Complex Networks
Introduction

Fun Problems

@ Some number of circles whose circumferences sum to 10 are placed
in the unit square. Prove that there exists a line passing through at
least 4 of them.

—~

@® Consider an m x n grid of unit squares. An (m,n)-admissible path
——

is a path along adjacent (up, down, left, or right) squares from the

lowest left square to the top right corner that does not repeat any
squares and no four squares in the path share a vertex (even

. 2 i :
non—consecutively). How many (5, 5)—admissible paths exist?
~——
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What are Complex Networks?
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What are Complex Networks?

Definition (Complex Network)
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Examples

(a) Graph! (b) Network

1 D. DeFord Enumerating Tilings of Rectangles by Squares, Journal of Combinatorics, 6(3), 339-351, (2015).
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15 ‘6
43 3
(a) Graph (b) Network !

1 Data: Feenstra, R., Lipsey, R., Deng, H., Ma, A. and Mo, H. (2005) World Trade Flows: 1962-2000. NBER Working Papers
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Networks Basics (Centrality)
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Centrality

Networks Basics (Centrality)

My Hoggy:
SITTING DOWN WITH GRAD STUDENTS AND TIMING
HOW LONG IT TAKES THEM TO FIGURE QUT THAT

IM NOT ACTUALLY AN EXPERT IN THEIR FIELD,
YOU SEE, THE DECONSTRUCTION

ENGINEERING: [ONGLISTICS ——
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Figure: Impostor
! https://xked.com /451 / ¢ Dartmouth
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Networks Basics (Centrality)
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Networks Basics (Clustering)
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Networks Basics (Clustering)

Data: Feenstra, R., Lipsey, R., Deng, H., Ma, A. and Mo, H. (2005) World Trade Flows: 1962-2000. NBER Working Papers
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Networks Basics (Clustering)

Banerjee, A., Chandrasekhar, A. G., Duflo, E. and Jackson, M. O. (2013) The Diffusion of Microfinance. Science , 341 (6144).
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Networks Basics (Clustering)

Banerjee, A., Chandrasekhar, A. G., Duflo, E. and Jackson, M. O. (2013) The Diffusion of Microfinance. Science , 341
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Fuzzy Networks

e Seems pretty straightforward...
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e Seems pretty straightforward...
o Noisy data/reality
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Fuzzy Networks

e Seems pretty straightforward...
o Noisy data/reality
e Collection Errors
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Fuzzy Networks

e Seems pretty straightforward...
o Noisy data/reality

e Collection Errors
e Network Evolution
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Fuzzy Networks

e Seems pretty straightforward...
o Noisy data/reality
e Collection Errors

e Network Evolution
e Multiple interaction types
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Different Perspectives on “Friendship”
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Different Perspectives on “Friendship”
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Krackhardt D. (1987). Cognitive social structures. Social Networks, 9, 104-134.
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Different Perspectives on “Friendship”

Krackhardt D. (1987). Cognitive social structures. Social Networks, 9, 104-134.
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Krackhardt D. (1987). Cognitive social structures. Social Networks, 9, 104-134.
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Krackhardt D. (1987). Cognitive social structures. Social Networks, 9, 104-134.
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Different Perspectives on “Friendship”
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Krackhardt D. (1987). Cognitive social structures. Social Networks, 9, 104-134.
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Krackhardt D. (1987). Cognitive social structures. Social Networks, 9, 104-134.
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Krackhardt D. (1987). Cognitive social structures. Social Networks, 9, 104-134.
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Different Perspectives on “Friendship”
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“Friendship” over Time

Newcomb T. (1961). The acquaintance process. New York: Holt, Reinhard and Winston.
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Definition (Null Model)

A random network, parameterized to match some features of a given
network, used to compare “expected’ network measures.

