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Time Series Entropy

Iterated Maps

Given a function f : [0, 1]→ [0, 1] and a point x ∈ [0, 1], consider the
behavior of {x, f(x), f(f(x)), f(f(f(x))), . . .}.

Example

Let f(x) = 4x(1− x) and x0 = .2. Then, the list of values is:

[0.20, 0.64, 0.92, 0.28, 0.82, 0.58, 0.97, 0.11, 0.40, . . .].
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Iterated Example (231)
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Iterated Example (2413)
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Forbidden Patterns

Definition (Topological Entropy)

TE = lim
n→∞

log(|Allow(f)|)
n− 1
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Simple Time Series
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Complex Time Series
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Complex Time Series
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Complexity Measures

Definition (Normalized Permutation Entropy)

NPE({Xi}) = −
1

log(N !)

∑
π∈Sn

pπ log(pπ)

Definition (Uniform KL Divergence)

DKL({Xi}||uniform) =
∑
π∈Sn

pπ log

(
pπ
1
n!

)

Observation

1−NPE({Xi}) =
1

log(N !)
DKL({Xi}||uniform)
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Stock Data (Closing Prices)
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Random Walk Null Models

Definition (Random Walk)

Let {Xi} be a set of I.I.D. continuous random variables and define {Zi}
by Zj =

∑j
i=0Xj . Usually the steps {Xi} will be uniformly or normally

distributed.

Proposition (No Forbidden Patterns)

If {Zi} are defined as above then every permutation occurs with some
positive probability.

Proposition (No Uniform Distribution)

If {Zi} are defined as above and n ≥ 3 then the expected distribution of
permutations is not uniform.
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New Complexity Measure

Definition (Null Model KL Divergence)

DKLn(X) := DKLn(X||Z) =
∑
π∈Sn

pπ log

(
pπ
qπ

)
,

where pπ is the relative frequency of π in X and qπ is the relative
frequency of π in Z.
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Hyperplanes

Example (Uniformly distributed steps)

In order for the pattern 1342 to appear in the random walk time series we
need the following inequalities to hold:

• X1 > 0

• X2 > 0

• X3 < 0

• X3 > X2

• X3 < X1 +X2
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Integration Regions
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Figure: The regions of integration for patterns in uniform random walks for (a)
n = 3 and (b) n = 4, sketched here for b = 0.65.



Complex Mathematical Embeddings

Time Series Entropy

Null Distributions (n = 3)

Pattern Normal: µ = 0 Uniform: µ = 0 Uniform: P(Y > 0) = b

{123} 1/4 1/4 b2

{132, 213} 1/8 1/8 (1/2)(1− b)2

{231, 312} 1/8 1/8 (1/2)(b2 + 2b− 1)

{321} 1/4 1/4 (1− b)2
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Null Distributions (n = 4)

Pattern Normal: µ = 0 Uniform: µ = 0 Uniform: P(Y > 0) = b

{1234} 0.1250 1/8 b3

{1243, 2134} 0.0625 1/16 (1/2)b(1 − b)(3b − 1)

{1324} 0.0417 1/24 (1/3)(1 − b)(7b2 − 5b + 1)

{1342, 3124} 0.0208 1/24 (1/6)(1 − b)2(4b − 1)

{1423, 2314} 0.0355 1/48 (1/6)(1 − b)2(5b − 2)

{1432, 2143, 3214} 0.0270 1/48

{
(1/6)(2 − 24b + 48b2 − 15b3) if b ≤ 2/3

(b − 1)2(2b − 1) if b > 2/3

{2341, 3412, 4123} 0.0270 1/48 (1/6)(1 − b)3

{2413} 0.0146 1/48 (1/6)(1 − b)3

{2431, 4213} 0.0208 1/24

(1/6)(24b3 − 45b2 + 27b − 5) if b ≤ 2/3

(1/2)(1 − b)3 if b > 2/3

{3142} 0.0146 1/48

{
(1/6)(25b3 − 48b2 + 30b − 6) if b ≤ 2/3

(1/3)(1 − b)3 if b > 2/3

{3241, 4132} 0.0355 1/48 (1/6)(1 − b)3

{3421, 4312} 0.0625 1/16 (1/2)(1 − b)3

{4231} 0.0417 1/24 (1/3)(1 − b)3

{4321} 0.1250 1/8 (1 − b)3
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Uniform Steps S&P 500
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Data Comparisons
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Stock Market Example
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Hilbert Curve
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SFCs for Parallel Computing

Parallel Computing

• Latency in communication overhead has become a limiting factor in
designing parallel algorithms

• Designing ways to efficiently embed problems to minimize
communication is an important problem

• Factors:

• Processor Topology
• System Size
• Distribution of Data
• ...

