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Abstract. In this note we define a new type of pulsated Fibonacci sequence. Properties are
developed with a successor operator. Some examples are given.

1. Introduction

The motivation for this work goes back to some research of Hall [9], Neumann [14], and
Stein [19] on finite models of identities. In order to answer the question of whether every
member of a variety is a quasi–group given that every finite member is, Stein [18] found it
necessary to examine the intersection of Fibonacci sequences.

Subba Rao [20, 21], Horadam [10], and Shannon [17] investigated the intersection of Fi-
bonacci and Lucas sequences and their generalizations with asymptotic proofs, while Péter Kiss
adopted a different approach and supplied many relevant historical references [11]. Atanassov
developed coupled recursive sequence which had some obvious intersections [1, 5]. Not con-
sidered her are various sequences, such as diatomic sequences, which by their very definitions
intersect with many other sequences [14].

In this paper, following previous research (see [2, 3, 4]), a new type of pulsated Fibonacci
sequence is developed: ‘pulsated’ because, in a sense, these sequences expand and contract
with regular movements.

2. Definitions

Let a, b, and c be three fixed real numbers. Let us construct the following two recurrent
sequences, {αn} and {βn} with initial conditions:

α0 = β0 = a, (2.1)

α1 = 2b, (2.2)

β1 = 2c, (2.3)

satisfying the combined recurrence relations:

α2k = β2k = α2k−2 +
α2k−1 + β2k−1

2
, (2.4)

α2k+1 = α2k + β2k−1, (2.5)

β2k+1 = β2k + α2k−1, (2.6)

for every natural number k ≥ 1. This pair of sequences we call a (a; 2b; 2c)–Pulsated
Fibonacci sequence. The first values of the sequence are given in the following table:
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Table 1. Initial values for the (a; 2b; 2c)–Pulsated Fibonacci sequence.

n α2k+1 α2k = β2k β2k+1

0 – a –
1 2b – 2c
2 – a+ b+ c –
3 a+ b+ 3c – a+ 3b+ c
4 – 2a+ 3b+ 3c –
5 3a+ 6b+ 4c – 3a+ 4b+ 6c
6 – 5a+ 8b+ 8c –
7 8a+ 12b+ 14c – 8a+ 14b+ 12c
8 – 13a+ 21b+ 21c –

Theorem 2.1. For every natural number k ≥ 1, with the elements of the Fibonacci sequence
denoted {Fn},

α2k = β2k = F2k−1a+ F2kb+ F2kc, (2.7)

α4k−1 = F4k−2a+ (F4k−1 − 1)b+ (F4k−1 + 1)c, (2.8)

β4k−1 = F4k−2a+ (F4k−1 + 1)b+ (F4k−1 − 1)c, (2.9)

α4k+1 = F4ka+ (F4k+1 + 1)b+ (F4k+1 − 1)c, (2.10)

β4k+1 = F4ka+ (F4k+1 − 1)b+ (F4k+1 + 1)c. (2.11)

Proof. We proceed by mathematical induction. Obviously, for k = 1 the assertion is valid.
Let us assume that for some natural number k ≥ 1, (2.7)–(2.11) hold. For the natural number
k + 1, first, we check that

α4k+2 = β4k+2 (2.12)

= α4k +
α4k+1+β4k+1

2 (2.13)

= F4k−1a+ F4kb+ F4kc+
F4ka+(F4k+1+1)b+(F4k+1−1)c+F4ka+(F4k+1−1)b+F4k+1+1)c

2 (2.14)

= F4k−1a+ F4kb+ F4kc+ F4ka+ F4k+1b+ F4k+1c. (2.15)

Secondly, we check that

α4k+1 = α4k+2 + β4k+1 (2.16)

= F4k+1a+ F4k+2b+ F4k+2c+ F4ka+ (F4k+1 − 1)b+ (F4k+1 + 1)c (2.17)

= F4k+2a+ (F4k+3 − 1)b+ (F4k+3 + 1)c. (2.18)

All of the other equalities are checked analogously. �

For example, when c = −b, the Pulsated Fibonacci sequence has the form shown in Table
2, while when c = b we obtain Table 3.
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Table 2. Initial values for the (a; 2b;−2b)–Pulsated Fibonacci sequence.

n α2k+1 α2k = β2k β2k+1

0 – a –
1 2b – −2b
2 – a –
3 a− 2b – a+ 2b
4 – 2a –
5 3a+ 2b – 3a− 2b
6 – 5a –
7 8a− 2b – 8a+ 2b
8 – 13a –

Table 3. Initial values for the (a; 2b; 2b)–Pulsated Fibonacci sequence.

n α2k+1 α2k = β2k β2k+1

0 – a –
1 2b – 2b
2 – a+ 2b –
3 a+ 4b – a+ 4b
4 – 2a+ 6b –
5 3a+ 10b – 3a+ 10b
6 – 5a+ 16b –
7 8a+ 26b – 8a+ 26b
8 – 13a+ 42b –

Where the coefficients can be easily derived from the result of Theorem 1 by substitution.

