
∫

dP

(P − 1)2
=

∫
rdt

=⇒ 1

1− P
= rt+ c

=⇒ P (x, t) =
rt+ c− 1

rt+ c
.
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Now use the initial condition P (x, 0) = x:

x = P (x, 0) =
c− 1

c

=⇒ c =
1

1− x
.

Finally arrive at the solution (and simplify a bit):

P (x, t) =
rt+ 1

1−x − 1

rt+ 1
1−x

=
rt(1− x) + x

rt(1− x) + 1
.

(c) The probability of going extinct before time t is

p0(t) = P (0, t) =
rt

rt+ 1
.

(d) Part (c) gives us the cumulative function for probability, but we need the density to find the mean
extinction time. So taking the derivative, we find that the mean extinction time is ∞ since∫ ∞

0

t
r

(rt+ 1)2
dt→∞.

(e) View n ≥ 1 as an absorbing state. Starting with one single individual in a critical birth-death process,
recall that the probability of fixation is 1

n
.

Problem 7.1.6

Let X be a nonnegative integer-valued random variable with probability generating function f(x) =∑∞
n=0 anx

n. After observing X, then conduct X binomial trials with probability p of success. Let Y
denote the resulting number of successes.

(a) Determine the generating function of Y .

(b) Determine the generating function of X given that Y = X.

(c) Suppose that for every p (0 < p < 1) the probability generating functions in (a) and (b)
coincide. Prove that the distribution of X is Poisson, f(x) = eλ(x−1) for some λ > 0.

Notes and Comments
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Proof. (a) Compute

g(x) =
∞∑
k=0

P (Y = k)xk

=(1)

∞∑
k=0

∞∑
j=0

P (Y = k|X = j)P (X = j)xk

=(2)

∞∑
k=0

∞∑
j=0

(
j

k

)
pk(1− p)j−kajxk

=
∞∑
j=0

∞∑
k=0

(
j

k

)
(px)k(1− p)j−kaj

=
∞∑
j=0

(1− p+ px)jaj

= f(1− p+ px)

where (1) is by conditional expectation and (2) is by the formula for binomial probability.

(b) Using Bayes Theorem, we have

h(x) =
∞∑
k=0

P (X = k|Y = X)xk

=
∞∑
k=0

P (Y = X|X = k)P (X = k)∑∞
j=0 P (Y = X|X = j)P (X = j)

xk

=
∞∑
k=0

akp
k∑∞

j=0 ajp
j
xk

=
∞∑
k=0

ak(px)k

f(p)

=
f(px)

f(p)
.

(c) Suppose f(1− p+ px) = f(px)
f(p)

for all p with 0 < p < 1. Then we also have

∂

∂x

∣∣∣∣
x=1

f(1− p+ px) =
∂

∂x

∣∣∣∣
x=1

f(px)

f(p)

=⇒ f ′(1) =
f ′(p)

f(p)
.

Viewing this as an ODE in p with condition f(1) = 1, we find f(p) = ef
′(1)(p−1). Notice that this is

the same form as f(x) = eλ(x−1) with λ = f ′(1), hence the distribution of X is Poisson.
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Problem 8.1.1

Problem 1 Notes

Solution

(a) The amount of time devoted to cyclotmic polynomials in Math 111 varies greatly from year to year.
However, this particular problem doesn’t require any particularly specialized knowledge (just how to
factor xn − 1 over Q).

Familiarity with the proof and applications of the Correspondence Theorem is recommended as this
is a frequent qual topic.

(b) The key idea here is that it is much easier to work with coefficients in Z/5Z since, as a field, the
polynomial ring is a PID. The realization that Z[x]/〈p〉 ∼= (Z/pZ)[x] is a straightforward computation
(if you are not already familiar with it). Similar to the note for part (a), the amount of time devoted
to extensions of finite fields depends heavily on the instructor but the fact that there is a unique-up-
to-isomorphism field of each prime power order is assumed knowledge.

Problem 8.1.2

Problem 2 Notes

Solution
The properties of splitting fields of xn− a over Q are another frequently occurring qual topic. Luckily,

Lang devotes an entire section of his book to exactly these extensions. Knowing the matrix embedding of
these extensions can also be very helpful if you need to determine explicit Galois group actions or fixed
fields. The method presented here for showing that the intersection is trivial is a useful one that should
be in your Galois toolkit.

The diagram presented in the problem is gratuitous.1

1But how could we not include a diagram one?
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Problem 8.1.3

Problem 3 Notes

Solution
This is a version of the classic follow-your-nose problem. Anytime we want to define a map on a tensor

object, we want to make our definition on elementary tensors (really pairs of elements from each factor)
and extend by linearity. This problem is particularly nice because everything in sight is a vector space and
so obtaining an isomorphism is simplified – simply take bases to bases.

Different faculty members prefer different “definitions” of naturality in the context of Math 101. The
formal functorial definition was desired on this particular exam but some instructors may only want you
to observe the fact the a basis is not needed to define the map.

Problem 8.1.4

Problem 4 Notes

Solution
One of the most important techniques from Math 101 is studying linear maps of vector spaces using the

k[x]-module formulation. Knowing the various decomposition theorems and their relations to canonical
forms is highly recommended.

Interpreting the problem in terms of basic linear algebra we see that part (a) is just asking for the
construction of an eigenvector, part (b) is showing that eigenvectors corresponding to different eigenvalues
are linearly independent, and part (c) is the implication that, if the geometric and algebraic multiplicities
agree for each eigenvalue, the operator is diagonalizable.

Problem 8.1.5

Problem 5 Notes

Solution
Finding normal p-Sylow subgroups with the Sylow theorems usually relies on showing np = 1 using the

modular equivalence class of np to determine possible values and then some case work with counting to
rule out possibilities. Dummit and Foote has many examples of this process. Other key ingredients of this
proof include the fact that unique p-Sylow subgroups are normal, subgroups whose index is the smallest
prime in the group are normal, and that there is only one group of order 15 (also in Dummit and Foote).

The inner semi–direct product criterion also shows up in several Galois problems. A group G with
subgroup H and normal subgroup N is a inner semi–direct product G = N o H if N ∩ H = {e} and
G = NH. Another neat way to show that G = N oH is to exhibit a homomorhpism ϕ : G→ H so that
ϕ|H = Id and ϕ(N) = e.

Problem 8.1.6

Problem 6 Notes

Solution
This is a neat problem that really only relies on the basic facts about multiplicativity in towers and

properties of the minimal polynomial. Don’t overthink it.
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Problem 8.2.1

Problem 1 Notes

Solution
This is a very standard type of Galois problem and you should be able to fill in the details of the proof

steps. A full treatment of this situation is given in Lang’s Algebra. The polynomial factors over Q as
x15 − 8 = (x5 − 2)(x10 + 2x5 + 4). Compare with 4.1.2.

Problem 8.2.2

Problem 2 Notes

Solution
You should definitely have a proof of this result prepared for the written exam. This particular proof

is our favorite but there are many others. Find one that works for you. Also, the tools that you have
to approach this problem will vary with the course instructor. For example, many steps in this proof are
simplified by implicit assumption of the Fundamental Lemma but having to prove that on the spot might
not be ideal.

Problem 8.2.3

Problem 3 Notes

Solution
This problem usually feels mysterious the first time you see it on a homework assignment. Hopefully

after having spent some time with the Sn embedding in the context of simple extensions, etc., it feels like
familiar material. Bonus points2 if you can write down some polynomials with |G| = n!.

Problem 8.2.4

Problem 4 Notes

Solution
This is a fairly straightforward application of the various Sylow theorems and standard counting argu-

ments. Pieces of this result occur on many different exams, so knowing the structure of the proof is very
important. In a pinch you may simply be able to claim that some part of this result is true3 on your way
to proving something else, but most faculty members will be expecting to see the proof.

One note about the way the proof is presented here: the casework is organized so that you see the
individual counts separately, but this can obscure the global proof by contradiction. The bigger picture
is that, if there is not a normal subgroup, there are too many group elements. It is this argument that is
most commonly used in other specific cases, so it is good to recognize that structure.

The remainder of the proof relies on some simple results from group theory. Review your Dummit and
Foote if the proofs of these results feel a little rusty.

2Not really...
3For example, the result that in a group of order pqr there is a normal Q or R subgroup.
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Problem 8.2.5

Problem 5 Notes

Solution
Smith Normal Form is not always taught in 101 but it is a very useful tool, particularly in Algebraic

Topology. It is important to remember that the final isomorphism is not necessarily the one that comes
from the obvious choice of basis.

Problem 8.2.6

Problem 6 Notes

Solution
A common approach for proving facts about projective modules is: prove the result for free modules

(which are well-behaved and have bases) and then prove it for projective modules as summands of free
modules. That approach, plus the fact that tensor products distribute over direct sums, are the key
components to this proof.
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Problem 8.3.1

Problem 1 Notes

Solution
This problem is not “hard” but requires some some playing around. The key insight is that Sylow

subgroups are conjugate, so we can use this to transform a statement about q ∈ P1 ∩ P2 to one about
P ∩ (Something Else).

Problem 8.3.2

Problem 2 Notes

Solution
Part (a) seems obvious as stated and is really just careful definition checking. If the adjective “entire”

does not appeal to you, there are other options. Part (b) is a little more complex but hopefully, if this type
of problem shows us on your exam, you will have gotten some practice with this method on homework
assignments. The key idea is to try to get a little more leverage out of the Zeroth Isomorphism Theorem
than you usually need.

Part (c) is not really related to the first two parts, but is again just definition checking with just a
little bit of the CRT tossed in for good measure. The likelihood of this type of problem appearing depends
heavily on who taught the course.

Problem 8.3.3

Problem 3 Notes

Solution
Almost the entire content of this problem lies in parsing the problem statement. If you can identify

that the first sentence of the proof is equivalent to the first sentence of the problem then you should be
good to go. The rest is just some simple (if slightly tedious) algebra.

Problem 8.3.4

Problem 4 Notes

Solution
Galois basics. You should review the distinguished extension properties if your class used Lang as a

textbook. It is probably also worth reviewing the “finite implies algebraic” argument.

Problem 8.3.5

Problem 5 Notes

Solution
Another follow-your-nose type naturality proof. Part (b) is interesting because the direct computation

is necessary to discover the conditions. Don’t be afraid to get your hands dirty...
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Problem 8.3.6

Problem 6 Notes

Solution
The fact that this problem can be formulated in terms of cosets is quite interesting since it applies in

the common situations where not all of our interesting subgroups are normal. It also makes for a good
qual problem because the group theory portion is not difficult but does rely on understanding and not
memorization of results. Part (b) is probably most useful/observed in the setting of algebraic number
theory.
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Problem 8.4.1

Problem 1 Notes

Solution
This is in some sense just a series of fairly straightforward computations and checking of your knowledge

and comfort with basic-linear-algebra-as-module-theory. The level of detail that you would include for each
step of this problem depends heavily on the focuses of your Math 101 class. Notice that you can save some
work once you determine the (µT , χT ) pairs by using the theorem that T is diagonalizable over F if and
only if µT is square-free and splits.

Problem 8.4.2

Problem 2 Notes

Solution
Ring theory basics. Parts (b) and (c) both make use of the Division Algorithm for polynomials and

rely on degree arguments. Sometimes it is easy to forget the simple things. Note that this implies that
this set of results needs the fact that A is entire.