• Previous Approaches

• Database Methods
• Average Nearest Neighbor Stretch
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SFCs for Parallel Computing

Discrete Space Filling Curves

Definition

A Discrete Space Filling Curve is a mapping from multi–dimensional space
to a linear order that allows for a unique indexing of the points.

(a) Hilbert Curve H4 (b) Z–Curve Z4

(c) Gray Order G4 (d) Column Order
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ANNS Result

(a) Standard ANNS (b) Large Radius ANNS
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SFCs for Parallel Computing

Average Communicated Distance

Definition (ACD)

Given a particular problem instance, the Average Communicated Distance
(ACD) is defined as the average distance for every pairwise communication
made over the course of the entire application. The communication
distance between any two communicating processors is given by the length
of the shortest path (measured in the number of hops) between the two
processors along the network intraconnect.

Definition (FMM)

The Fast Multipole Method (FMM) is an algorithm for approximating the
interactions in an n body problem. The computations can be separated
into two components: Near Field Interactions (NFI) and Far Field
Interactions (FFI), with very different communications profiles.
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Point Distributions

(a) Uniform (b) Normal (c) Exponential
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SFCs for Parallel Computing

Ordered Points

(a) Hilbert Ordering (b) Gray Ordering

(c) Z Ordering (d) Row Major
Ordering
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Main Results (NFI)

Table: A comparison of different particle/processor-order SFC combinations for NFI under various
distributions. The lowest ACD value within each row is displayed in boldface blue, while the lowest
ACD value within each column is displayed in red italics. The best option for each distribution is
displayed in bold green italics.

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 4.008 4.308 4.939 13.117
Z–Curve 5.486 5.758 6.573 18.127
Gray Code 5.802 6.010 6.970 19.220
Row Major 9.126 9.763 11.713 70.353

Table: Uniform Distribution
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Main Results (NFI) Continued

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 8.561 9.297 10.123 20.340
Z–Curve 11.003 11.551 12.984 26.842
Gray Code 11.881 12.595 13.249 28.188
Row Major 20.143 22.221 24.053 66.719

(a) Normal Distribution

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 5.238 5.654 6.271 14.943
Z–Curve 6.943 7.070 8.235 20.851
Gray Code 7.276 7.663 8.760 22.269
Row Major 12.483 13.017 15.289 61.227

(b) Exponential Distribution
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SFCs for Parallel Computing

Main Results (FFI)

Table: A comparison of different particle/processor-order SFC combinations for FFI under various
distributions. The lowest ACD value within each row is displayed in blue boldface, while the lowest
ACD value within each column is displayed in red italics. The best option for each distribution is
displayed in bold green italics.

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 19.494 20.841 22.572 31.124
Z–Curve 24.217 24.793 27.787 37.709
Gray Code 24.622 25.446 27.997 39.282
Row Major 44.513 48.762 50.118 57.880

Table: Uniform Distribution
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Main Results (NFI) Continued

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 26.336 26.824 31.963 32.542
Z–Curve 29.160 28.036 34.241 36.663
Gray Code 29.449 27.981 31.909 37.291
Row Major 43.639 44.636 49.133 45.475

(a) Normal Distribution

Particle Order

Processor Order ↓ Hilbert Curve Z–Curve Gray Code Row Major
Hilbert Curve 18.960 19.841 23.007 31.368
Z–Curve 24.672 23.316 26.315 37.576
Gray Code 23.762 24.076 27.973 37.863
Row Major 42.447 44.067 46.872 50.963

(b) Exponential Distribution
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Topology Comparison

(e) Near–Field Interactions (f) Far–Field Interactions

Figure: The charts show the results of comparing different network topologies for a) NFI and b)
FFI, respectively. All experiments were performed using 1, 000, 000 uniformly distributed particles
on a 4096× 4096 spatial resolution. This plot is representative of all the experiments we
performed to evaluate the topologies. It is important to note that quadtree structures have
disproportionately large issues with contention in high volume communications.
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SFCs for Parallel Computing

Processor Scaling

(a) NFI (b) FFI

Figure: These plots show ACD values for a) NFI, and b) FFI, as a function of the number of
processors and the SFC used. The input used was fixed at 1,000,000 uniformly distributed particles.
This demonstrates the effect scale on processor ranking SFCs. Some of the row–major data has
been excluded from these plots because for this SFC, the ACD values at larger processor numbers
were significantly higher than the other data–points.
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What is a multiplex?