Lal uu\)uth
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Erdos—Renyi
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Erdos—Renyi
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(c) Graph Example (d) Degree Distribution
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Barabasi—Albert (Centrality)
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Barabasi—Albert (Centrality)
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Watts—Strogatz (Local Clustering)
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Watts—Strogatz (Local Clus
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Stochastic Block Model (Global Clustering)
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Stochastic Block Model (Global Clustering)

(c) Graph Example (d) Degree Distribution
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Graphons

Graphons
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Advantages

Flexibility

Parametric models:

W(z,y) = a+b(1 — max{z,y}) + cd(|jx —y| < d)

e Compact metric space
e Contains structural models as special cases

Replace (hard) discrete computations with (easier) continuous ones
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RDPM

Associate each node to a vector in R™

Place an edge between two nodes with probability proportional to
(z,y).

Since each node is associated to a vector, it is natural to try and
interpret the properties of the node from the vector

(@, y) = [l=[| - [lyl| cos(z, y)
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RDPM

Associate each node to a vector in R™

Place an edge between two nodes with probability proportional to
(z,y).

Since each node is associated to a vector, it is natural to try and
interpret the properties of the node from the vector

(z,y) = llz[| - lyl| cos(z,y)

Angle — Community assignment
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RDPM

Associate each node to a vector in R™

Place an edge between two nodes with probability proportional to
(z,y).

Since each node is associated to a vector, it is natural to try and
interpret the properties of the node from the vector

(z,y) = llz[| - lyl| cos(z,y)

Angle — Community assignment

Magnitude — Centrality
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Angle — Community Assignment

04 02 03 04 05 06 07 08 09

(a) Vectors
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Example: Uniform Noise

(a) Community 1 Vectors (b) Community 2 Vectors (c) Community 3 Vectors

(d) All Vectors

Figure i2 Dartmouth
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Example: Uniform

20 40 60

(a) Dot Products (b) WRDPM Network
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Magnitude — Centrality

(a) Vectors
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Example: Multiresolution Communities

(a) Community 1 Vectors (b) Community 2 Vectors (c) Community 3 Vectors
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(d) All Vectors ’
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Example: Multiresolution Communities
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(a) Dot Products (b) WRDPM Network
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Edge Parameterized Models

Theorem

Let n be a fixed positive integer. For each pair (i,j) with1 <i<j<mn
let a; ; = aj; € R. Then there exist n real numbers ap for1 < £ <n
such that the matrix A; j = a, ; is positive definite.

Corollary

| \

Any generative network model, on a fixed number of nodes n, where the
edge weight between each pair of nodes is drawn independently from a
fixed probability distribution, possibly with different parameters for each
pair, can be realized under the WRDPM.

D. DeFord and D. Rockmore, A Random Dot Product Model for Weighted Networks, with D. Rockmore, arXiv:1611.02530, (2016).
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Unweighted Collaboration Network

(a) Collaboration (b) Unweighted 2-Embedding (c) Unweighted 3—Embedding
Network

V. BATAGELJ AND A. MRVAR: Pajek datasets, (2006).
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Weighted Collaboration Network

(a) Collaboration (b) Weighted 2—-Embedding

Network

V. BATAGELJ AND A. MRVAR: Pajek datasets, (2006).

.
: ,/.\
0 - g

2
s =L

—~ _—

o
5 s
~— 0
a0 s

(c) Weighted 3-Embedding
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Voting Data

J. LEwis AND K. POOLE: Roll Call Data,

voteview.com /dwnl.html.
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That's all...

Thank You!
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Dimension Selection

Since the dimension of the embedding is intrinsically related to the
realized community structure it is natural to try and make use of this
relationship to determine the right choice of d. Motivated by the case of
disjoint communities, where if we have an effective, normalized
embedding we should have

(X, X) {1 i and j belong to the same community
iy Ng) =

0 iand j belong to different communities

Thus, the sum of intra—community dot products should be 3¢, (%).
Similarly, the sum of the inter—community dot products should be 0. we
define a stress function s depending on the community assignments after
embedding.

d
S(d) = Z (Z;) - Sintra(d) + Sinter(d)
i=1
¢ Dartmouth
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Dimension Example
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(a) Weighted Network (b) 2-Embedding (c) 3-Embedding
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Coauthorship Revisited

* * *

) . ! .

2 B . s f 7 s 5 o
Dimension -4

Figure: Comparison of stress values for the computational geometry
coauthorship network between the weighted and unweighted realizations. The
weighted embedding significantly outperforms the binarized model.
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