Problem 8.4.3

Problem 3 Notes

Solution
The theory of bilinear forms is useful in many different fields covered by the written exam. Depending

on the distribution of instructors for your first year courses, this type of question may appear in the context
of topology or functional analysis. Part (b) is pretty straightforward: you simply wield the non-degeneracy
as a sledgehammer until the details work out. Part (c) follows pretty naturally once you remember to write
it as an induction proof. Again, the non-degeneracy provides the centerpiece, although the fact that you
can rescale basis elements also plays its part.

Problem 8.4.4

Problem 4 Notes

Solution
Hooray for the Frobenius automorphism. This should always be your first technique to try out on finite

field Galois problems. Part (b) can feel a little strange if you haven’t spent much time with inseparable
extensions, since it might not be clear how much leverage you obtain from assuming non-separability.
However, the result follows quickly from the derivative formulation, so if you get to that step everything
should work out fine.

Problem 8.4.5
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Problem 5 Notes

Solution
A simpler way to attack this problem on the actual exam is to note that the desired group must be

non-abelian and start trying the small ones. The permutation representation and cycle types are your
friend.

Alternatively, we can really start by saying |G| ≥ 6 (or 1
|G| ≤

1
6
). Now we can get a better upper bound

on the order of H. Since |H| ≤ |K|, we have

1 =
1

|G|
+

1

|H|
+

1

|K|
≤ 1

6
+

2

|H|

and so |H| ≤ 12
5

= 2.4. That is, |H| ≤ 2. As before, we know it is not possible for |H| = 1, so we have
concluded that |H| = 2. Furthermore

1 =
1

|G|
+

1

|H|
+

1

|K|
≤ 1

6
+

1

2
+

1

|K|
,

so |K| ≤ 3. Now we need only check the cases when |K| = 3 and |K| = 2, as in the given solution.
For yet another solution, we can use some basic calculus. We can argue that the center of G is trivial

rather easily. Once we’ve reduced to the case where the center of G is trivial (i.e., we have 2 non-trivial
conjugacy classes), then the Class Equation forces |G| = 1 + x1 + x2. Rearranging terms, either x1 or

x2 must be ≥ |G|
2

(any non-abelian group has size ≥ 6). WLOG, say x1 ≥ |G|
2

. Moreover, x1 | |G| by

Lagrange’s Theorem, and so x1 =
|G|
2

.

Revisiting the Class Equation, x2 = |G|
2
− 1. Again x2 | |G| by Lagrange’s Theorem. Thus |G| =

n · ( |G|
2
− 1). Solving for |G|, we obtain |G| = 2n

n−2
. As a function of n, |G| decreases for n ≥ 3.4 Hence

|G| = 6 and so G = S3.

Problem 8.4.6

Problem 6 Notes

Solution
This one seems a little trickier than the previous Galois problems but it really just follows the same

set of steps and methods. Don’t be scared of the big numbers.

4Just take a derivative!
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Problem 8.5.1

Problem 1 Notes

Solution
Here we see the classic commutative algebra problem using the standard approach for projective mo-

dules: prove it for a free module and extend. This is one of the equivalent definition of projectivity and a
nice application of some basic universal property nonsense.

It seems that most of the people who took this exam used the approach presented here (proving the
lemma separately from the main result). However, depending on the level of detail in your version of Math
101, you might simply assume the result for free modules.

Problem 8.5.2

Problem 2 Notes

Solution
Probably the easiest algebra question ever asked on a written qual. As a result, we might have been

so nervous about the level of this question that we supplied three different proofs on the actual exam.

Problem 8.5.3

Problem 3 Notes

Solution
This argument is equivalent to a special case of the result presented in 4.2.4. It might be easier to prove

the general result and then specialize instead of working directly with the specific counting problem.
In the midst of the proof, we assumed that QR ≤ G (and P (QR) ≤ G). This is a standard fact and a

proof is as follows:

Proof. Since 1 ∈ QR, we just need to check closure and inverses.

• (Closure) Let a1b1, a2b2 ∈ QR, where a1, a2 ∈ Q and b1, b2 ∈ R. Since Q E G, we have b1a2b
−1
1 = c ∈

Q. Thus
a1b1a2b2 = a1b1a2b

−1
1 b1b2 = a1cb1b2 ∈ QR

since a1, c ∈ Q and b1, b2 ∈ R.

• (Inverses) Let ab ∈ QR, with a ∈ Q, b ∈ R. Then (ab)−1 = b−1a−1. Now, by normality, c :=
b−1a−1b ∈ Q. So (ab)−1 = cb−1 ∈ QR as c ∈ Q and b−1 ∈ R.

Thus QR ≤ G.
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Problem 8.5.4

Problem 4 Notes

Solution
This seems at first glance like a long messy problem but it really just checks the same basic Galois

knowledge that the “compute the splitting field of xn − a” type problems do. This problem does rely on
some fairly course specific details about cyclotomic extensions and is much simpler if you know the matrix
embedding for Q( n

√
a, ζn).

For instance, when determining (d, e) in part (a), there was a homework problem showing that Q(
√

5) ⊂
Q(ζ5). This is a good exercise to work through.

Problem 8.5.5

Problem 5 Notes

Solution
Part (a) is just a straightforward distinguished classes proof. In fact, it should be reasonable to argue

that these extensions follow from knowledge about distinguished classes.
Part (b) is not so bad if you remember Dirichlet’s Theorem and quite difficult if you don’t.5

Problem 8.5.6

Problem 6 Notes

Solution
Noetherian ring properties and the equivalence of their definitions is definitely something you should

be prepared to answer. Hilbert’s basis theorem has become slightly less popular as a qual question but it
is still a good proof to know.

The construction in part (a) could be formalized with an inductive proof but this is probably not
necessary.

For part (b), the second proof probably contains the most intuition but the third proof is the “slickest.”
However, part of the exam is demonstrating what you know and one of these is a little deficient in that
regard. Also, note that we did not use the integral domain structure of A here (it isn’t necessary).

5Not to mention quite frustrating.
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Problem 8.6.1

Problem 1 Notes

Solution
Just a check of the basic definitions and computations in the module view of linear algebra. Nothing

scary here.

Problem 8.6.2

Problem 2 Notes

Solution
A brief trip through tensor product and universal property land. The main tool in both parts is the

fact that tensor product distributes over direct sum. In the simplest case, this is stated as A⊗R (B⊕C) ∼=
(A⊗R B)⊕ (A⊗R C).

Another way of viewing part (a) is to consider a basis (mi)i∈I for M and a basis (nj)j∈J for N . In
this view, basis element mi corresponds to copy i of R in the direct sum expression (and similarly for nj).
Then the proof above shows that (mi ⊗ nj)(i,j)∈I×J is a basis for M ⊗R N .

Problem 8.6.3

Problem 3 Notes

Solution
This is a group theory result right out of Dummit and Foote. Fairly standard counting argument and

lots of different ways to repackage the proof.

Problem 8.6.4

Problem 4 Notes

Solution
Another straightforward Galois problem with an extra interesting computation in part (d).

Problem 8.6.5

Problem 5 Notes

Solution
Part (a) is just a simple check of field extension basics. Part (b) requires you to know something about

distinguished classes and perform some middle–school level algebra, not necessarily an easy task on the
exam itself. Be sure to note the actual structure of the proof here, showing that the individual summands
of α lie in Q(α) is a great way to tackle these problems that doesn’t require you to compute the minimal
polynomial. 6

6Which since you asked is: f(x) = x6 − 6x4 − 10x3 + 12x2 − 60x+ 17.
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Problem 8.6.6

Problem 6 Notes

Solution
Part (a) requires you to think a little bit about what separability means and what can go wrong in

characteristic p fields. The Frobenius map is always your friend.
Part (b) is very much a Gauss’ Lemma problem. Just follow your nose (and the hypotheses of the

lemma).
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Problem 8.7.1

Problem 1 Notes

Solution
This is a nice check of basic universal mapping properties and quotient modules. Pretty straightforward

as long as you don’t get lost in the notation.
Since the S−1 functor and the S−1R ⊗R · functor are naturally equivalent, part (b) is equivalent to

showing that S−1R is flat.

Problem 8.7.2

Problem 2 Notes

Solution
Part (a) is again mostly just a definition check. Part (b) is a little sneaky if you don’t see the trick

right away. Slow down and think about the definitions. Reasoning from part (a) and thinking about the
natural free module structure should point you in the right direction.

Problem 8.7.3

Problem 3 Notes

Solution
This problem has become a favorite recently, on both oral and written exams. Although it seems like

there are a lot of moving parts here, the key ideas are really just linear algebra and the Sylow theorems.

Problem 8.7.4

Problem 4 Notes

Solution
One of the shortest proofs to ever be on the written exam. The intuition plays on the relationship

between finite and algebraic extensions of fields and the algebraic closure of C.
It is very easy to fall into a trap with this problem. Below is one incomplete solution to this problem:

Proof. Let α ∈ R and let n = dimCR. Then the elements 1, α, . . . , αn ∈ R are a dependent set, so there
are constants ci ∈ C, not all zero, such that

c0 + c1α + · · ·+ cnα
n = 0.

Thus α is the root of the non-zero polynomial c0 + c1x + · · · + cnx
n, so C(α)/C is an algebraic extension

of fields. But C is algebraically closed, so C(α) = C. Thus α ∈ C and so R = C.

Now, run the same argument with C× C. Does it fail? Why?
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Problem 8.7.5

Problem 5 Notes

Solution
The most interesting direction of this problem is (iii)→(i), which hinges on the containment relations

of finite fields with the same characteristic.

Problem 8.7.6

Problem 6 Notes

Solution
This problem requires some fairly messy computations as far as Galois problems go. However, discove-

ring the roots only requires the quadratic formula and from there determining the Galois group structure
is routine if not pleasant.
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Problem 8.8.1

Problem 1 Notes

Solution
The first two parts are just basic module facts and definitions. The third part requires understanding

the consequences of part (b) and using the elementary integer column operations to justify the possible
submodules. The real key is remembering that column operations change the basis for the image but not
the image itself.

Problem 8.8.2

Problem 2 Notes

Solution
This problem might look a little mysterious at first but once you identify that it is really a question

about canonical forms everything follows nicely since forms are only defined up to similarity class.

Problem 8.8.3

Problem 3 Notes

Solution
For part (a) the assumption of simplicity is our big tool to use. The map should also look familiar from

Galois theory. Part (b) is an easy application of (a).

Problem 8.8.4

Problem 4 Notes

Solution
This is a classic oral qual question from the old system. Properties of the commutator aren’t always

covered in the algebra courses but if this question appears on your qual you should have seen the material
in class. Part (b) is in some sense just a check that you know the fundamental theorem of Galois theory
given part (a).

Problem 8.8.5

Problem 5 Notes

Solution
Computational Galois theory without having to count the degrees of the extensions. Luckily, it is easy

to practice lots of problems like this if you are rusty.
Also, there is a more general result lurking in the background here. Assume K is the splitting field

of an irreducible separable polynomial f over F . If f has a real and a complex root, then Gal(K/F ) is
nonabelian.
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Problem 8.8.6

Problem 6 Notes

Solution
The setup for this problem is a little complex but once you have all the pieces straight in your head,

it’s not so bad.
An alternate solution, for those more comfortable with Galois theory, is the following:

Proof. Since K/F is Galois, every automorphism of L over F can be obtained by extending an automor-
phism of K.