Definition

A multiplex is a collection of graphs all defined on the same node set.

(a) Family (b) Colleagues (c) Facebook
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Multiplex Dynamics

World Trade Web1

Figure: World trade networks

1 R. Feenstra, R. Lipsey, H. Deng, A.C. Ma, and H. Mo. World Trade Flows: 1962-2000. NBER Working Paper 11040, (2005).
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Multiplex Dynamics

WTW Layers

Layer Description Volume % Total Transitivity

0 Food and live animals 291554437 5.1 .82
1 Beverages and tobacco 48046852 0.9 .67
2 Crude materials 188946835 3.3 .79
3 Mineral fuels 565811660 10.0 .62
4 Animal and vegetable oils 14578671 0.3 .64
5 Chemicals 535703156 9.5 .83
6 Manufactured Goods 790582194 13.9 .87
7 Machinery 2387828874 42.1 .85
8 Miscellaneous manufacturing 736642890 13.0 .83
9 Other commodities 107685024 1.9 .56

All Aggregate Trade 5667380593 100 .93

Table: Layer information for the 2000 World Trade Web.
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Multiplex Dynamics

Disjoint Layers

Figure: Disjoint Layers
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Multiplex Dynamics

Aggregate Models

(a) Disjoint Layers (b) Aggregate
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Multiplex Dynamics

Matched Sum

(a) Disjoint Layers (b) Matched Sum
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Multiplex Dynamics

Strucutral Asymptotics

As the number of layers grows, what happens to the:

• Density?

• Degree Distribution?

• Transitivity?

• Average Path Length?

• Diameter?

• Clique Number?

• ...

• Dynamics?!?
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Multiplex Dynamics

Random Walk Convergence

(a) Aggregate (b) Matched Sum
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Dynamics on Multiplex Networks

• Two types of interactions
• Within the individual layers
• Between the layers

• Effects should “pass through”
nodes

• Two step iterative model

• Symbolically:

v′ = Dv

(v′)αi =

k∑
β=1

mα,β
i cα,βi (Dv)βi
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Multiplex Dynamics

Multiplex Random Walks

Figure: Comparison of random walk convergence for multiplex models.
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Multiplex Dynamics

Centrality Comparison
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Centrality Comparison



Complex Mathematical Embeddings

Multiplex Dynamics

Global Aggregate Rankings

Year 1970 1980 1990 2000

1 US US US US
2 Germany Germany Germany Germany
3 Canada Japan Japan Japan
4 UK UK France China
5 Japan France UK UK
6 France Saudi Arabia Italy France

Table: RWBC values for the aggregate WTW.
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Multiplex Dynamics

Full Multiplex RWBC

Ranking Country Layer

1 US 7
2 Germany 7
3 China 7
4 UK 7
5 Japan 7
6 US 8
7 Canada 7
8 France 7
9 Japan 3
10 US 6
12 US 3
13 Netherlands 7
14 Germany 6
15 Italy 7

Table: Multiplex RWBC values for the 2000 WTW.
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Multiplex Dynamics

Commodity Appearance

Layer Ranking Country

0 22 Japan
1 199 Germany
2 47 China
3 9 Japan
4 184 Australia
5 23 Germany
6 10 US
7 1 US
8 6 US
9 39 US

Table: First appearance of each layer in the rankings.
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Multiplex Dynamics

Ranking Movement

Layer 7 Ranking Country Multiplex Ranking

1 USA 1
2 Japan 5
3 Germany 2
4 China 3
5 France 8
6 UK 4
7 South Korea 18
8 Canada 7
9 Malaysia 16

10 Mexico 20

Table: Comparison of the relative rankings of the RWBC on Layer 7 versus the
multiplex RWBC.
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That’s all..

Thank You!
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