3. Discussion

We note that the recursive definitions of α and β may be rewritten in the following form:

αk =

{
αk−2 +

αk−1+βk−1

2 k ≡ 0 (mod 2)

αk−1 + βk−2 k ≡ 1 (mod 2)
(3.1)

and

βk =

{
αk−2 +

αk−1+βk−1

2 k ≡ 0 (mod 2)

βk−1 + αk−2 k ≡ 1 (mod 2)
(3.2)

This interpretation permits the statement of this problem in terms of the successor operator
method introduced by DeTemple and Webb in [7]. Thus, we may define helper sequences

wn = α2n, (3.3)

xn = α2n+1, (3.4)

yn = β2n, (3.5)

zn = β2n+1. (3.6)
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This allows us to rewrite (3.1) and (3.2) as

wn = yn = wn−1 + 1
2xn−1 + 1

2zn−1, (3.7)

xn = wn + zn−1, (3.8)

zn = yn + xn−1. (3.9)

Which in terms of the successor operator E gives the following linear system of sequences:
E − 1 −1

2 0 −1
2

−E E 0 −1
−1 −1

2 E −1
2

0 −1 −E E



wn
xn
yn
zn

 =


0
0
0
0

 . (3.10)

Thus, the determinant of this system gives the characteristic polynomial of a recurrence
relation that annihilates all of the sequences. The determinant is equal to E(E3−2E2−2E+1)
and hence the sequences {wn}, {xn}, {yn} and {zn} all satisfy the third order homogeneous,
linear recurrence relation

tn = 2tn−1 + 2tn−2 − tn−3. (3.11)

This recurrence (3.11) has eigenvalues {−1, 3±
√
5

2 }, and, with initial values of unity yields
the ‘coupled’ sequence {1, 1, 1, 3, 7, 19, 49, 129, 337, . . .} [6]. This sequence appears in the OEIS
as A061646, with a variety of combinatorial interpretations [16]. Additionally, the polynomial
factors further as E(E+ 1)(E2−3E+ 1). From this factorization the sequence {wn} and {yn}
(the even α and β terms) satisfy the second order relation

tn = 3tn−1 − tn−2, (3.12)

which is also satisfied by alternate terms of the Fibonacci sequence (A001519 and A001906
[16]).

Finally, putting the sequences back together we would expect to need a sixth order recur-
rence. Instead, we find that both of the original αn and βn sequences satisfy the fourth order
recurrence

tn = tn−1 + tn−3 + tn−4. (3.13)

This recurrence (3.13) has roots {±i, 1±
√
5

2 } and with unit initial values yields the sequence
{1, 1, 1, 1, 3, 5, 7, 11, 19, 31, 49, 79, 129, . . .}, contained in the OEIS as A126116 [16], of which
the couple sequence above is a subsequence. The connections among all these sequence are

not surprising since, as is well known, i2 = −1 and
(
1+
√
5

2

)2
= 3+

√
5

2 , and so on.

4. Concluding Comments

In summary then, we have that the given recursive sequences satisfy the following recur-
rences:

Sequence Recurrence Relation
αn and βn tn = tn−1 + tn−3 + tn−4
wn = α2n = β2n = yn tn = 3tn−1 − tn−2
xn = α2n+1 and zn = β2n+1 tn = 2tn−1 + 2tn−2 − tn−3

The two sequences discussed in [2, 3] we called 2–Pulsated Fibonacci sequences (from
(a;b) and (a;b;c)–types). In [4] they were extended to what were called s–Pulsated Fi-
bonacci sequences, where s ≥ 3. In future research, it is planned to extend the present
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2–Pulsated Fibonacci sequences from (a; 2b; 2c)–type, to s–Pulsated Fibonacci sequences from
(a; 2b1; . . . , 2bs)–type. Other related possibilities for research concern

• conjectures on the number of distinct prime divisors of these sequences [13, 22],
• connections with geometry [6, 8, 12].
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