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Abstract

Many frequently studied network models admit a multiplex structure

that distinguishes the exogenous relationships connecting the nodes from

the endogenous processes associated to each object. Unfortunately, it is

difficult to understand these models from the structural perspective of graph

theory. Here, we present a dynamical approach to this problem that allows

us to perform standard techniques from network analysis on multiplex

structures in a meaningful way.

As a case study, we analyze the World Trade Web (WTW) from this

perspective, showing that many of the traditional analyses that have been

performed on the WTW are incomplete with respect to the layer structure.

In particular, we present results comparing the connectivity, clustering,

assortativity, and centrality of the represented countries and commodities.

Multiplex Networks

A multiplex structure is a collection of networks all defined on the same

set of nodes. Each of these “layers” can be used to capture a distinct type of

relation between the nodes. For example, a social multiplex might have

separate layers for professional relationships and online social interactions.

Besides social networks, multiplex methods can be used for economic

models, time delay models, and biological networks.
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Figure 1 : A toy multiplex network model1

Early approaches to studying network problems in this context tried to

address this problem from a structural perspective [5] (summing matrices or

adding edges between copies). These approaches tend to distort the metrics

of interest by conflating the intra and inter relationships.

Multiplex Dynamics

Instead of trying to add new structural components we connect the

dynamics using a collection of scaled orthogonal projections. To each node,

we associate a projection operator Pn that gathers the information stored at

each copy of the node and proportionally redistributes it among the layers.

This allows us to respect the independence of the endogenous dynamics.

Given a collection of operators Di on our layers, this is equivalent to

constructing the new operator:

M =


α1,1C1D1 α1,2C1D2 · · · α1,kC1Dk

α2,1C2D1 α2,2C2D2 · · · α2,kC2Dk
... ... . . . ...

αk,1CkD1 αk,2CkD2 · · · αk,kCkDk



where the Ci = diag(ci,1, ci,2 . . . , ci,`) represent the coefficients for the node

projections with the condition that
∑

j ci,j = 1 for all i.

Theoretical Results

This dynamical approach to multiplex modeling allows us to prove

general theorems about the spectral structure of the derived operator. Some

of these results are summarized in the following theorems:

Theorem 1. If the original dynamics satisfy any of the following
{Irreducible, Primitive, Stochastic, Positive(Negative) (semi–)Definite}
then so does the multiplex operator.
Theorem 2. If the flows between layers are equidistributed and the
individual dynamics are the associated network Laplacians we have the
following eigenvalue bounds:
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Theorem 3. If the original dynamics are stochastic, the steady state
vector of M cannot be expressed as a linear combination of the
stationary vectors of the {Di}.

World Trade Web

The World Trade Web is a network representation of the trade

interactions between countries [4]. In this network, the nodes represent

countries and the edges represent the amount of goods sent from country i
to country j each year. For simplicity, all of the data presented here is from

the year 2000. The topology of the WTW has been quite stable [1, 3] over

recent decades, so this analysis is representative of recent experiences.
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Figure 2 : Visual Realizations of the year 2000 WTW1

Commodity Parameters

Trade data is usually disaggregated by commodity. Intuitively, we expect

that the structure of various markets should vary widely. The table below

presents some basic statistics of the layers represented in our data.

Layer Description Volume % Total Transitivity

0 Food and live animals 291554437 5.1 .82

1 Beverages and tobacco 48046852 0.9 .67

2 Crude materials 188946835 3.3 .79

3 Mineral fuels 565811660 10.0 .62

4 Animal and vegetable oils 14578671 0.3 .64

5 Chemicals 535703156 9.5 .83

6 Manufactured Goods 790582194 13.9 .87

7 Machinery 2387828874 42.1 .85

8 Miscellaneous manufacturing 736642890 13.0 .83

9 Other commodities 107685024 1.9 .56

All Aggregate Trade 5667380593 100 .93

Table 1 : Commodity information for the WTW

Layer Metrics

Most of the prior analysis of the WTW [2, 3, 6, 8] has focused on the

aggregate network, but the figures below show that a great deal of

information is hidden by this aggregation. The results shown here are

similar to those obtained in [1].

Commodity Density Commodity Reciprocity

Commodity Path Length Commodity Clustering

Figure 3 : Comparison of standard network metrics between the aggregate

WTW and the individual commodity networks2

Degrees and Clustering

The degree distribution of a network is a probability distribution

measuring the probability that an arbitrary node has degree k. This is one

of the most frequently studied aspects of complex networks, since many

standard network examples, such as citation networks and transportation

networks, have scale–free or power law distributions. We computed four

degree distributions for each layer of the WTW reflecting both the directed

structure and the weighted structure.

