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Combinatorial Graphs

Graph Theory

Definition (Graph)

A Graph G = (V,E) is a set of nodes V and a set of edges E ⊆ V × V .
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Combinatorial Graphs

Graph Questions

• Are there Hamiltonian/Eulerian Paths? If so, how many?

• Are there perfect matchings? If so, how many?

• Is it possible color the nodes with k colors so that no neighboring
nodes are the same color?

• What is the largest set of nodes that share no edges?

• How many edges/vertices must be removed to disconnect the graph?

• Is it possible to embed the graph in the plane without any edges
crossing?

• How many spanning trees does the graph have?

• What is the automorphism group of the graph?

• · · ·



Graphs and Networks

Combinatorial Graphs

Graph Examples
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Combinatorial Graphs

Spanning Trees
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Combinatorial Graphs

Graph Theorems

Theorem

Every graph has an even number of odd-degree vertices

Theorem

The number of perfect matchings in an m× n grid graph is:

4

√√√√ m∏
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n∏
k=1

(
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(
πj

m+ 1

)
+ 4 cos2

(
πk
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))

Theorem

Every graph where every node has even degree has an Eulerian path.

Theorem

Determining whether an arbitrary graph has a Hamiltonian cycle is
NP–Hard
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Complex Networks

What is a social network?

Definition (Social Network)

Mathematically, a social network is represented by a collection of “nodes”
representing individual actors and a set of “edges” representing a binary
relationship between the actors.

Example

What kinds of systems can social networks describe?

• What could be represented by nodes?

• Academic Departments

• What type of edges could connect them?

• Located in same building
• Students who major in both
• Crosslisted courses
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Complex Networks

What is a social network?

Definition (Social Network)

Mathematically, a social network is represented by a collection of “nodes”
representing individual actors and a set of “edges” representing a binary
relationship between the actors.

Example

What kinds of systems can social networks describe?

• What could be represented by nodes?
• VRDI Students

• What type of edges could connect them?
• Same Dorm Room
• Facebook friends
• Speak at least twice a week
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Complex Networks

Social Networks
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Complex Networks

Examples

(a) Graph (b) Network
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Complex Networks

Comparing Graphs to Networks

• Annotations

• Topology

• Fuzziness of data

• Errors in collection

• People are complicated

• Most importantly: Different relevant questions
• Centrality
• Community Structure
• “Social” Dynamics
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Complex Networks

Centrality



Graphs and Networks

Complex Networks

Centrality
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Complex Networks

Centrality

Figure: Relevant comic by Randall Munroe1

1 https://xkcd.com/451/
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Complex Networks

Clustering
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Clustering
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Complex Networks

Common Properties of Social Networks

Example (What features distinguish social networks?)

• ?

• Transitivity

• Community structure

• Small average path length

• Long–tailed degree distribution

• Hubs

• . . .



Graphs and Networks

Complex Networks

Common Properties of Social Networks

Example (What features distinguish social networks?)

• ?

• Transitivity

• Community structure

• Small average path length

• Long–tailed degree distribution

• Hubs

• . . .



Graphs and Networks

Complex Networks

Ego Networks

Definition (Ego Network)

An ego network is a social network centered at a particular individual
containing their connections and the connections between their “friends.”

Example (Draw your ego network)
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Complex Networks

How to construct networks?

Example (Which edges to add?)

• ?

• Proximity

(a) Centrality (b) Clustering

Figure: Dolphin social network1

s 1D. Lusseau, K. Schneider, O. Boisseau, Patti Haase, E. Slooten, and S. Dawson, The bottlenose dolphin community of Doubtful Sound
features a large proportion of long-lasting associations, Behavioral Ecology and Sociobiology 54 (2003), no. 4, 396–405.
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Complex Networks

Different Perspectives on “Friendship”

Krackhardt D. (1987). Cognitive social structures. Social Networks, 9, 104-134.
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Complex Networks

“Friendship” over Time

Newcomb T. (1961). The acquaintance process. New York: Holt, Reinhard and Winston.
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Complex Networks

Random Networks

	

Definition (Null Model)

A random network, parameterized to match some features of a given
network, used to compare “expected” network measures.
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Definition (Null Model)

A random network, parameterized to match some features of a given
network, used to compare “expected” network measures.
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Census Data

Dual Graphs

In order to study this problem mathematically we need to abstract the
process of districting into the realm of mathematical objects. The first
step is to discretize!
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Census Data

Graph Partitioning
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Census Data

Levels of Data Resolution

• Blocks

• Block Groups

• Tracts

• Precincts

• Wards

• Municipalities

• Counties
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Census Data

Blocks

(a) Pennsylvania (b) Allegheny (c) Philadelphia
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Census Data

Counties
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Census Data

Municipalities

(a) Pennsylvania (b) Allegheny
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Census Data

Precincts

(a) Pennsylvania (b) Pittsburgh (c) Philadelphia
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Census Data

Wards
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Census Data

Putting Them Together

(a) Pennsylvania (b) Allegheny (c) Pittsburgh
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Census Data

Putting Them Together

(a) Blocks (b) Precincts (c) Wards
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Census Data

Partisanship Measures
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Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Census Data

Census Dual Graphs



Graphs and Networks

Graph Partitions

Districting Plans

Inputs:

• A planar, connected graph G = (V,E)

• Weights w : V → R+

• Population tolerance ε

Output:
• A partition P = {V1, V2, . . . , Vk} subject to the additional conditions:

• Vi ⊂ V
• Vi ∩ Vj = ∅ for i 6= j
• The induced subgraph of G on Vi is connected for all i and

• (1− ε)
∑k

i=1

∑
v∈Vi

w(v)

k
≤ |Vi| ≤ (1 + ε)

∑k
i=1

∑
v∈Vi

w(v)

k
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Graph Partitions

Desirable Characteristics

Example (What properties do we want?)