• To lift the identity, id : K → K, to L = K(
√
b), we consider roots of x2 − b in L. Since x2 − b has

two roots in L, there are two lifts of id to automorphisms of L.

• To lift σ : K → K, we consider the roots of σ(x2 − b) = x2 − σ(b) in L. Then L/F is Galois if and
only if

√
σ(b) ∈ L.

Since the quadratic extensions of K are determined up to K×/K×2,√
σ(b) ∈ L⇔ K(

√
b) = K(

√
σ(b))⇔ bσ(b) ∈ K×2.
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Problem 8.9.1

Problem 1 Notes

Solution
See notes here: 8.4.1.

Problem 8.9.2

Problem 2 Notes

Solution
Part (a) is a counting argument, relying on a consequence of the Class Equation. For part (b) we need

the smallest non-abelian p-group and luckily 8 works.

Problem 8.9.3

Problem 3 Notes

Solution
This proof perfectly carries over to the more general setting of finitely generated modules over a PID,

with “infinite order” replaced with “torsion-free”.
The proof looks quite technical, but the general idea is much simpler than it looks. First, we take

advantage of the structure theorem for finitely generated abelian groups (or modules over a PID) to write
x and y in terms of some free coordinates and torsion coordinates. Then, we throw away all but one
coordinate such that the coordinate we keep is (i) a free coordinate and (ii) non-zero. We conclude by
using the fact that Z ⊗Z Z is free of rank one (more succinctly, R ⊗R R ∼= R) to show that the non-zero
free coordinates of x and y remain non-zero when we take the tensor product.

Ultimately, this is a fun problem that just boils down to showing you can avoid the torsion subgroup.
The approach looks a little different than most proofs that elements in a tensor product are non-zero, but
overall you are still trying to find a basis element to which to map.

Problem 8.9.4

Problem 4 Notes

Solution
The key idea for part (a) is to be able to move comfortably between different choices of how to view

the coefficients of the polynomial ring. Adjoining the variables one at a time is often a great technique.
Part (b) just requires the Hilbert Basis Theorem and some familiarity with types of ideals. It’s useful to

remember that a domain is a UFD if and only if (i) every element has (not necessarily unique) factorization
into irreducibles and (ii) every irreducible is prime. Furthermore, to prove that a quotient ring has some
property, you can prove that the ideal has some corresponding property. Another example of this is that
R/I is a field if and only if I is maximal (assuming R is commutative).

Part (c) boils down to using Gauss’s Lemma and remembering when a polynomial ring is a PID.
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Problem 8.9.5

Problem 5 Notes

Solution
See notes here: 8.3.4.

Problem 8.9.6

Problem 6 Notes

Solution
This problem is just a chance to show off how much you know about Galois theory. The difference

between an acceptable answer for the qual and the “correct” answer is particularly large for this problem.
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Problem 8.10.1

Problem 1 Notes

Solution
A basis free proof of oart (a) is also not so hard to write down. In order to come up with an example

for part (b), your first thought should be to find the simplest possible projections and subspaces. Part (a)
reminds you that projections don’t commute generically.

Problem 8.10.2

Problem 2 Notes

Solution
These types of problems are becoming more popular and you should be familiar with the computations

and ideas required.
Also, we can count GLn(Fq) in much the same way: there are qn−1 options for the first column, qn− q

for the second column (because it can’t be a multiple of the first column, and there are q of those), qn− q2

for the third column (because it can’t be in the span of the first two columns, which comprises q2 vectors,
and so on: there are qn − qi−1 options for column i, because we must exclude the qi−1 vectors in the span
of the first i− 1 columns. Therefore |GLn(Fq)| = (qn− 1)(qn− q) · · · (qn− qn−1). Using this, we can count
SLn(Fq) too: GLn(Fq)/SLn(Fq) ∼= F×q , so |SLn(Fq)| = |GLn(Fq)|/(q + 1).

Problem 8.10.3

Problem 3 Notes

Solution
This is all about tying definitions together and the primary decomposition for modules over a PID.

Usually we prove the direct sum conditions but here we are using it.

Problem 8.10.4

Problem 4 Notes

Solution
Classic ring theory.7 Although we were glib about what elements of Z[

√
−5] were units and irreducibles,

it doesn’t seem as though we had to prove those parts of the problem.

Problem 8.10.5

Problem 5 Notes

Solution

7With a slight hint of number theory.

213



The Written Qual Book Algebra Commentary: Fall 2016

Back to slightly more traditional Galois problems. This has the slight twist that you need to use the
FTGT to identify the groups. Don’t think too hard. In part (c), note that we found H by taking “what
was left” to get L after finding the subextension which gave us S3 as a Galois group.

Problem 8.10.6

Problem 6 Notes

Solution
This is a classic problem and one of our personal favorites. At its heart this problem is really just

a collection of counting problems, making use of your knowledge of extension theory to get the (simple)
bounds necessary for the contradictions.

Also, the requirement in part (c) that n ≥ 4 is necessary. Indeed, 3 · ϕ(3) = 6 and the Galois group of
x3 − 2 (over Q) is S3.
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Problem 8.11.1

Problem 1 Notes

Solution
For part (a), everyone immediately guessed the quaternions: 8 element group, John Voight wrote the

question, etc. oops!
For part (b), it’s tempting to build a section to the short exact sequence and move on. However, it’s

essential to remember that this SES takes place in the category of groups (and not abelian groups or
modules). In this setting, a SES splits if and only if there is a retraction.

Problem 8.11.2

Problem 2 Notes

Solution
You could element chase part (a) if you really wanted to, but it probably isn’t worth the pen ink.8

There are two other possible interpretations of part (b), depending on how charitable you are feeling
to the examiner. Excluding the implicit assumption noted in the footnote, you might choose to take your
zero blocks to have size zero9 in which case the result is vacuously true in any basis. Alternatively, you
may instead assume that the blocks must all have non-zero dimensions, in which case the problem is false
as stated.

Problem 8.11.3

Problem 3 Notes

Solution
As long as you remember the definition of the dual space, you should be good to go.

Problem 8.11.4

Problem 4 Notes

Solution
An alternate method to show that x4 + 1 is irreducible over Z[x] is by making use of the automorphism

of Q[x] determined by f(x) 7→ f(x + 1). In our particular case, (x + 1)4 + 1 is irreducible by Eisenstein’s
Criterion (p = 2), and hence the original polynomial must also be irreducible.

Problem 8.11.5

Problem 5 Notes

Solution

8You are writing in pen, right?
9Not explicitly disallowed.
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The first two parts should be familiar to anyone who has made it this far in the book. Part (c) is a
nice twist on the standard material and works a fun Sylow argument into the exam.

Problem 8.11.6

Problem 6 Notes

Solution
Depending on the exact topics covered in your class, the result of parts (a) and (c) may have been

discussed extensively. Either way, the real subfield and cyclotomic field properties are useful. You can
discover part (b) by thinking about Q(i), if it is not clear at first how to proceed. Finally, in a very exciting
fashion, constructibility finally makes an appearance on the exam!
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Problem 9.1.1

Problem 1 Notes

Solution
It’s important to know the equivalent definitions of continuity by heart. This problem doesn’t require

any specialized knowledge and it is considered basic real analysis (thus not generally covered in the first-year
courses). Indeed, the proof is a matter of following the definitions through.

Problem 9.1.2

Problem 2 Notes

Solution
Both parts of this problem are fairly standard results in analysis. For part (b), there are a couple steps

that require additional justification.
Firstly, we blithely write that a compact subset K of Ω is contained in a compact set K ′, realized

as a union of disks of the same radius. For a sketch of this fact, write f(z) = d(z,K). So f is a
continuous function on Ω and thus, by compactness, f(z) = d(z,K) is realized by some w ∈ Ω. Define

K ′ =
⋃
z∈K

D(z, r) = f−1([0, r]). Then K ′ is closed and bounded, hence compact.

Secondly, for the Cauchy estimates, it’s better to write out the details here. In particular, remember
that the derivative is linear and so

|f ′n − f ′| = |(fn − f)′| < (ερ) · 1 · ρ−1 = ε

where M is taken to be ερ.

Problem 9.1.3

Problem 3 Notes

Solution
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Both parts of this problem require mucking around with εs and proving the desired results. For part (b),
the strategy is a standard one: first find a candidate for the limit of a Cauchy sequence (using completeness
of R or C), usually some kind of pointwise convergence, and then prove the additional properties separately.

Problem 9.1.4

Problem 4 Notes

Solution
The Riesz–Fréchet and Closed Graph Theorems are both extremely important to keep in your back

pocket. Both are typically taught in the functional analysis course and this is a standard homework
problem in that course.

The fact that we should use the Closed Graph Theorem in part (b) is certainly not immediate – there’s
nothing obvious from the statement of the problem that it should be involved at all. However, since we’re
showing the boundedness of T , there are only so many choices available.

Problem 9.1.5

Problem 5 Notes

Solution
The introduction to Ullrich’s Complex Made Simple covers almost all of this problem. For the sufficient

condition, note that the assumptions are rather extreme but they get the job done. Also, it’s perhaps
better to internalize the idea that the Cauchy–Riemann equations are the necessary structure to the make
the real derivative of fR into a C-linear function.

Problem 9.1.6

Problem 6 Notes

Solution
There are no substantive comments to be made about this problem. Go forth and prove things!
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Problem 9.2.1

Problem 1 Notes

Solution
The proof that points can be separated by linear functionals is a standard corollary to the Hahn–Banach

Theorem. There isn’t a lot going on in this problem.

Problem 9.2.2

Problem 2 Notes

Solution
The problem itself is fairly standard for the Residue Theorem applications. However, it is possible to

go through a lot of excessively long computations in this problem. For the written exam, that’s exactly
something to avoid when possible. For instance, the full proof that

∫
αR
f(z) dz → 0 as R → ∞ requires

more actual computing but that takes away from the essential solution.

Problem 9.2.3

Problem 3 Notes

Solution
This is a standard problem in real analysis and the details can trip you up. Try writing down the

general idea and focus on constructing the appropriate examples (of which there should be many).

Problem 9.2.4

Problem 4 Notes

Solution
While we didn’t exactly use the theorem to determine the radius of convergence, it’s unclear what they

were expecting otherwise.

Problem 9.2.5

Problem 5 Notes

Solution
It’s possible that there is a cleaner way to solve this problem than the solution presented here. However,

if we ignore the “back and forth” nature of this solution, this problem comes down to using general
properties of measures. On the exam, it comes down to already knowing what you have to do.

Problem 9.2.6

Problem 6 Notes

Solution
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This is another standard real analysis problem. Not a whole lot to it.
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Problem 9.3.1

Problem 1 Notes

Solution
This problem is mostly about understanding the Cauchy–Riemann equations. It can help to relabel

the real and imaginary parts of g and h to help track whether the equations hold, but that’s a personal
preference.

Problem 9.3.2

Problem 2 Notes

Solution
There is nothing intentionally tricky about this problem, so long as you remember the limit point

definition of closed sets.

Problem 9.3.3

Problem 3 Notes

Solution
This is a straightforward proof using one of the major theorems in measure theory.

Problem 9.3.4

Problem 4 Notes

Solution
This is another straightforward problem. It doesn’t rely on any heavy machinery or difficult techniques.

Know your definitions and you will get through this one.

