
Complex Networks

Introduction

Fun Problems

1 Some number of circles whose circumferences sum to 10 are placed
in the unit square. Prove that there exists a line passing through at
least 4 of them.

2 Consider an m× n grid of unit squares. An
︷ ︸︸ ︷
(m,n)︸ ︷︷ ︸–admissible path

is a path along adjacent (up, down, left, or right) squares from the
lowest left square to the top right corner that does not repeat any
squares and no four squares in the path share a vertex (even

non–consecutively). How many
︷ ︸︸ ︷
(5, 5)︸ ︷︷ ︸–admissible paths exist?
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Examples

(a) Graph1 (b) Network

1 D. DeFord Enumerating Tilings of Rectangles by Squares, Journal of Combinatorics, 6(3), 339-351, (2015).
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(a) Graph (b) Network 1

1 Data: Feenstra, R., Lipsey, R., Deng, H., Ma, A. and Mo, H. (2005) World Trade Flows: 1962-2000. NBER Working Papers
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Figure: Impostor1

1 https://xkcd.com/451/
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Networks Basics (Clustering)

Data: Feenstra, R., Lipsey, R., Deng, H., Ma, A. and Mo, H. (2005) World Trade Flows: 1962-2000. NBER Working Papers
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Banerjee, A., Chandrasekhar, A. G., Duflo, E. and Jackson, M. O. (2013) The Diffusion of Microfinance. Science , 341 (6144).
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Banerjee, A., Chandrasekhar, A. G., Duflo, E. and Jackson, M. O. (2013) The Diffusion of Microfinance. Science , 341 (6144).
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Watts–Strogatz (Local Clustering)

(c) Graph Example (d) Degree Distribution
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(a) Graph Example (b) Degree Distribution
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Stochastic Block Model (Global Clustering)

(c) Graph Example (d) Degree Distribution
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Advantages

• Flexibility

• Parametric models:

W (x, y) = a+ b(1−max{x, y}) + cδ(|x− y| < d)

• Compact metric space

• Contains structural models as special cases

• Replace (hard) discrete computations with (easier) continuous ones



Complex Networks

Generative Models

Dot Product Models

RDPM

• Associate each node to a vector in Rn

• Place an edge between two nodes with probability proportional to
〈x, y〉.

• Since each node is associated to a vector, it is natural to try and
interpret the properties of the node from the vector

• 〈x, y〉 = ||x|| · ||y|| cos(x, y)

• Angle – Community assignment

• Magnitude – Centrality
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Angle – Community Assignment

(a) Vectors (b) Graph
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Example: Uniform Noise

(a) Community 1 Vectors (b) Community 2 Vectors (c) Community 3 Vectors

(d) All Vectors

Figure
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Example: Uniform Noise

(a) Dot Products (b) WRDPM Network
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Magnitude – Centrality

(a) Vectors (b) Graph
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Example: Multiresolution Communities

(a) Community 1 Vectors (b) Community 2 Vectors (c) Community 3 Vectors

(d) All Vectors
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Example: Multiresolution Communities

(a) Dot Products (b) WRDPM Network
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Edge Parameterized Models

Theorem

Let n be a fixed positive integer. For each pair (i, j) with 1 ≤ i < j ≤ n
let ai,j = aj,i ∈ R. Then there exist n real numbers a`,` for 1 ≤ ` ≤ n
such that the matrix Ai,j = ai,j is positive definite.

Corollary

Any generative network model, on a fixed number of nodes n, where the
edge weight between each pair of nodes is drawn independently from a
fixed probability distribution, possibly with different parameters for each
pair, can be realized under the WRDPM.

D. DeFord and D. Rockmore, A Random Dot Product Model for Weighted Networks, with D. Rockmore, arXiv:1611.02530, (2016).
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Unweighted Collaboration Network

(a) Collaboration
Network

(b) Unweighted 2–Embedding (c) Unweighted 3–Embedding

V. Batagelj and A. Mrvar: Pajek datasets, (2006).
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Weighted Collaboration Network

(a) Collaboration
Network

(b) Weighted 2–Embedding (c) Weighted 3–Embedding

V. Batagelj and A. Mrvar: Pajek datasets, (2006).
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Voting Data

J. Lewis and K. Poole: Roll Call Data,

voteview.com/dwnl.html.
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That’s all...

Thank You!
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Dimension Selection

Since the dimension of the embedding is intrinsically related to the
realized community structure it is natural to try and make use of this
relationship to determine the right choice of d. Motivated by the case of
disjoint communities, where if we have an effective, normalized
embedding we should have

〈Xi, Xj〉 =

{
1 i and j belong to the same community

0 i and j belong to different communities

Thus, the sum of intra–community dot products should be
∑`

i=1

(
z`
2

)
.

Similarly, the sum of the inter–community dot products should be 0. we
define a stress function s depending on the community assignments after
embedding.

s(d) =

d∑
i=1

(
zi
2

)
− sintra(d) + sinter(d)
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Dimension Example

(a) Weighted Network (b) 2-Embedding (c) 3-Embedding

(d) Stress Function

Figure: Comparison of WRDPN embeddings of a weighted network (a) as the
dimension of the embedding varies. As expected, the minimum value occurs at
d = 3, matching the correct structure.
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Coauthorship Revisited

Figure: Comparison of stress values for the computational geometry
coauthorship network between the weighted and unweighted realizations. The
weighted embedding significantly outperforms the binarized model.
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