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Introduction and Philosophy

Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into their
prime factors and seeking out by experimentation the laws of
appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.
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What is a district?
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Permissible Districting Plans

• Contiguity

• Population Balance

• Compactness

• Communities of Interest

• Municipal Boundaries

• Competitiveness/Responsiveness/Symmetry

• Incumbency Protection

• ...
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Example: Iowa

• 4 Congressional Districts, 100 House Districts, 50 Senate Districts

• House districts nest into Senate districts

• Congressional districts made out of counties

• Independent committee with legislative approval

• No partisan data allowed
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Example: Pennsylvania

• 18 Congressional Districts, 203 House Districts, 50 Senate Districts

• Zero–balanced population

• Legislature draws congressional districts - subcommittee draws
legislative districts

• Partisan considerations allowed
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Ugly Shapes
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Ugly Shapes

NC12 #1 NC12 #2 NC12 #12
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Measurement Problems

Theorem (Bar-Natan, Najt, and Schutzman 20191)

There is no local homeomorphism from the globe to the plane that
preserves your favorite compactness measure.

Problem (Barnes and Solomon 20182)

Geographic Compactness scores can be distorted by:

• Data resolution

• Map projection

• State borders and coastline

• Topography

• ...
1 The Gerrymandering Jumble: Map Projections Permute Districts’ Compactness Scores, arXiv:1905.03173

2 Gerrymandering and Compactness: Implementation Flexibility and Abuse, Political Analysis, to appear 2020.
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Multiresolution Measures

Theorem (D., Lavenant, Schutzman, and Solomon 20191)

The total variation relaxation of the isoperimetric profile:

1 satisfies an isoperimetric inequality,

2 is the lower convex envelope of the original profile,

3 and admits a distinguished family of efficiently computable solutions
that recover the Cheeger set and take at most three values for every t.

1 Total Variation Isoperimetric Profiles, SIAM J. Appl. Algebra Geometry, 3(4), 585-613, 2019.
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Partisan Imbalance

NC16

PA TS-Proposed
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Discrete Partitioning
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Mathematical Formulation

Given a (connected, planar) graph G = (V,E):

• A k-partition P = {V1, V2, . . . , Vk} of G is a collection of disjoint
subsets Vi ⊆ V whose union is V . The full set of k–partitions of G
will be denoted Pk(G).
• A partition P is connected if the subgraph induced by Vi is

connected for all i.

• A partition P is ε-balanced if µ(1− ε) ≤ |Vi| ≤ µ(1 + ε) for all i
where µ is the mean of the |Vi|’s
• The (context dependent) collection of constraints will be denoted

with a function Cθ : Pk(G) 7→ {True, False}. The set of permissible
partitions will be Cθ(G).
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Why analyze?

• Court cases
• Detecting gerrymandering
• Evaluating proposed remedies

• Reform Efforts
• Establishing baselines
• Potential impacts of new rules

• Commissions and plan evaluation
• Unintentional gerrymandering 1

• Full space of plans

1 with apologies to J. Chen and J. Rodden, Unintentional Gerrymandering: Political Geography and Electoral Bias in Legislatures,

Quarterly Journal of Political Science, 8, 239–269, 2013.
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Abstracted Problem Instances

Problem

Given a fixed G and metric of interest f : P(G) 7→ Rn.

1 Given a partition P , is it a statistical outliera with respect to f?

2 Given Cθ and Cθ′ how do the distributions f (Cθ(G)) and f (Cθ′(G))
compare?

agerrymander

Solution?

Draw (many) samples from (distributions over) Cθ(G)!
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Census Data



Computational Redistricting

Geospatial Data Challenges

Voting Data (precincts)
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Topological Data Analysis
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Sample Data Projects:

• Impacts of Modified Areal Unit Problem (MAUP)

• Understand the network structure of census/precinct data

• Efficient database design for boundary changes over time

• Automated tools for district projection, island connections,
compactness optimization, etc.
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Ensemble Analysis

• The wide variety in rules applied to districting problems (even in the
same state) means that any single measure of gerrymandering will be
insufficient/exploitable

• Instead we want to compare to large ensembles of other feasible plans.

• This allows us to understand the impacts of the underlying political
and demographic geography on a wide collection of metrics.
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AR Outlier Example

Figure: Mean–Median score using senate 2016 election data on 1,000,000 plans.
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Which ensembles?
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Ensembles in Practice

• The appeal of an ensemble method is that you get to control the
input data very carefully

• However, just because a particular type of data was not considered
doesn’t mean that the outcome is necessarily “fair”

• There are lots of “random” methods for constructing districting plans

• Most don’t offer any control over the distribution that you are
drawing from
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MCMC for redistricting

1 Start with an initial plan

2 Propose a modification of the current plan

3 Accept using MH criterion

4 Repeat

Why?
• Control over sampling distribution

• Possibility of local sampling

• Ergodic Theorem
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Single Edge Flip Proposals

1 Uniformly choose a cut edge

2 Change one of the incident node assignments to the other

• Mattingly et al. (2017, 2018) Court cases in NC and WI.

• Pegden et al. Assessing significance in a Markov chain without
mixing, PNAS, (2017). Court case in PA.
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Unconstrained Flip
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Constrained Flip
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PA Flip Ensemble
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Slowly Mixing Graph Families

Theorem (Najt, D., and Solomon 20191)

Let G be any connected graph. Then let G(d) be the graph obtained by
replacing each edge by a doubled d-star. Then the flip walk on partitions

of family of graphs G
(d)
d≥1 is slowly mixing, in the sense the Cheeger

constant is decaying exponentially fast. More specifically:

H(Partition Graph(G(d)) = O(2−d)

Remark

There are many similar constructions that give rise to equivalent mixing
results.

