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Introduction

Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into their
prime factors and seeking out by experimentation the laws of
appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.
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Arkansas Congressional Districts

Geography Dual Graph

District # 1 District # 2 District # 3 District # 4
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Permissible Districting Plans

We want to partition a given geography (graph), at a given scale, into k
pieces, satisfying some constraints:

• Contiguity

• Population Balance

• Compactness

• Communities of Interest

• Municipal Boundaries

• Competitiveness/Responsiveness

• Incumbency Protection

• ...
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Mathematical Formulation

Given a (connected, planar) graph G = (V,E):

• A k-partition P = {V1, V2, . . . , Vk} of G is a collection of disjoint
subsets Vi ⊆ V whose union is V .

• A partition P is connected if the subgraph induced by Vi is
connected for all i.

• The cut edges of P are the edges (u,w) for which u ∈ Vi, w ∈ Vj ,
and i 6= j

• A partition P is ε-balanced if µ(1− ε) ≤ |Vi| ≤ µ(1 + ε) for all i
where µ is the mean of the |Vi|’s
• An equi–partition is a 0-balanced partition
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(Discrete) Total Perimeter
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Measurement Problems

Theorem (Bar-Natan, Najt, and Schutzman 20191)

There is no local homeomorphism from the globe to the plane that
preserves your favorite compactness measure.

Problem (Barnes and Solomon 20182)

geographic Compactness scores can be distorted by:

• Data resolution

• Map projection

• State borders and coastline

• Topography

• ...
1 The Gerrymandering Jumble: Map Projections Permute Districts’ Compactness Scores, arXiv:1905.03173

2 Gerrymandering and Compactness: Implementation Flexibility and Abuse, arXiv:1803.02857
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Data Availability
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Partisan Imbalance

NC16

PA TS-Proposed
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Electoral Data

Figure: 2016 Presidential election votes by precinct in PA and NC.
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Partisan Metrics

• Number of seats (proportionality)

• Mean-Median score

• Partisan Gini

• Efficiency gap
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Partisan Fairness

• MA
• Duchin et al. (2018) Locating the representational baseline:

Republicans in Massachusetts arXiv:1810.09051
• Not all partisan outcomes are possible, given discretization

• MD
• Two 2018 preprints claiming not gerrymandered
• Court then ruled one district unconstitutional

• NC/PA/WI
• Heavy court involvement
• Wide variance in partisan metrics
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MORAL:

Computational Redistricting is
NOT a solved problem!
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Ensemble Analysis

• The wide variety in rules applied to districting problems (even in the
same state) means that any single measure of gerrymandering will be
insufficient/exploitable

• Instead we want to compare to large ensembles of other feasible plans.

• This allows us to understand the impacts of the underlying political
and demographic geography on a wide collection of metrics.
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Baseline Example: VA

Mean–Median Efficiency Gap
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Baseline Example: PA

Mean–Median Efficiency Gap
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Reform Example: Competitiveness

UT GA WI

VA MA
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Ensembles in Practice

• The appeal of an ensemble method is that you get to control the
input data very carefully

• However, just because a particular type of data was not considered
doesn’t mean that the outcome is necessarily “fair”

• There are lots of “random” methods for constructing districting plans

• Most don’t offer any control over the distribution that you are
drawing from



Computational Redistricting

Ensemble Analysis

MCMC on partitions

1 Set constraints to define the state space

2 Start with an initial plan

3 Propose a modification

4 Verify that the modification satisfies the constraints

5 Accept using MH criterion

6 Repeat

Why?
• Control over sampling distribution and input data

• Possibility of local sampling

• Ergodic Theorem
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Single Edge Flip Proposals

1 Uniformly choose a cut edge

2 Change one of the incident node assignments to the other

• Mattingly et al. (2017, 2018) Court cases in NC and WI.

• Pegden et al. Assessing significance in a Markov chain without
mixing, PNAS, (2017). Court case in PA.
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Single Edge Ensembles
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PA Single Edge Flip
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Unconstrained Flip
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Constrained Flip
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Uniform Sampling of Contiguous Partitions

Theorem (Najt, D., and Solomon 2019)

Suppose that C is the class of connected planar graphs and k ≥ 2. If
there is a polynomial time algorithm to sample uniformly from:

• the connected k-partitions of graphs in C ,

• or the connected, 0-balanced k-partitions of graphs in C .

then RP = NP .