• Efficiency

• Parameter Variability

• Robustness

• Interpretability

• Mathematical Elegance

• All permissible plans are possible
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Legal “Requirements”

• Population Balance

• Contiguity

• Compactness

• Municipal Boundaries

• VRA Compliance

• Communities of Interest
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Graph Partitions

Activity

Take a few minutes and
partition the four graphs into

the indicated number of
districts. Think about how you

might write an algorithm
expressing your approach.
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Handout



Graphs and Networks

Graph Partitions

Handout



Graphs and Networks

Graph Partitions

MORAL:

Computational Redistricting is
NOT a solved problem!
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Graph Partitions

Toy Example: Random Assignment
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Graph Partitions

Toy Example: Random Walkers
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Graph Partitions

Toy Example: Random Lines
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Graph Partitions

Toy Example: Random Rectangles
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Graph Partitions

Power Diagrams

Figure: Power diagram for Florida: Balanced power diagrams for redistricting: V.
Cohen–Addad, P. Klein, and N. Young.
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Graph Partitions

Other Straight Line Methods

Figure: Split line partitioning of Wisconsin: Partisan gerrymandering with
geographically compact districts: B. Alexeev and D. Mixon

• Split Line Methods

• Pretend that everything is a grid

• (Optimization) Draw lines even within households

• Alternatively, embed all voters on a circle
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Graph Partitions

Problems?

• No clean mapping on to discrete units

• Difficult to preserve municipalities, COI, VRA, etc.

• Assumes better control over data than actually exists

• Very hard to tune to arbitrary legal constraints
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Graph Partitions

Growing Districts

• Another popular class of methods are colloquially known as flood fills

• This procedure iteratively creates districts by growing them one node
at a time

• Usually, contiguity is enforced at each step

• The process continues until the population is nearly balanced
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Graph Partitions

Flood Fill

Method

• Select a node at random

• Select a random neighbor of
the current cluster

• Alternatively, generate a list
of neighbors and append
sequentially

• Add if population allows and
doesn’t disconnect the
complement

• Repeat until population
balanced
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Graph Partitions

Path Fill

Method

• Start with an arbitrary node

• Select a node not in the
district

• Add all the nodes on a
shortest path from the new
node to the district if it
doesn’t disconnect the
complement or add too
much to the population

• Repeat until population
balanced
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Graph Partitions

Agglomerative

Method

• Start with each node in own
component

• Select an arbitrary edge
between two components
• Merge clusters if

population allows and
doesn’t disconnect the
complement

• If population doesn’t
allow, delete edge

• If merging would
disconnect the graph,
merge the smallest
population component

• Repeat until only 2 clusters



Graphs and Networks

Graph Partitions

What can go wrong?
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Graph Partitions

Problems?

• High failure rate

• No control over distribution

• Medium hard to tune to arbitrary legal constraints

• Requires separate cleaning steps
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Graph Partitions

Network Clustering
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Graph Partitions

What is a community?

• Many intra–community links

• Few inter–community links

• Any measure that allows for dimension reduction

• Depth or closeness measures

• Different type of eyeball test
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Graph Partitions

Spectral Clustering

The idea behind spectral clustering is that communities should be sparsely
connected to each other. This is usually defined in terms of an
isoperimetric ratio, expressing the difference between the size of the
boundary and the number of nodes in the community. The solution is
given in terms of the eigenvectors of the Laplacian matrix.



Graphs and Networks

Graph Partitions

Modularity

For modularity, we take the opposite definition. Now we define a
community as a group of nodes that have more connections to each other
than would be expected if we rewired the whole network. The solution is
given in terms of the eigenvectors of the Modularity matrix.
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Graph Partitions

Min Cut

Method

• Select random source and
sink nodes

• Weight the edges in the
graph by 10min distance−3

• Compute the min cut

• Repeat until population
balanced
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Graph Partitions

Tree Partitions

Method

• Generate a uniform spanning
tree

• Cut an edge that leaves
population balanced
components
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Graph Partitions

Problems?

• The underlying assumption for all of these methods is that the graph
structure contains all of the relevant information for defining
communities.

• However, for our setting, the useful information is usually annotations,
not the nodes/edges themselves.

• For example, spectral clustering and modularity perform quite poorly
on dual graphs that are very grid like

• Hard to optimize for many different functions at once
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Graph Partitions

Potential Solution

• Although the naive version of the network approaches seems poorly
tuned for our setting there is some hope:

• These methods permit weighted generalizations that allow us to
encode some measures of similarity between nodes
• Demographics
• Shared Geography
• COI
• Municipal Boundaries

• These weighted versions can then be interpreted as maximizing
similarity within/minimizing similarity without and used to find larger
partitions.

• Some success already, still a long way to go!
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Graph Partitions

Recursive Constructions

• Choose a methods for constructing a single (contiguous, population
balanced, etc. ) a district

• Create one and repeat

• In general, bipartitioning, even in the unbalanced setting, is easier
than k-partitioning

• Particularly true for many of the network methods, which tend to be
significantly more stable for 2–partitions.
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Graph Partitions

Initial Seeds

• One use for these randomly drawn plans is as initial seeds for MCMC

• This provides a good heuristic check for convergence

• This can also solve data issues!
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Conclusion

MCMC
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Conclusion

The end!

Thanks!
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