Problem 9.3.5

Problem 5 Notes

Solution
Unlike the remainder of the problems on this analysis exam, this problem is all about the tricky details.

Knowing how to create your subsequences for case (III) is intuitively clear and horrible to write down
correctly.

Problem 9.3.6

Problem 6 Notes

Solution
For part (a), the Cauchy sequence argument is rather standard. The rest of the problem relies on basic

facts about bounded linear maps.
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Problem 9.4.1

Problem 1 Notes

Solution
Since we have an entire function and want to show that it’s constant, the most natural result to use is

Liouville’s Theorem. That is, we need to show the map is bounded. This is always possible on compact
sets but we have to use the additional assumption to get a bound elsewhere.

Problem 9.4.2

Problem 2 Notes

Solution
The essential intuition for this problem is that the condition on norms holds if and only if

(x, y) + (y, x) = 0.

Problem 9.4.3

Problem 3 Notes

Solution
This problem is all about knowing what can go wrong with integration. Working over a simply-

connected domain is usually a good sign; holes are a bad sign.

Problem 9.4.4

Problem 4 Notes

Solution
Showing that V is a bounded operator is a standard argument. To show that it has no eigenvalues, we

need to pull out the Fundamental Theorem of Calculus. It helps that this problem came from a homework
problem in Math 113.

Problem 9.4.5

Problem 5 Notes

Solution
Here’s your chance to use the Dominated Convergence and Monotone Convergence Theorems! Once

you’ve made this realization, the proofs follow from the normal tricks.1

1Unless you deduce the wrong inequalities, at which point you’re hopelessly stuck in a weird loop of doom.
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Problem 9.4.6

Problem 6 Notes

Solution
This problem also showed up as a homework problem in Math 113. The general theme is to use u-

substitution to figure out the computations. However, both the Cauchy–Schwarz(–Bunyakovsky) inequality
and Fubini’s Theorem make an appearance.
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Problem 9.5.1

Problem 1 Notes

Solution
Parts (a) and (b) are Proposition 2.7 in Folland’s textbook on real analysis. It is good to remember

that you can prove a function f is measurable by, for instance, showing that f−1((a,∞]) is measurable for
every a ∈ R — or, more generally, by showing that f−1(B) is measurable for every B in a collection of
sets that generates the σ-algebra of measurable sets in the codomain of f .

For part (b), note that we assumed the proof of the analogous result for infimums. This is perfectly
acceptable and certainly expected in this case.

For part (c), the requirement of “starting with the definition of measurable function” is the reason we
did not use the following simpler argument: f − g is measurable, and E = (f − g)−1((0,∞]).

Problem 9.5.2

Problem 2 Notes

Solution
We prove the statement first for characteristic functions, then for simple functions, then for arbitrary

functions. This is an extremely useful technique in measure theory, especially the part where we write the
arbitrary function as an increasing limit of simple functions and use the Monotone Convergence Theorem.

Problem 9.5.3

Problem 3 Notes

Solution
Always remember Liouville’s Theorem.
Be mindful of the difference between the statements “limz→∞ f(z) = ∞” and “limz→∞ f(z) does not

exist”. In the former, f(z) stays arbitrarily large as z becomes arbitrarily large; in the latter, f(z) is
unbounded but keeps getting small again as z becomes arbitrarily large. If the limit did not exist, then
f(1/z) would not have a pole at 0 like we needed it to, but rather an essential singularity. From the
perspective of the Riemann sphere C, the definition of converging to ∞ is the same as the definition of
converging to any finite point.

Problem 9.5.4

Problem 4 Notes

Solution
This is a standard Banach space argument: find the candidate limit and use assumptions to force it to

work out.
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Problem 9.5.5

Problem 5 Notes

Solution
To prove that M is well-defined, in addition to proving that M(f) really falls in the codomain, we also

had to prove that M(f) does not depend on the choice of representative for f . Recall that technically Lp

spaces consist of equivalence classes of functions, where two functions are equivalent if they are equal almost
everywhere in the domain. This technicality was harmless in this problem, but it is worth remembering.

We proved that ‖M‖ ≤ 1; in fact, ‖M‖ = 1. More generally, given h continuous on [0, 1], we can define
M(f) = hf , and then M is a bounded linear operator on L2(0, 1) with ‖M‖ = ‖h‖∞.

Problem 9.5.6

Problem 6 Notes

Solution
Notice that δ is the distance from x to M . In part (a), we show that, when M is closed and x 6∈ M ,

this distance is strictly positive.
Part (b) is much easier in a Hilbert space. Indeed, letting x⊥ be the orthogonal projection of x onto

M⊥, we take our linear functional to be z 7→ 1
δ

(z, x⊥). In this problem, we use the Hahn–Banach theorem
to prove it in much more generality — it is not even required for V to be complete.
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Problem 9.6.1

Problem 1 Notes

Solution
Parts (a) and (b) are fairly straightforward applications of the convergence theorems from measure

theory. Part (c) requires understanding why we might expect the equation to fail and using that to build
a reasonable example.

Problem 9.6.2

Problem 2 Notes

Solution
This is a standard homework problem. The “trick” in this problem is realizing that you can partition

the domain into the sets S1 and S2. At first glance, it’s not immediately obvious that this is what you
should be doing.

Problem 9.6.3

Problem 3 Notes

Solution
The result for part (a) is a special case of Jordan’s Lemma, so if you are familiar with this result then

the proof takes only one line. If you are not familiar with this result the proof of the general case follows
along exactly the same path as the problem presented here, replacing 1

z4
with any other function, possibly

with poles, that goes to zero as z →∞. Part (b) then just requires you to join up the two semicircles and
apply the Residue Theorem.

Problem 9.6.4

Problem 4 Notes

Solution
This is a straightforward problem. No special commentary required.

Problem 9.6.5

Problem 5 Notes

Solution
The main issue with this problem is the potential of getting lost in the Sea of Horrible Subscripts. If

you can navigate that morass, then you’ll be fine.
There’s another approach to this problem which is nearly identical. Start by noting that (`∞, ‖·‖∞)

is a Banach space. Then it suffices to show that c is a closed subspace of `∞. So we take a convergent
sequence in c and show that the limit is also a convergent sequence in C. Try it and see what appeals to
you more.

226



The Written Qual Book Analysis Commentary: Fall 2014

Problem 9.6.6

Problem 6 Notes

Solution
There isn’t a lot to say about this problem. You need to remember some facts about how the range of

the adjoint relates to the original operator and, otherwise, follow your nose. Wherever it may lead you.
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Problem 9.7.1

Problem 1 Notes

Solution
See the comments to problem 2(a) from Summer 2012 (9.1.2).

Problem 9.7.2

Problem 2 Notes

Solution
Much like other problems based on applying Liouville’s Theorem, we need to show that a particular

function is bounded. In this case, the assumption on f tells us that we can start looking from degree 3 of
its Taylor expansion about 0.

Problem 9.7.3

Problem 3 Notes

Solution
See the comments to problem 5 from Fall 2012 (9.2.5).

Problem 9.7.4

Problem 4 Notes

Solution
The really interesting part of this problem is (c). Showing that T is bounded relies on the realization

that we should employ one of the “big” results in functional analysis (which typically require at least a
Banach space). In this case, we actually use two: the Uniform Boundedness Principle and the Hahn–
Banach Theorem.

Problem 9.7.5

Problem 5 Notes

Solution
The solutions to each part of this problem are “standard” for the setting. They may be more familiar

for the setting of bounded linear operators, but the proofs are exactly the same. Part (a) is known as
the Carl Neumann Criterion, part (b) is a corollary to this criterion, and part (c) is the consequence on
spectra.

Problem 9.7.6

Problem 6 Notes

Solution
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This problem is nicely constructed to give you all the tools you need for part (c). The techniques used
here rely on properties of Hilbert spaces and the adjoint but nothing fancier than those.
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Fall 2015

Problem 9.8.1

Problem 1 Notes

Solution
This result can be a consequence of Montel’s Theorem, which typically concludes that the family of

maps {fn} has a subsequence which converges uniformly on compact sets. Then we obtain analyticity by,
for instance, problem 2a from Summer 2012 (5.1.2).

Problem 9.8.2

Problem 2 Notes

Solution
The result in part (b) is known as the Casorati–Weierstrass Theorem. In the midst of the proof, we

note that g is holomorphic at z0 without much justification. However, this is a good opportunity to read
up on analytic continuation. For our particular situation, g was analytic at z0 because g was bounded on
a neighborhood of z0.

Problem 9.8.3

Problem 3 Notes

Solution
This problem would be substantially more difficult if not for the provided hint. Showing that B(R2) ⊆

B(R)⊗ B(R) is not especially interesting or difficult, but the reverse inequality takes some care.

Problem 9.8.4

Problem 4 Notes

Solution
The distinction between pointwise convergence and convergence in norm is particularly stunning in this

problem.

Problem 9.8.5

Problem 5 Notes

Solution
In the solution, we used the fact that a linear functional defined on Q extends to a bounded linear

functional such that ϕnj(x) → ϕ(x) for all x ∈ E. It is unclear whether this result could reasonably be
assumed or if it was supposed to be proven in the middle of the problem. A complete proof of this fact is
presented below.

Theorem 9.8.1 Let E be a Banach space and Q a dense subset. Let {ϕn} be a bounded sequence in E∗

(with bound M) and assume {ϕn(q)} is convergent for all q ∈ Q. Then {ϕn(x)} is convergent for all x ∈ E
and the limit ϕ(x) defines a bounded linear functional on E.
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Proof. We will first show that {ϕn(x)} is Cauchy for all x ∈ E. Let ε > 0 and choose, by density of Q,
some q ∈ Q such that ‖x− q‖ ≤ ε/4M . Then, for all n,

|ϕn(x)− ϕn(q)| ≤ ‖ϕn‖ ‖x− q‖ ≤M · ε

4M
=
ε

4
.

Since {ϕn(q)} is convergent, ∃N such that, for all n ≥ N , we have

|ϕn(q)− ϕ(q)| ≤ ε

4
.

Thus, for m,n ≥ N , we have

|ϕn(x)− ϕm(x)| = |ϕn(x)− ϕ(q) + ϕ(q)− ϕm(x)|
≤ |ϕn(x)− ϕ(q)|+ |ϕ(q)− ϕm(x)|
≤ |ϕn(x)− ϕn(q)|+ |ϕn(q)− ϕ(q)|+ |ϕ(q)− ϕm(q)|+ |ϕm(q)− ϕm(x)|

≤ ε

4
+
ε

4
+
ε

4
+
ε

4
= ε.

Hence {ϕn(x)} is Cauchy. Since E is complete, this means that ϕn(x)→ ϕ(x) ∈ F.
Thus it remains to show that ϕ is a bounded linear functional. For linearity, we use the fact that

ϕn is linear and the uniqueness of convergence. For boundedness, note that ‖ϕ‖ ≤ M since, for all n,
‖ϕn‖ ≤M .

Problem 9.8.6

Problem 6 Notes

Solution
The shift maps are typical examples of the given behavior – know them.
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Analysis Commentary

Summer 2016

Problem 9.9.1

Problem 1 Notes

Solution
This result is known as the Reverse Fatou Lemma. The solution given, using Fatou’s Lemma, is

standard, but it is also possible to simply use the proof of Fatou’s Lemma (either direct or with the
Monotone Convergence Theorem) using g − fn at every step.