Remark

This theorem has various interesting extensions, including:

• Connectivity constraints on C

• Degree bounds

• Distributions proportional to cut length

• TV distribution approximation
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Stronger Version Example

Theorem (D., Najt, and Solomon 2019)

Let C be the class of cubic, planar 3-connected graphs, with face degree
bounded by C = 60. Let µx(G) be the probability measure on Pk(G) such
that a partition P is drawn with probability proportional to xcut(P ). Fix
some x > 1/

√
2, ε > 0 and α < 1. Suppose that there was an algorithm

to sample from P ε2 (G) according to a distribution ν(G), such that
||νG − µx(G)||TV < α, which runs polynomial time on all G ∈ C . Then
RP = NP .
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Proof Outline Sketch

Following technique of Jerrum, Valiant, and Vazirani1.

1 Show that uniformly sampling simple cycles is hard on some class C

1 Choose a gadget that respects C and allows us to concentrate
probability on long cycles

2 Count the proportion of cycles as a function of length
3 Reduce to Hamiltonian path on the graph class

2 Show closure of class under planar dual

3 Identify partitions with cut edges 7→ simple cycles (via planar duality)

4 Conclude that sampling partitions would allow you to sample from
cycles which would allow you to find Hamiltonian cycles

1 M. Jerrum, L. Valiant, and V. Vazirani, Random generation of
combinatorial structures from a uniform distribution, Theoretical Computer
Science, 43 (1986), 169–188.
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Proof Sketch – Planar 2–Partitions

Still following technique of Jerrum, Valiant, and Vazirani.

1 Let C be the planar connected graphs

1 Replace the edges with chains of dipoles
2 Hamiltonian hardness for C given by 1

2 C closed under planar duals

3 Identify partitions with cut edges (via planar duality)

1 M. Garey, D. Johnson, and R. Tarjan, The Planar Hamiltonian Circuit
Problem is NP-Complete, SIAM Journal on Computing, 5, (1976),
704–714.
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Slowly Mixing Graph Families

Theorem (Najt, D., and Solomon 2019)

Let G be any connected graph. Then let G(d) be the graph obtained by
replacing each edge by a doubled d-star. Then the flip walk on partitions

of family of graphs G
(d)
d≥1 is slowly mixing, in the sense the Cheeger

constant is decaying exponentially fast. More specifically:

H(Partition Graph(G(d)) = O(2−d)

Remark

There are many similar constructions that give rise to equivalent mixing
results.
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Tree based methods

District Spanning Tree
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Tree Seeds Ensemble
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Recombination Steps

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Draw a spanning tree for the new super–district

4 Delete an edge leaving two population balanced districts

5 Repeat

6 (Optional) Mix with single edge flips
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AR Ensembles
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PA Recombination Steps
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General Tree Proposals

1 Form the induced subgraph on the complement of the cut edges

2 Add some subset of the cut edges

3 Uniformly select a maximal spanning forest

4 Apply a Markov chain on trees

5 Partition the spanning forest into k population balanced pieces
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Special Cases

• Uniform Trees: Add all cut edges

• k–edges: Uniformly add k cut edges

• Recombination: Add all cut edges between one pair of districts.

• Super-Recombination: Take a maximal matching on the dual graph
to the districts and add all cut edges between matched districts.

• Bounce Walk: Add a single cut edge between enough pairs of districts
to make a tree in the dual graph of districts.

Question

What are the steady state distributions (and mixing times) of these walks?
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Tree Partitioning Questions

• Characterizing the distribution on partitions defined by cutting trees!

• How bad is the best cut?

• Criteria for determining when a tree is ε cuttable?

• Criteria for determining when all spanning trees of a graph are ε
cuttable?

• How hard is it to find the mininum ε for which a cut exists?

• As a function of ε what proportion of spanning trees are cuttable?

• As a function of ε what proportion of edges in a given tree are
cuttable?

• What is the fastest way to sample uniformly from k − 1 balanced cut
edges?
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Initial Seeds

Initial
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Boundary Flip Mixing – Length
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Boundary Flip Mixing – Seeds

10,000,000 Flip Steps



Computational Redistricting

Empirical Results

Recombination Mixing – Length

20,000 Recombination Steps
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50,000 Recombination Steps
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Recombination Mixing – Length

2011 Seed GOV Seed
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Recombination Mixing – Seeds

20,000 Recombination Steps
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Recombination Mixing – Seeds

20,000 Recombination Steps
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Try it at home!

• Draw your own districts with Districtr
• https://districtr.org
• Easy to generate complete districting plans in browser or on a tablet
• Measures district demographics and expected partisan performance
• Identifies communities of interest

• Generate your own ensembles with GerryChain1

• https://github.com/mggg/gerrychain
• Flexible, modular software for sampling graph partitions
• Handles the geodata processing as well as the MCMC sampling
• Current support for a
• Successfully applied in VA, NC, PA, etc.

1Originally RunDMCMC

https://districtr.org
https://github.com/mggg/gerrychain


Computational Redistricting

Empirical Results

The End

Thanks!
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