The unweighted degree distributions highlight the differences between the

layers and the aggregate network. The aggregate distributions are skewed

heavily to the right, while the individual layers are nearly uniform. On the

other hand, the weighted distributions at all levels seem to satisfy a power

law distribution for both in and out degrees. This is particularly interesting

since it implies that a proportionally small number of nodes dominate both

the import and export markets for each commodity.
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Figure 4 : Representative Degree Distributions2

The clustering coefficient of a network is a measure of transitivity, the

propensity for triangle formation in the network. Like the degree

distribution, clustering coefficients can be computed as weighted or

unweighted quantities. We found that for the layers, the unweighted

clustering coefficient is negatively correlated with degree, while the weighted

clustering coefficient is positively correlated with weighted degree.
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Figure 5 : Representative Clustering Plots2

Assortativity

Assortativity is a measure of the correlation between the degrees of

connected nodes. For directed networks there are four separate assortativity

values {in–in, in–out, out–in, out–out} that capture different information

about the connectivity structure. Due to the highly reciprocal structure of

the aggregate network, previous studies have only computed symmetrized

versions of this statistic for the WTW.

In–In Assortativity In–Out Assortativity

Out–In Assortativity Out–Out Assortativity

Figure 6 : Assortativity values for the commodity networks2

Although the assortativity values for the out–out correlation are small in

magnitude, they differ markedly from the expectation as determined by a

null model (Table 2). Thus, this data suggests that there are economic

constraints determining this behavior, especially when considered with

respect to the degree distribution analysis above.

Layer 0 1 2 3 4 5 6 7 8 9 Aggregate

Z–Score -.41 -.43 -.52 -.47 -.53 -.40 -.40 -.45 -.39 -1.06 -.28

Table 2 : Z–Scores for Commodity Out–Out Assortativity

WTW Centrality

One of the main techniques of network science is using topological

properties to determine the most central nodes in a network. There are

many different ways to measure centrality [7] and each metric captures a

different aspect of the importance of central nodes. For example, Figure 7

demonstrates the difference between the simplest two centrality values on

the WTW. Although the USA has the highest aggregate strength, or trade

volume, of any nation, it has a relatively small number of trading partners

compared to the rest of the WTW.
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Figure 7 : Simple WTW Centralities3

Many measures of centrality incorporate dynamical aspects, such as

random walks or geodesics. These metrics are particularly well suited for

analysis under our multiplex operator, as well as having natural relations to

the WTW data. Our main tools for studying centrality on multiplex

structures come from these statistics.

Layer Centralities

We studied the centrality scores of the individual layers using several

different metrics, focusing on those that are related to flows across the

network. The table below reports the most central node under each metric.

Interestingly, although the USA has the highest aggregate trade volume of

any nation (Figure 7), it does not dominate all of these measures.

Layer Out Degree In Degree Closeness Eigenvector RWBC

0 Japan Denmark Japan USA USA

1 Germany UK USA France France

2 Netherlands Germany Netherlands Canada USA

3 USA Germany USA Canada Oman

4 Germany Netherlands France Indonesia Laos

5 Germany Denmark France USA USA

6 Belgium France Belgium USA Germany

7 Germany Denmark France USA USA

8 UK France UK China China

9 USA UK USA Canada USA

All China 8 Countries China USA USA

Table 3 : Highest Layer Centrality Scores

Multiplex Centrality

We applied this same concept in the multiplex setting. Using our derived

operator M we were able to compute analogues of these centrality measures

for the entire multiplex, comparing the interactions between individual

components of each countries trading profile. To distribute the flow between

the commodities, we used four separate weighting schemes: an equal

distribution, proportional to node in strength, proportional to node out

strength, and the layer weight proportions from Table 1.

Equal In Strength Out Strength Layer Strength

Rank Layer Country Layer Country Layer Country Layer Country

1 All USA 7 Japan 7 USA 7 USA

2 All Canada 7 USA 7 Canada 7 Japan

3 All Japan 7 Mexico 7 Mexico 7 Canada

4 All China 7 Canada 7 Japan 7 Mexico

5 All Mexico 7 Germany 7 China 7 China

6 All Germany 8 China 3 Japan 7 Germany

7 All UK 7 S. Korea 7 Germany 6 USA

8 All France 7 China 8 USA 8 USA

9 All S. Korea 7 Laos 8 Japan 6 Japan

10 All Italy 8 USA 7 Laos 7 S. Korea

Table 4 : Multiplex Centrality Leaders

Note that 42% of the total trade volume in our data occurs in layer 7, so it

is reasonable that most of the important multiplex nodes lie in that layer.

Community Detection

The random walk associated to a digraph can be used to construct a

metric known as the commute time on the network. The values of this

metric can be computed from the pseudoinverse of a modified Laplacian [9].

After computing the multiplex version of this operator with our method, we

used a complete linkage algorithm to cluster the countries according to their

distances under the commute time. The eight most significant clusters are

displayed in the figure below.

Figure 8 : Communities in the WTW3

Conclusions and Extensions

Our dynamically motivated approach allows us to analyze multiplex

structures using many of the standard tools and techniques of network

theory. This is a significant improvement over prior structural models that

did not respect the dynamical interpretations of derived network operators.

With regard to the WTW dataset we showed that the commodity layers

display distinctly different topological structure than the aggregate network,

suggesting that the aggregation process obscures a great deal of economic

information. This is particularly important when studying measures of

centrality or robustness from a practical perspective.

We intend to extend this research in several ways:

. Proving stronger eigenvalue bounds for commonly studied operators

. Developing community detection methods that respect the multiplex

structure such as generalized modularity

. Studying the correlation of spectral data from multiplex networks with

traditional layer dynamics

. Incorporating external control variables into the dynamic analysis
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