It’s important to note that the logical starting place for the inequality is where we applied Fatou’s
Lemma. The remaining equalities follow from there naturally.

Problem 9.9.2

Problem 2 Notes

Solution
The major things to remember in this problem is how the product σ-algebra is defined and that

integration with respect to the counting measure (on a countable space) is summation.

Problem 9.9.3

Problem 3 Notes

Solution
This problem is all about the different theorems in complex analysis:

• Part (a) uses Cauchy’s Theorem.

• Part (b) uses the Identity Theorem. This is equivalent to the well-known fact that the zeroes of a
nonzero holomorphic function are isolated.

• Part (c) uses Liouville’s Theorem.

• Part (d) uses the Residue Theorem.

Problem 9.9.4

Problem 4 Notes

Solution
Getting through this problem relies heavily on the fact that norm convergence implies weak convergence.

The major hint that we should be using the Closed Graph Theorem to show boundedness is that we have
Banach spaces and an additional hypothesis that has to deal with limits.
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Problem 9.9.5

Problem 5 Notes

Solution
Part (b) of this problem is manageable without having many realizations about what to do for this

problem. However, part (a) and (c) are filled with traps. In part (a), we should use the Dominated
Convergence Theorem because we can get a constant bound on |T (f)| (this is something of a standard
procedure). Doing this carefully requires some obnoxious details, as shown in the solution.

For part (c), it’s important to settle on the “correct” definition of compactness. From there, the
Arzelà–Ascoli Theorem is actually a natural candidate. To apply it, uniform boundedness is easy and
equicontinuity is hard. The proof that the sequence {T (fn)} is equicontinuous relies on K being uniformly
continuous (otherwise we can’t get anything in terms of |x1 − x2|) which is easy if you remember the
Heine–Cantor Theorem and a roadblock otherwise.

Problem 9.9.6

Problem 6 Notes

Solution
This result may be generalized by weakening our assumptions. Indeed, the result holds if {fn}n∈N is

monotonic (either non-increasing or non-decreasing) and f is a continuous function such that fn → f
pointwise. If {fn}n∈N is non-decreasing, the result is commonly referred to as Dini’s Theorem. Slight
modifications of the proof we present yields a proof of the distinct variants.
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Fall 2016

Problem 9.10.1

Problem 1 Notes

Solution
Part (a) is an exact duplicate of Summer 2013 (problem 3). We have reproduced the solution here

because there are other parts to address in this problem.
Ultimately, this parts (a) and (b) of this problem are all about the Monotone Convergence Theorem.

Part (c) requires some care, however. Especially during the stressful time that is the exam, one might not
see that the containment is with respect to different measures. Also, g is still in L+(X,M) but it has the
added property of being square-integrable.

Problem 9.10.2

Problem 2 Notes

Solution
This problem is all about properties of σ-algebras and how Lebesgue measurable sets are defined.

Ultimately, there are no fancy arguments.

Problem 9.10.3

Problem 3 Notes

Solution
For part (b), the only additional hypothesis is that you have a maximum on the circle. Given that

f is analytic (hence continuous) on the entire disk and circles are compact, this isn’t a very meaningful
assumption – it’s always true. Thus we only truly require the hypotheses for the Cauchy Integral Formula.

Problem 9.10.4

Problem 4 Notes

Solution
This is a standard proof in functional analysis.

Problem 9.10.5

Problem 5 Notes

Solution
Establishing linearity of T first gives us additional leverage with other results (here, with the Closed

Graph Theorem). Once T is a bounded linear map, uniqueness of the adjoint establishes the same properties
for S.
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Problem 9.10.6

Problem 6 Notes

Solution
The main observation here is that we want to apply Arzelà–Ascoli. To see this, we rely on the definition

of sequential compactness. For metric spaces, this is equivalent to the topological notion of compactness
(why?) but sequences tend to be the better notion with function spaces.
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Summer 2017

Problem 9.11.1

Problem 1 Notes

Solution
With the exception of the phrasing of the question, this is a fairly standard type of complex analysis

problem.

Problem 9.11.2

Problem 2 Notes

Solution
The only potential problem with the argument for part (b) is when u is not ν-integrable, meaning that∫

Y
u+ dν =

∫
Y
u− dν = +∞. But this happens if and only if

∫
X

u+ ◦ f dµ =

∫
X

u− ◦ f dµ = +∞, so we

conclude that u is ν-integrable if and only if u ◦ f is µ-integrable.

Problem 9.11.3

Problem 3 Notes

Solution
There are lots of possible examples for part (a), building on a similar theme. Depending on your

instructor, they may not appreciate the “cleverness” so frequently displayed by slightly frazzled graduate
students2 and writing out the standard (if boring) example is likely to be better for your score. Parts (b)
and (c) require some ε chasing but nothing too strenuous.

Problem 9.11.4

Problem 4 Notes

Solution This is a nice sequence of problems that build on each other. Anytime you see the ∗ appearing,
you should start to think about how to work out the problem in terms of inner products (which have all
sorts of nice properties).

Problem 9.11.5

Problem 5 Notes

Solution
Note how each of the assumptions is used throughout the proof. This type of contradiction argument

by Hahn–Banach is perhaps not the most common use, but it is a nice one to have in the back of your
mind. Especially since existential statements can make room for counterexamples like this one.

2As exemplified by the footnotes prepared by the authors of this text.
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Problem 9.11.6

Problem 6 Notes

Solution
This exam concludes with a nice straightforward definition check and application of Arzelà–Ascoli.

Along the way, you get to use the FToC!
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Summer 2012

Problem 10.1.1

Problem 1 Notes

Solution
This is equivalent to Theorem 1.38 in Hatcher’s Algebraic Topology. The proof falls out of knowing

the definitions.

Problem 10.1.2

Problem 2 Notes

Solution
The tools that you might have available to address this problem will depend heavily on the instructor

of your course. While (2) specifically relies on the Hairy Ball Theorem, there are other means of answering
(3) or (4) (for instance, using their Lie group structures or explicitly constructing the nowhere vanishing
vector field).

Problem 10.1.3

Problem 3 Notes

Solution
See Hatcher page 134 for a description of the properties of the degree map on homology, including a

proof that the degree of a reflection is −1. (The general idea is to start on S0 and build up to Sn by
suspending; an operation that preserves degree.)

Problem 10.1.4

Problem 4 Notes

Solution

238



The Written Qual Book Topology Commentary: Summer 2012

Some professors will expect a derivation of the homology of a torus using CW complexes or the
Eilenberg–Steenrod axioms instead of Mayer–Vietoris. For this problem, it’s important to remember
the Mayer–Vietoris sequence and what the maps in that sequence represent. While many examples do not
require the explicit maps, this is one that doesn’t work without knowing the loops.

Problem 10.1.5

Problem 5 Notes

Solution
Perhaps the easiest topology question ever asked on a written exam.

Problem 10.1.6

Problem 6 Notes

Solution
This problem is an exercise in the properties of differential forms. It also contains a seemingly unintuitive

step of adding 0 but this is a matter of knowing that the goal is to show that u∧v−u′∧v′ is a coboundary.
Basically, the extra terms are thrown in to make this apparent.
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Topology Commentary

Fall 2012

Problem 10.2.1

Problem 1 Notes

Solution
Don’t be scared of the coordinates! Sometimes you just have to jump into the messy details.

Problem 10.2.2

Problem 2 Notes

Solution
This problem boils down to remembering definitions, computing a pushforward, and recognizing the

result of the computation. Unfortunately, recognizing each of those steps is much more easily done in
hindsight.

Problem 10.2.3

Problem 3 Notes

Solution
The essential observation is noted in the solution. That is, as with the Stokes’ Theorem in calculus, it

can be extremely useful to replace a complicated surface with a simple one which has the same boundary.

Problem 10.2.4

Problem 4 Notes

Solution
See the comments for problem 4 in the Summer 2014 exam (10.5.4).

Problem 10.2.5

Problem 5 Notes

Solution
The basic strategy, since Z is connected, is to show that the agreement set is clopen. In doing so, it’s

possible to get a little lost in the details (draw a picture to help keep track!).

Problem 10.2.6

Problem 6 Notes

Solution
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Topology Commentary

Summer 2013

Problem 10.3.1

Problem 1 Notes

Solution
It may seem tempting to work in coordinates and show that coordinate functions are smooth. Don’t

do that to yourself; make this as painless as possible.

Problem 10.3.2

Problem 2 Notes

Solution
Local homology may seem like a “brand new thing” to cause extra stress. However, by definition, it’s

just the homology of the pair (U,U \ {p}). Computing this for Rn at 0 isn’t especially hard because we
know the homologies of spheres. You do remember the homology of spheres, yeah?

Problem 10.3.3

Problem 3 Notes

Solution
No commentary required.

Problem 10.3.4

Problem 4 Notes

Solution
This problem boils down to knowing that you want to show [σ][τ ] = [τ ][σ] and translating it to a

problem on the level of G. The formulas that appear somewhat more naturally if you try drawing the
homotopy square. There are classier solutions (even one line proofs), but these methods are beyond the
scope of this qual.

Below we formally define fs:
Let the coordinates of [0, 1]× [0, 1] be given by (t, s). Our goal is to start with σ ∗ e on the bottom of

the square and move toward σ. A straight line from (1
2
, 0) to (1, 1) has the form s = 2t− 1 (for t ≥ 1

2
).
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Now fix s. Then we obtain the following square:

σ e

σ

(t0, s)

(1, 1)

(1
2
, 0)

In the blue line, we need our map to cover the entire path σ. Thus, as inputs range from 0 to t0, we want

to cover [0, 1]. Since (t0, s) lies on the line s = 2t−1, we solve and obtain t0 =
s+ 1

2
. So, for 0 ≤ t ≤ s+1

2
,

let fs(t) = σ
(

2
s+1
· t
)

= σ
(

2t
s+1

)
. For larger t, fs(t) = e works.

Below is an alternative solution that may (or may not) be appealing.

Proof. Let σ and τ be loops based at e. To show [σ][τ ] = [τ ][σ], it suffices to prove [σ][τ ][σ]−1 = [τ ].
First, we must show that [στ ] = [σ][τ ] for any pair of loops σ, τ based at e. Phrased differently,

we need to show that στ and σ ∗ τ are path homotopic. This follows by considering the homotopy

F (s, t) =

{
σ(2s− ts)τ(ts) s ≤ 1

2

σ(1− t(1− s))τ(2s− 1 + t(1− s)) s ≥ 1
2

.

The pointwise inverse of σ, denoted σ−1, is a path in G since inversion is continuous. By definition,
σ(s)σ−1(s) = e for all s. Thus σ−1 is a loop based at e and [σ−1] = [σ]−1.

Consider the map defined by H(s, t) = σ(st)τ(s)σ−1(st). We claim that H is a homotopy between τ
and στσ−1. Since G is a topological group, multiplication is continuous and so H is continuous.1

Notice that H(s, 0) = e · τ(s) ·e = τ(s) and H(s, 1) = σ(s)τ(s)σ−1(s). Moreover, H is a path homotopy
because H(0, t) = e · e · e = e and H(1, t) = σ(t) · e · σ−1(t) = e. Hence

[τ ] = [στσ−1] = [σ][τ ][σ−1] = [σ][τ ][σ]−1

and so π1(G, e) is abelian.