1 Complexity and Geometry of Sampling Connected Graph Partitions, arXiv:1908.08881, (2019).
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Slow Mixing Example
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Starting Partition
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Generic Partition
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Annealing
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Uniform Sampling of Contiguous Partitions

Theorem (Najt, D., and Solomon 2019)

Suppose that C is the class of connected planar graphs and k ≥ 2. If
there is a polynomial time algorithm to sample uniformly from:

• the connected k-partitions of graphs in C ,

• or the connected, 0-balanced k-partitions of graphs in C .

then RP = NP .

Remark

This theorem has various interesting extensions, including:

• Connectivity constraints on C

• Degree bounds

• Distributions proportional to cut length

• TV distribution approximation
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Stronger Version Example

Theorem (D., Najt, and Solomon 2019)

Let C be the class of cubic, planar 3-connected graphs, with face degree
bounded by C = 60. Let µx(G) be the probability measure on Pk(G) such
that a partition P is drawn with probability proportional to xcut(P ). Fix
some x > 1/

√
2, ε > 0 and α < 1. Suppose that there was an algorithm

to sample from P ε2 (G) according to a distribution ν(G), such that
||νG − µx(G)||TV < α, which runs polynomial time on all G ∈ C . Then
RP = NP .
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Proof Outline Sketch

Following technique of Jerrum, Valiant, and Vazirani1.

1 Show that uniformly sampling simple cycles is hard on some class C

1 Choose a gadget that respects C and allows us to concentrate
probability on long cycles

2 Count the proportion of cycles as a function of length
3 Reduce to Hamiltonian path on the graph class

2 Show closure of class under planar dual

3 Identify partitions with cut edges 7→ simple cycles (via planar duality)

4 Conclude that sampling partitions would allow you to sample from
cycles which would allow you to find Hamiltonian cycles

1 M. Jerrum, L. Valiant, and V. Vazirani, Random generation of combinatorial structures from a uniform distribution, Theoretical

Computer Science, 43 (1986), 169–188.
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Proof Sketch – Planar 2–Partitions

Still following technique of Jerrum, Valiant, and Vazirani.

1 Let C be the planar connected graphs

1 Replace the edges with chains of dipoles
2 Hamiltonian hardness for C given by 1

2 C closed under planar duals

3 Identify partitions with cut edges (via planar duality)

1 M. Garey, D. Johnson, and R. Tarjan, The Planar Hamiltonian Circuit Problem is NP-Complete, SIAM Journal on Computing, 5,

(1976), 704–714.
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Other Partition Sampling Frameworks
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New Proposal: Spanning Trees

ReCombination 1

1 At each step, select two adjacent districts

2 Merge the subunits of those two districts

3 Draw a spanning tree for the new super–district

4 Delete an edge leaving two population balanced districts

1 ReCombination: A family of Markov chains for redistricting, with M. Duchin and J. Solomon, arXiv:1911.05725, (2019).
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Tree Ensembles
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PA Recombination Steps
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Sampling Future Work:

• Characterize steady state distributions

• Spanning tree analysis on grids

• Introduce new proposal methods

• Theoretical basis for mixing in node-aggregate marginals

• Applications of other bipartitioning methods

• Computations in expanded state spaces and lifted walks

• Metamandering analyses

• Applications to statistical physics and combinatorics
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Outlier Example: NC
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Baseline Example: VA

Mean–Median Efficiency Gap
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Baseline Example: PA

Mean–Median Efficiency Gap
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Reform Example: VA

Redistricting Reform in Virginia: Districting Criteria in Context, with M. Duchin, Virginia Policy Review, 12(2), 120-146, (2019).
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Reform Example: Competitiveness

UT GA WI

VA MA

A Computational Approach to Measuring Vote Elasticity and Competitiveness, with M. Duchin and J. Solomon,

mggg.org/competitiveness, (2019).
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Future Applications:

• Baselines for entire country

• Coalition ecological inference

• Multi-member districts

• Ranked choice voting

• 2021 redistricting

• City council races

• New ballot measures

• District nesting
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The End

Thanks!
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Try it at home!

• Draw your own districts with Districtr
• https://districtr.org
• Easy to generate complete districting plans in browser or on a tablet
• Measures district demographics and expected partisan performance
• Identifies communities of interest

• Generate your own ensembles with GerryChain
• https://github.com/mggg/gerrychain
• Flexible, modular software for sampling graph partitions
• Handles the geodata processing as well as the MCMC sampling
• Templates to get started:

https://github.com/drdeford/GerryChain-Templates
• Detailed documentation:

http://people.csail.mit.edu/ddeford/GerryChain_Guide.pdf

• Data is available for your favorite state!
• Census dual graphs with demographic information:
• https://people.csail.mit.edu/ddeford/dual_graphs
• Precincts with electoral results
• https://github.com/mggg-states

https://districtr.org
https://github.com/mggg/gerrychain
https://github.com/drdeford/GerryChain-Templates
http://people.csail.mit.edu/ddeford/GerryChain_Guide.pdf
https://people.csail.mit.edu/ddeford/dual_graphs
https://github.com/mggg-states
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