Problem 10.3.5

Problem 5 Notes

Solution
See the comments for problem 6 of the Summer 2012 exam (6.1.6).

Problem 10.3.6

Problem 6 Notes

Solution

1H is the composition of continuous maps, but we do not feel that it’s relevant to decompose H entirely.
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Remember the Five Lemma and the Long Exact Sequence axiom for homology. There isn’t a lot to do
here.
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Topology Commentary

Fall 2013

Problem 10.4.1

Problem 1 Notes

Solution
The basic premise is to use the UMP of the group product to define the map and then use projections

to show that the map is an isomorphism. It is possible to explicitly define each map being used, but that’s
unnecessary.

Problem 10.4.2

Problem 2 Notes

Solution
Not much to do except follow the definitions about.

Problem 10.4.3

Problem 3 Notes

Solution
This is a standard problem in algebraic topology and we have included the standard solution. Now, as

a bonus, why do we use homology instead of homotopy groups?

Problem 10.4.4

Problem 4 Notes

Solution
Part (a) is, perhaps, the only surprising fact in this problem. Intuitively, it may seem that having a

global frame on the whole manifold would induce a global frame on the boundary.

Problem 10.4.5

Problem 5 Notes

Solution
This is a very instructor-specific problem. As of late 2016, this is the only topology problem specifically

relying on material covered in a specific iteration of algebraic topology.
Remark: Theorem 6.4.2 is proved (in Massey’s book) using the Mayer–Vietoris exact sequence and the
following lemma.

Lemma 10.4.1 (Theorem 6.2, Massey pg. 211): Let A be a subset of Sn which is homeomorphic to

[0, 1]k, 0 ≤ k ≤ n. Then H̃q(S
n \ A) = 0 for all q ≥ 0.

It is possible that this lemma may look very odd to you. If your course used simplicial homology
rather than cubical homology (as Massey uses) then the idea of deleting cubes may seem unnatural. In
particular, the proof of this lemma is a bit involved and really does (as presented by Massey) rely on the
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fact that he uses cubical homology. Of course they’re the same homology groups so the same theorem holds
for simplicial homology. So this is no big issue in terms of validity of the lemma, it just means that the
presentation may be unclear if you just read that section of the book without having developed homology
using cubes from the beginning. For a discussion of some various advantages and disadvantages to using
cubes see this MathOverflow thread:

http://mathoverflow.net/questions/3656/cubical-vs-simplicial-singular-homology.

Problem 10.4.6

Problem 6 Notes

Solution
These are classical tricks for computing integrals. It has been a running joke that if you see an integral on

the written exam, the answer is 0 because of Stokes’ Theorem.2 However, it has further been acknowledged
that the “why” is trickier.

2This is frequently the case but that’s not something to rely upon.
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Summer 2014

Problem 10.5.1

Problem 1 Notes

Solution
This is a nice problem which uses the parametrized version of Stokes’ Theorem instead of the full

version. Otherwise it’s just working through definitions.

Problem 10.5.2

Problem 2 Notes

Solution
The main trick to this problem is recognizing how to use the Implicit Function Theorem.

Problem 10.5.3

Problem 3 Notes

Solution
This problem can be viewed as one part of a larger theorem showing the equivalence of three defini-

tions of orientation. A good resource for the “complete” proof is Warner’s Foundations of Differentiable
Manifolds and Lie Groups.

Problem 10.5.4

Problem 4 Notes

Solution
No real commentary for this problem – it’s a standard problem and demonstrates a working knowledge

of all of the Eilenberg–Steenrod axioms.

Problem 10.5.5

Problem 5 Notes

Solution
The essential trick to this problem is translating it into a problem about fundamental group and

remembering that R2 is the universal cover of the torus.

Problem 10.5.6

Problem 6 Notes

Solution
See the comments for problem 6 on the Fall 2012 exam (6.2.6).
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Topology Commentary

Fall 2014

Problem 10.6.1

Problem 1 Notes

Solution
The solution presented for this problem is almost certainly not optimal. In particular, Step 1 is lengthy

and extremely computational; this is not the normal style of written qual problems. However, the expected
results of Step 1 are given in the problem statement. Thus it may have been expected to mess around with
the initial computation a bit and then move on to the later steps (which involve a little more understanding
and a little less brutal computation).

Problem 10.6.2

Problem 2 Notes

Solution
See the comments for problem 5 of the Fall 2012 exam (10.2.5).

Problem 10.6.3

Problem 3 Notes

Solution
While cellular homology is a standard topic for algebraic topology, not every iteration covers the details

of computing cellular homology. However, the idea of finding matrix representations of the maps and using
Smith normal form to find the invariant factors is a powerful idea that ultimately bypasses many of those
details.

Problem 10.6.4

Problem 4 Notes

Solution
This is a problem where the hint tells you everything. The suggestion of viewing ∆f as a divergence

suggests that the Divergence Theorem (for Riemannian manifolds) is going to come into play. Indeed, the
solution only makes sense if you remember the statement of the Divergence Theorem and thus the pieces
that you need to compute.

Problem 10.6.5

Problem 5 Notes

Solution
It may not be immediately apparent from the problem statement that we should use Brouwer degree

to push our result through. However, the fact that it is a fixed-point theorem should suggest that such a
trick is possible.
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For the referenced results about degree, consult Hatcher. He certainly discusses when maps of spheres
are homotopic to the identity or antipodal maps.

Problem 10.6.6

Problem 6 Notes

Solution
This problem can be viewed as one part of a larger theorem showing the equivalence of three defini-

tions of orientation. A good resource for the “complete” proof is Warner’s Foundations of Differentiable
Manifolds and Lie Groups.

248



The Written Qual Book Topology Commentary: Summer 2015

Topology Commentary

Summer 2015

Problem 10.7.1

Problem 1 Notes

Solution
See the comments for problem 5 on the Summer 2014 exam (10.5.5).

Problem 10.7.2

Problem 2 Notes

Solution
Other than remembering how local homology works (i.e., why it could be used to show that a space

is not a topological manifold), the biggest trick to this problem is having the correct visualization of the
spaces involved. While that’s harder to definitively study, there are lots of topology textbooks that might
give you some visualization practice (Hatcher, for instance).

Problem 10.7.3

Problem 3 Notes

Solution
See the comments for problem 6 on the Fall 2012 exam (6.2.6).

Problem 10.7.4

Problem 4 Notes

Solution
Remembering the formula for the Lie bracket of vector fields probably makes this computation faster,

but that’s somewhat unclear. The suggestion in the solution to compute V (Wf) and W (V f), ignoring
second-order terms, is probably better for qual stress (the problem breaks down further into smaller chunks
that are more easily double-checked).

Problem 10.7.5

Problem 5 Notes

Solution
This problem basically checks what you remember about point-set topology and submersions. The only

trick is remembering that Rk is connected (in the usual topology) and the consequences of that fact.

Problem 10.7.6

Problem 6 Notes

Solution
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The first part of this problem is just having enough familiarity with all of the definitions to understand
the objects defined in the problem statement. Then, transforming the problem to studying the kernel of
ω − f ∗ω and a little diagram chasing gives the result.
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Topology Commentary

Fall 2015

Problem 10.8.1

Problem 1 Notes

Solution
There is perhaps more exposition in the given solution than is actually required. After noting that f

maps the 2-cell e2 on T2 to the 2-cell on S2, it follows that [f(e2)] is the generator for H2(S2).

Problem 10.8.2

Problem 2 Notes

Solution
The essential part of problem is recognizing the fact that you want to use suspensions. Indeed, the fact

that we are looking at Brouwer degree of a map (compared to its restriction to a smaller sphere) gives this
away. After that, it’s a matter of working through the details until the result pops out.

Problem 10.8.3

Problem 3 Notes

Solution
See the comments for problem 5 of the Fall 2012 exam (10.2.5).

Problem 10.8.4

Problem 4 Notes

Solution
This is a standard exercise in differential topology.

Problem 10.8.5

Problem 5 Notes

Solution
It is unclear what level of detail was required/expected for this problem. Conceptually, we take a nice

vector field on the punctured sphere and argue that it must extend by 0 to the entire sphere. It is possible
to go through and directly compute W on the punctured sphere, but this doesn’t seem worthwhile.3

Problem 10.8.6

Problem 6 Notes

Solution
See the comments for problem 6 on the Fall 2013 exam (10.4.6).

3Indeed, even if you remember stereographic projection, are you really going to remember the pushforward by heart? If
not, you’ve got a computation waiting for you.
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Topology Commentary

Summer 2016

Problem 10.9.1

Problem 1 Notes

Solution
As stated on the actual exam, this problem omitted a somewhat essential detail: N must be connected.

Take, for instance, M = S2 and N = S2 t S2. Then M is compact and the inclusion of M ↪→ N is a
submersion (actually, it is a local diffeomorphism at every point in M), but clearly not a covering map.

Problem 10.9.2

Problem 2 Notes

Solution
There are a couple ways to approach this problem. The first is the one detailed here: understand

orientation in terms of differential forms and chug through the interior product computation.
The alternative approach is to view this as an algebraic topology problem, where we use Brouwer

degree and understand “orientation-reversing” as having degree −1. The advantage to this approach is
that, employing the correct theorems, the result falls out immediately. However, assuming that there
should be an equal number of differential topology and algebraic topology problems, this “should” be
solved using differential topology.

Problem 10.9.3

Problem 3 Notes

Solution
One of the biggest potential hurdles for solving this problem is knowing how to define gij. If you’ve

spent some time with Riemannian metrics, it’s natural to think of these coefficients as the entries of the
Gram matrix for the Riemannian metric g. However, without that insight, you’re rather stuck – try writing
some true things down and hope for the best.

Problem 10.9.4

Problem 4 Notes

Solution
There isn’t a lot going on in this problem except for definitions. Remembering the difference between

a retraction and deformation retraction makes all the difference in the world. What can be said about i∗
for A being a retraction of X?

Problem 10.9.5

Problem 5 Notes

Solution
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Enjoy the visualization! Given the statement of the problem, it’s unclear how much justification was
expected. The provided solution went the verbal description route because this seemed more useful.

Problem 10.9.6

Problem 6 Notes

Solution
This cute little problem combines two of the most horrible things to see on a qualifying exam in the

same place:

• A visually complicated setup to a problem.

• Explicitly working with the maps in the Mayer–Vietoris sequence.

That being said, if you’re practicing for the topology exam, this is a beautiful problem.
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Topology Commentary

Fall 2016

Problem 10.10.1

Problem 1 Notes

Solution
While more elegant, the first solution presented is employing a major theorem that isn’t typically

proved in the differential topology course. Thus it may be better to focus on the second solution instead.

Problem 10.10.2

Problem 2 Notes

Solution
This problem is rather cute and is mostly about the Leibniz rule and properties of the differential.

Figuring out how to rewrite an element of the kernel as a sum of products might be a little tricky, but
there aren’t a lot of choices if you’re going to make use of the hint.

Problem 10.10.3

Problem 3 Notes

Solution
In standard “compute the integral” fashion, this solution relies on making the correct observation and

then applying Stokes’ Theorem.
Alternate solution: For integration on (compact) product manifolds, we have a Fubini-type theorem

and so ∫
T 2

zdx ∧ dt =

(∫
S1

dx

)(∫
S1

zdt

)
.

We could compute this, using the line integrals and the information we have about orientations.

Problem 10.10.4

Problem 4 Notes

Solution
The part of this problem most likely to trip you up is the difference between homotopy and isotopy.

The curve A is not isotopic to a circle – no self-intersections are allowed in an isotopy. However, for a
homotopy, no such restrictions apply.

Problem 10.10.5

Problem 5 Notes

Solution
Once you’ve sorted out the CW structure for this space, it’s just a matter of working through the

computations.
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Problem 10.10.6

Problem 6 Notes

Solution
If you know the correct definitions for this problem, it’s actually a combinatorics problem rather than

something topological. This may cause jumping for joy or it may be a source of bemusement.
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Topology Commentary

Summer 2017

Problem 10.11.1

Problem 1 Notes

Solution This is a classic problem and there probably as many ways to solve it as there are topologists
on the planet. However, none of the proofs are particularly long4 and the key idea is that this is really a
statement about finite dimensional vector spaces.

Problem 10.11.2

Problem 2 Notes

Solution
One of Vlad’s favorite problem types. Depending on the specific material covered in your version of the

course, some of these arguments may not seem familiar. However, there isn’t anything particularly deep
going on, except in part (f), where the Poincaré–Hopf Theorem makes an appearance. Compare to (6.1.2)
and (6.4.2) for other examples.

Problem 10.11.3

Problem 3 Notes

Solution Reading the problems should put Stoke’s Theorem immediately into your mind, so the question
becomes how to use the problem statement to set up a tractable integral. Luckily, all of the pieces are
there and, as long as you remember the various pieces of integration algebra, everything comes together
nicely.

Problem 10.11.4

Problem 4 Notes

Solution
Another reason to be wary of topological structures with torsion.

Problem 10.11.5

Problem 5 Notes

Solution
Just to be clear, there isn’t anything magical about 17 (73 would have worked as well). To see why

you might have ended up with this decomposition, it is helpful to write out the Mayer–Vietoris sequence
first to identify where the arrow between H̃k(S

n) and H̃k−1(Sn−1) appears and then determine what you
need to be true about the nearby components to derive the isomorphism.

4Depending on the assumed background...
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Problem 10.11.6

Problem 6 Notes

Solution
The version of 124 this particular year didn’t make use of the Smith Normal Form explicitly, but it is

a convenient tool to know and does offer a general solution method for these types of problems. Also, the
images and kernels were clear without relying on SNF anyway.
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Applied Commentary

Applied Commentary

Summer 2017

Problem 11.1.1

Problem 1 Notes

Solution
Iterative methods were a significant topic in 116 the year of this exam. Notice that this problem really

just relies on being able to make use of (and interpret) the (very standard) Taylor expansion. Hopefully
by the time you are taking this exam you have done similar things dozens of times.

Problem 11.1.2

Problem 2 Notes

Solution
Straightforward basics of numerical linear algebra. Note that for parts (2) and (3) there is no need

to write out the matrix multiplications that make up this procedure but if the topic were something
like Householder reflections some more detail might be necessary. No need to exposit too much in the
explanation of (4) although there is obviously more the could be said.

Problem 11.1.3

Problem 3 Notes

Solution
Another Taylor problem, really this is just a check of whether you are familiar with the definitions from

the last third of the course. The method for determining the region for part (3) was covered on homework
in the class.

Problem 11.1.4

Problem 4 Notes

Solution
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Nothing too exciting happening here, mostly just checking the basics of generating functions and
Markov processes. Note that this problem was an actual homework problem from 106.

Problem 11.1.5

Problem 5 Notes

Solution
The first part has a large number of steps but the methods and overall outline are very familiar,

particularly in the homogeneous case. Note that this problem was an actual homework problem from 106.

Problem 11.1.6

Problem 6 Notes

Solution
A little random variable theory and some more checking in on basic definitions. Note that this problem

was an actual homework problem from 106.
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Appendix A: Qual Course Instructors

Here is the list of faculty members who have taught the qual courses since the written qual system was
introduced. Each faculty member has their own preferences and approaches to the material so it is useful
to consider who wrote each question. In 2016, Math 111 was taught by a postdoc, Sam Miner, who left
before the written exam. The Galois questions that year were written by Tom Shemanske. The applied
mathematics courses were not offered before 2017.

Qual Course Professors
Course 2012 2013 2014 2015 2016 2017 2018

101 Webb Webb Williams Shemanske Webb Voight Voight
111 Shemanske Shemanske Shemanske Voight Shemanske* Shemanske Shemanske
103 Williams Gordon Gordon Williams Gordon Clare Williams
113 Trout Trout Trout Clare Williams Williams Trout
124 Chernov Chernov Webb Chernov Chernov Chernov Chernov
114 Arkowitz Williams Webb Webb Sadykov van Erp Webb
106 n/a n/a n/a n/a n/a Fu Fu
116 n/a n/a n/a n/a n/a Gelb Gelb
126 n/a n/a n/a n/a n/a n/a Kim
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Appendix B: Textbook Recommendations

Finding the right source to study the material for the qualifying exam can be a challenging task. No
one textbook contains all of the necessary material, matches individual preferences about desired level of
detail, formalism, and abstraction. This makes it impossible to recommend the “best” textbook for any
particular subject. That being said, this appendix contains some thoughts collected from current graduate
students about resources that may be helpful to you. No matter your favorite textbook, we recommend
that you expose yourself to a variety of sources and perspectives in each subject.

Math 101

The many different components of this course tend to lend themselves to different textbooks:

• The basic Sylow theory is covered well in Dummit and Foote or any other standard undergraduate
text.

• Grove’s Algebra is a great source for material about module theory, particularly in the setting of
linear algebra and the fundamental theorem.

• Jacobson’s Basic Algebra I and II are excellent overall sources for the class.

Math 111

In most renditions of this course, the course starts with ring theory and then transitions into Galois
theory. The ring theory is found in standard algebra references (see above). It is probably worthwhile
to flip through several approaches to some of the fundamental constructions like the polynomial ring and
finite field extensions. For Galois theory, Lang’s Algebra is a fantastic resource. His chapter on Galois
theory contains everything you need to know.

Math 103

Measure theory: Royden and Fitzpatrick or Folland are both solid sources for this material.
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Complex Analysis: Get a copy of Ullrich’s Complex Made Simple – it is a fantastic and intuitive book
that covers the main results of the course in a very readable fashion. Conway’s Functions of One Complex
Variable is another (less conversational) source that is still more readable than Rudin.

Math 113

The chosen textbook for the course is usually a good enough source. Fourier Analysis by Stein and
Shakarchi is a nice reference for that portion of that course.

Math 104

The standard reference for differential topology is An Introduction to Smooth Manifolds by John Lee.
However, in case you want more references, you can consult any of the texts below:

• Warner’s Foundation of Differentiable Manifolds and Lie Groups is indispensable.

• Big Spivak I has a proof of the equivalence of the various tangent bundle definitions that is worth
looking through.

• Guilleman and Pollack and Boothby are both useful supplemental sources for this course.

While not an official textbook, it’s also worthwhile finding a copy of David Webb’s notes on multivariable
analysis. This is a fantastic introduction to multivariable calculus that underlies all of most versions of
Math 104.

Math 114

Oddly enough, there seems to be the most division over the best resources for Math 114. Below is a
substantial collection of textbooks and hopefully one of them will meet your needs:

• Hatcher is the “standard” source. Unfortunately, while most people agree that the pictures are
wonderful, the organization doesn’t fit well into a quarter-long class (leading to significant jumping
around).

• Massey is another favorite. Some people find him too conversational, but that will depend on your
preferences anyway.

• Rotman’s An Introduction to Algebraic Topology has a wonderful treatment of homology groups that
includes all the wonderful category theory that it ought to have.

• Fold is another useful resource, depending on the instructor.

Math 106 and 116

We don’t know yet.
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Appendix C: Written Qual Question Topics

2012 Summer

101 111 103 113 124 114

Tensor Natural Ideals in Quotients Definitions Sequences Orientability Covering
Isomorphism of Polynomials of Continuity of Functions of Manifolds Maps

Matrices, Bases Galois Group Holomorphic/ Adjoints Function Degree Homology
Diagonalizability x9 − 8 Analytic iff on Manifolds of Torus

Semidirect Field Extensions Cauchy– Bounded Manifold Wedge/
Product Irreducibility Riemann Operators Charts Poducts

2012 Fall

101 111 103 113 124 114

Sylow/ Three Conditions Residue Hahn– Smooth Covering
Solvability Normality Theorem Banach Tensor Fields Maps
Quotients Galois Group Holomorphic/ Radius Critical Point Eilenberg–

Cyclic Groups x15 − 8 Analytic of Convergence Matrix Calculus Steenrod
Projective/Flat Extension Degree Measures Uniform Stokes’ Cellular

Modules Embedding in Sn Borel Sets Continuity Theorem Homology

2013 Summer

101 111 103 113 124 114

Sylow/ Ideals in Quotients lim sup Sup Norm Orientability Fundamental
p–groups of Polynomials Definitions of Functions of Manifolds Group
k[x]– Algebraic Holomorphic/ Orthogonal Manifold De Rham

Modules Distinguished Analytic Complements Embeddings Cohomology
Dual Modules FTGT Integral Bounded Lie Bracket Wedge and

Tensors Norms Measures Operators Vector Fields Cup Poducts
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2013 Fall

101 111 103 113 124 114

Diagonalizable Irreducibles Anti–derivatives Convolution Equivalence No Retraction
Complexification UFD, PID on C Products of Smoothness Fixed Point
Matrices, Bases Galois Group Entire Pythagorean Parllelizable Homology
Bilinear Form Ugly Product Bounded Theorem Manifolds of a Product

Groups Frobenius Limits/Integral Bounded Stokes’ De Rham
Sn Perfect Fields Theorems Operators Theorem Cohomology

2014 Summer

101 111 103 113 124 114

Projective Types/Degrees Measurable Direct Product Integration E & S
Modules Field Extensions Functions Banach Spaces on Manifolds Coproduct

Canonical Forms Galois Group Measures Self–Adjoint Inverse Function Homotopy
Nilpotent Properties Integrations Operators Theorem Products

Sylow Noetherian Entire Hahn– Orientability CW
Theorems Factorization Functions Banach on Manifolds Complex

2014 Fall

101 111 103 113 124 114

Canonical Explicit DCT/ Closed Graph Cross Product Lifts of
Forms Galois Groups MCT Theorem Manifold Covering Maps

Free Modules Algebraic Lp Completeness Volume Form Hairy Ball
Tensor Product Elements Spaces supNnorms on Manifolds Theorem

Sylow Roots of Unity Complex Finite Rank Orientability CW
Theorems Finite Fields Integrals Operators on Manifolds Complex

2015 Summer

101 111 103 113 124 114

Module of Complex Field Analytic Unif. (un)Bounded Compute Nullhomotopic
Fractions Extensions Convergence Functionals Lie Bracket Sphere Maps
Projective Finite Field Complex Banach Compact Local
Modules Homomorphisms Asymptotics Algebras Submersions Homology
GLn(Fp) Compute Lebesgue Adjoint Differential CW

Sylow Galois Group Measure Properties Form Algebra Complex

2015 Fall

101 111 103 113 124 114

Free Module Irreducible Analytic Banach Submersion Nullhomotopic
Decompositions Polynomials Convergence Spaces Properties Sphere Maps

Simple Compute Galois Singularity Weak Star Hairy Ball Degree of
Groups Splitting Field Properties Topology Theorem Sphere Functions
Group Quadratic Product Shift Map Integration Lifts of

Commutators Extensions Measure Properties on Manifolds Covering Maps
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2016 Summer

101 111 103 113 124 114

Canonical Forms Polynomial Integration of Weak Submersion Deformation
Complexification Rings Sequences Convergence Covering Retractions

Center of Algebraic Product Measure Integral Sphere Function Universal
p–group Extensions Tonelli Operators Degree Covers

Group Tensor Lattice Entire Function Induced Mayer–Vietoris
Products of Subgroups Functions Convergence Metrics Computation

2016 Fall

101 111 103 113 124 114

Projection UFD Integration Bounded iff SL(n,R) Manifold Homotopy and
Operators Properties and Measures Continuous Definition Retractions
SL(3,F3) Splitting Measurable Bounded Tangent Bundle Homology

Sylow Fields Sets Adjoints Isomorphism Computation
Direct Sum Galois Group Cauchy Holder Integration CW – Euler

Decomposition Properties Integral Compactness on Manifolds Characteristic
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Appendix D: Qual Course Syllabi

Math 101 Syllabus
Standard Text: Dummit and Foote: Abstract Algebra, Chapters 4, 5, 10, 11, 12

1. [4 days] Basic Linear Algebra:

(a) (Assumed) Linear independence, span, basis, dimension, independent sets extend to a basis, generating
sets can be pared down to a basis.

(b) Coordinates and matrix of a linear transformation relative to a basis, change of basis. Examples:
projection onto a hyperplane, rotations.

(c) Row reduction, echelon form, and consequences: free variables, pivot variables, kernel and image,
rank-nullity theorem for T : Rn → Rm (via free and pivot variables), elementary row operations and
invertibility. Parallel comments for column operations. Given A ∈ Mm×n(F ), discuss representative
of cosets GLm(F )A, AGLn(F ), and GLm(F )AGLn(F ), the last as precursor to Smith normal form.

(d) Rank - Nullity (vector space form)

(e) Foreshadow Smith normal form by considering A ∈ Mm×n(Z) and row and column operations (over
Z) to produce the nice representative in GLm(Z)AGLn(Z) (when m = n, diag(d1, . . . , dn) with di ∈ Z
and di | di+1, 1 ≤ i ≤ n − 1). Example: structure of Zn/K where K is a subgroup generated by a
collection of vectors. Interpret as linear map and use two sided equivalence to produce a new basis so
that Zn/K ∼= Z/d1Z⊕ · · · ⊕ Z/dnZ (di | di+1) [foreshadowing invariant factor theorem].

2. [4 days] Modules: basic properties.

(a) Definitions, examples (vector spaces, abelian groups, T : V → V linear map to k[x]-module structure
on V . Notion of a k-algebra (Mn(k), k[x], Endk(V ), k[G]) and UMP: given any k-algebra A and a ∈ A
there is a unique k-algebra map k[x]→ A taking x 7→ a.

(b) Direct sums of modules (external and internal); spin off internal direct product of groups. Dis-
cuss product and direct sum of vector spaces, mapping properties. Define product and coproduct
of modules and their construction. Show HomR(N,

∏
Mα) ∼=

∏
α HomR(N,Mα), HomR(

∐
αMα, N) ∼=∏

α HomR(Mα, N) and End(kn) = Hom(kn, kn) ∼= Mn(Endk(k)) ∼= Mn(k)

3. [3 days] Exact sequences of modules; split exact sequences via sections or retractions (existence of section
equivalent to existence of a retraction). Free modules and their construction; Short exact sequences with
0 → N → M → F → 0 with F free split. Any R-module is the quotient of a free R-module (review
isomorphism theorems if needed). Localization of modules, connection to exactness, action on direct sums;
application: rank of a module over an integral domain is the dimension of the localization over the field of
fractions.
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4. [6 days] PIDs; Finitely generated modules over PIDs, invariant factor and elementary divisor theorems,
applications to rational and Jordan canonical forms. Diagonalizability.

5. [1 day] Dual Modules (duality and free modules)

6. [2 days] Sesquilinear forms. Unitary, Hermitian operators, unitary diagonalization. Real symmetric matrices
and spectral theorem.

7. [8 days] Group actions, G-set structure theorem, class equation, p-groups symmetric group, conjugacy
classes in Sn, Sylow theorems, semidirect products and split extensions, classifying groups of small orders.

Optional topics:

1. [2 days] (optional) Bilinear forms, isometry groups, connections to dual spaces.
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Math 111 Syllabus (cross-listed with Math 81)
based on Lang, Algebra

1. [3 days: II.2, II.4 - II.5] Commutative rings, prime and maximal ideals, CRT, evaluation and reduction
homomorphisms, Localization of rings (field of fractions), irreducibles, primes, UFDs, PIDs, Euclidean
domains.

2. [3 days: IV.1 - IV.3] Polynomials in one variable, over UFDs, Gauss’s lemma, irreducibility criteria.

3. [3 days: V.1] Finite and Algebraic Field Extensions.

4. [3 days: V.2 - V.3] Splitting fields, normal extensions, and algebraic closures; uniqueness.

5. [4 days: V.4 - V.5] Separable extensions, primitive element theorem, Finite fields.

6. [1 day: V.6] Inseparability (intro only)

7. [4 days: VI.1]Galois Extensions: Fundamental theorem, composite extensions

8. [3 days: VI.2] Galois groups of polynomials.

9. [3 days: VI.3] Cyclotomic extensions and polynomials

Optional topics: group rings, polynomial rings in several variables, compass and straightedge constructions,
solvability by radicals, infinite Galois groups
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Math 103 Syllabus (cross-listed with Math 73)

1. Abstract Measure Theory (12 Lectures)

(a) Measures, σ-algebras and all that.

(b) An Example: Lebesgue measure on R and/or Rn.

(c) Integration in an abstract measure space

(d) The convergence Theorems and applications.

(e) Product measures, Tonelli and Fubini.

(f) Sources

i. We have in mind cherry picking from Rudin’s Real & Complex (Chapters 2, 6 and 8) since that
will be the usual reference for the second part of the course. Instructors will have to develop
Lebesgue measure on their own or possibly using Royden & Fitzpatrik as a guide.

ii. Obviously, time constraints and the instructor’s interests will dictate what topics can be covered
and at what depth. The topologists would love some attention paid to Lebesgue measure in Rn

at some point.

2. Complex Analysis (15 Lectures)

(a) Elementary Properties

i. Complex differentiation, Cauchy Riemann equations and path integrals

ii. Local Cauchy Theorem

iii. Holomorphic implies analytic

iv. Global Cauchy Theorem

v. Sources

A. The basic source we have in mind is Chapter 10 of Rudin’s Real & Complex. This can be
followed fairly closely — even if it is fairly sophisticated.

B. Dana was taught that in an outline, there had to always be at least two sub-parts under any
given item.

(b) Selected Topics — Lecturer’s Discretion

i. Maximum Modulus

ii. Isolated Singularities and Laurent Series

iii. Residue Theorem and Applications

iv. Argument Principle and Roche’s Theorem

v. Normal Families and Riemann Mapping Theorem

vi. Sources

A. When Dana tried this before, he picked and chose from Chapter’s 12–14 of Rudin’s Real &
Complex.

B. Sample Goal: try to build up enough background to at least pretend to prove Theorem 13.11
(Rudin) (at least (b) ⇐⇒ (c) ⇐⇒ (d) ⇐⇒ (f)). That can’t be done without leaving the
proofs of some of the harder results.
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Math 113 Syllabus

1. Banach Spaces and Hilbert Spaces (12 Lectures)

(a) Inner products and linear functionals

(b) Orthogonal sets, Bessel’s inequality and Parceval.

(c) General Banach Spaces

(d) Consequences of Baire’s Theorem (Open mapping, Closed Graph and Principle of Uniform bounded-
ness).

(e) Hahn-Banach and applications.

(f) Sources

i. This section is the most flexible.

ii. A minimal approach could be crafted out of Rudin’s Real & Complex Chapters 4 and 5.

iii. A more thorough treatment could be excised from Royden/Fitzpatrick Chap. 13, §§14.1–2 and
§§16.1–5.

2. General Fourier Series (7 Lectures)

(a) Motivations: Vibrating strings and the Heat equation

(b) Basic Fourier Series and Uniqueness

(c) Convolutions and good kernels

(d) Cesaro and Abel summability

(e) Convergence issues

(f) Applications: Heat equation on the circle, Weyl’s equidistribution theorem, isoperimetric inequality,
etc.

(g) Sources

i. Chapters 1 – 4 of Stein and Shakarchi: “Fourier Analysis: An Introduction”.

3. The Fourier Transform on the Real Line (8 Lectures)

(a) Definition and Schwartz space

(b) Fourier inversion

(c) Plancherel formula

(d) Extensions to functions of moderate decrease

(e) Weierstrass approximation theorem

(f) Application to heat equation

(g) Poisson summation formula

(h) Source

i. Chapter 5 of Stein and Shakarchi: “Fourier Analysis: An Introduction”
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Math 104 Syllabus

Review of differential calculus in Rn
The derivative of a mapping f : Rn → Rm, C1 implies differentiable, the Jacobian matrix, the chain rule, the
inverse and implicit function theorems, etc.; many of these topics may be sketched or reviewed without proof.

Smooth manifolds
The definition of a smooth manifold, coordinate charts, the tangent space and the ways of defining tangent vectors,
the derivative of a smooth map of manifolds, smooth vector fields, etc.

Multilinear alternating algebra Tensors, alternating tensors, the wedge product and exterior algebra,
behavior of tensors under linear maps, orientation of a vector space.

Differential forms
Differential forms, the exterior derivative, the Poincaré Lemma, orientation of a manifold.

Brief review of integration of functions on Rn
A brief review of definitions, Fubini’s Theorem.

Integration of differential forms
Parametrized integral of a k-form over a k-chain, smooth partitions of unity, unparametrized integral of an n-form
with compact support on an oriented smooth n-manifold.

Stokes’s Theorem
The modern Stokes’s Theorem

∫
M dω =

∫
∂M ω for the integral of an exact n-form on an oriented n-manifold with

boundary, the classical integral theorems of vector calculus as special cases of the modern theorem.

Bibliography
W. Boothby, An introduction to differentiable manifolds and Riemannian geometry, second edition. Pure

and Applied Mathematics 120. Academic Press, Inc., Orlando, FL, 1986.
M. Spivak, Calculus on manifolds. A modern approach to classical theorems of advanced calculus, W. A.

Benjamin, Inc., New York-Amsterdam, 1965.
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Math 114 (cross-listed with Math 74) - Algebraic Topology

3-4 weeks on the fundamental group and covering spaces.
6-7 weeks on homology theory

The Fundamental Groups and Covering Spaces

1. Homotopy, definition of π1 and its basic properties, van Kampen Theorem

2. Covering spaces: lifting properties, the Galois correspondance, deck transformations, the universal cover

3. Applications and examples

Homology Theory

1. Basic homological algebra: chain complexes, exact sequences, chain maps, chain homotopy

2. Construction of the singular homology of a pair of spaces

3. Eilenberg-Steenrod axioms: excision, exactness, homotopy

4. Computational techniques (Mayer-Vietoris sequence,.. )

5. Applications (Brouwer fixed point theorem, hairy ball theorem, ..)
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