PULSATED FIBONACCI RECURRENCES

KRASSIMIR T. ATANASSOV, DARYL R. DEFORD, AND ANTHONY G. SHANNON

Abstract

In this note we define a new type of pulsated Fibonacci sequence. Properties are developed with a successor operator. Some examples are given.

1. Introduction

The motivation for this work goes back to some research of Hall [9], Neumann [14], and Stein [19] on finite models of identities. In order to answer the question of whether every member of a variety is a quasi-group given that every finite member is, Stein [18] found it necessary to examine the intersection of Fibonacci sequences.

Subba Rao [20, 21], Horadam [10], and Shannon [17] investigated the intersection of Fibonacci and Lucas sequences and their generalizations with asymptotic proofs, while Péter Kiss adopted a different approach and supplied many relevant historical references [11]. Atanassov developed coupled recursive sequence which had some obvious intersections [1, 5]. Not considered her are various sequences, such as diatomic sequences, which by their very definitions intersect with many other sequences [14].

In this paper, following previous research (see [2, 3, 4]), a new type of pulsated Fibonacci sequence is developed: 'pulsated' because, in a sense, these sequences expand and contract with regular movements.

2. Definitions

Let a, b, and c be three fixed real numbers. Let us construct the following two recurrent sequences, $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ with initial conditions:

$$
\begin{align*}
& \alpha_{0}=\beta_{0}=a, \tag{2.1}\\
& \alpha_{1}=2 b, \tag{2.2}\\
& \beta_{1}=2 c, \tag{2.3}
\end{align*}
$$

satisfying the combined recurrence relations:

$$
\begin{align*}
\alpha_{2 k}=\beta_{2 k} & =\alpha_{2 k-2}+\frac{\alpha_{2 k-1}+\beta_{2 k-1}}{2}, \tag{2.4}\\
\alpha_{2 k+1} & =\alpha_{2 k}+\beta_{2 k-1} \tag{2.5}\\
\beta_{2 k+1} & =\beta_{2 k}+\alpha_{2 k-1} \tag{2.6}
\end{align*}
$$

for every natural number $k \geq 1$. This pair of sequences we call a $(a ; 2 b ; 2 c)$-Pulsated Fibonacci sequence. The first values of the sequence are given in the following table:

Key words and phrases. Fibonacci Sequence, Systems of Recurrences, Successor Operator. thanks.

Table 1. Initial values for the $(a ; 2 b ; 2 c)$-Pulsated Fibonacci sequence.

n	$\alpha_{2 k+1}$	$\alpha_{2 k}=\beta_{2 k}$	$\beta_{2 k+1}$
0	-	a	-
1	$2 b$	-	$2 c$
2	-	$a+b+c$	-
3	$a+b+3 c$	-	$a+3 b+c$
4	-	$2 a+3 b+3 c$	-
5	$3 a+6 b+4 c$	-	$3 a+4 b+6 c$
6	-	$5 a+8 b+8 c$	-
7	$8 a+12 b+14 c$	-	$8 a+14 b+12 c$
8	-	$13 a+21 b+21 c$	-

Theorem 2.1. For every natural number $k \geq 1$, with the elements of the Fibonacci sequence denoted $\left\{F_{n}\right\}$,

$$
\begin{gather*}
\alpha_{2 k}=\beta_{2 k}=F_{2 k-1} a+F_{2 k} b+F_{2 k} c, \tag{2.7}\\
\alpha_{4 k-1}=F_{4 k-2} a+\left(F_{4 k-1}-1\right) b+\left(F_{4 k-1}+1\right) c, \tag{2.8}\\
\beta_{4 k-1}=F_{4 k-2} a+\left(F_{4 k-1}+1\right) b+\left(F_{4 k-1}-1\right) c, \tag{2.9}\\
\alpha_{4 k+1}=F_{4 k} a+\left(F_{4 k+1}+1\right) b+\left(F_{4 k+1}-1\right) c, \tag{2.10}\\
\beta_{4 k+1}=F_{4 k} a+\left(F_{4 k+1}-1\right) b+\left(F_{4 k+1}+1\right) c . \tag{2.11}
\end{gather*}
$$

Proof. We proceed by mathematical induction. Obviously, for $k=1$ the assertion is valid. Let us assume that for some natural number $k \geq 1$, (2.7)-(2.11) hold. For the natural number $k+1$, first, we check that

$$
\begin{array}{rcc}
\alpha_{4 k+2} & = & \beta_{4 k+2} \\
& = & \alpha_{4 k}+\frac{\alpha_{4 k+1}+\beta_{4 k+1}}{2} \\
& = & \left.F_{4 k-1} a+F_{4 k} b+F_{4 k} c+\frac{\left.F_{4 k} a+\left(F_{4 k+1}+1\right) b+\left(F_{4 k+1}-1\right) c+F_{4 k} a+\left(F_{4 k+1}-1\right) b+F_{4 k+1}+1\right)}{2} 2.14\right) \\
& = & F_{4 k-1} a+F_{4 k} b+F_{4 k} c+F_{4 k} a+F_{4 k+1} b+F_{4 k+1} c .
\end{array}
$$

Secondly, we check that

$$
\begin{array}{rcc}
\alpha_{4 k+1} & = & \alpha_{4 k+2}+\beta_{4 k+1} \\
& = & F_{4 k+1} a+F_{4 k+2} b+F_{4 k+2} c+F_{4 k} a+\left(F_{4 k+1}-1\right) b+\left(F_{4 k+1}+1\right) c \\
& = & F_{4 k+2} a+\left(F_{4 k+3}-1\right) b+\left(F_{4 k+3}+1\right) c . \tag{2.18}
\end{array}
$$

All of the other equalities are checked analogously.
For example, when $c=-b$, the Pulsated Fibonacci sequence has the form shown in Table 2, while when $c=b$ we obtain Table 3.

Table 2. Initial values for the $(a ; 2 b ;-2 b)$-Pulsated Fibonacci sequence.

n	$\alpha_{2 k+1}$	$\alpha_{2 k}=\beta_{2 k}$	$\beta_{2 k+1}$
0	-	a	-
1	$2 b$	-	$-2 b$
2	-	a	-
3	$a-2 b$	-	$a+2 b$
4	-	$2 a$	-
5	$3 a+2 b$	-	$3 a-2 b$
6	-	$5 a$	-
7	$8 a-2 b$	-	$8 a+2 b$
8	-	$13 a$	-

Table 3. Initial values for the $(a ; 2 b ; 2 b)-$ Pulsated Fibonacci sequence.

n	$\alpha_{2 k+1}$	$\alpha_{2 k}=\beta_{2 k}$	$\beta_{2 k+1}$
0	-	a	-
1	$2 b$	-	$2 b$
2	-	$a+2 b$	-
3	$a+4 b$	-	$a+4 b$
4	-	$2 a+6 b$	-
5	$3 a+10 b$	-	$3 a+10 b$
6	-	$5 a+16 b$	-
7	$8 a+26 b$	-	$8 a+26 b$
8	-	$13 a+42 b$	-

Where the coefficients can be easily derived from the result of Theorem 1 by substitution.

3. Discussion

We note that the recursive definitions of α and β may be rewritten in the following form:

$$
\alpha_{k}=\left\{\begin{array}{lll}
\alpha_{k-2}+\frac{\alpha_{k-1}+\beta_{k-1}}{2} & k \equiv 0 & (\bmod 2) \tag{3.1}\\
\alpha_{k-1}+\beta_{k-2} & k \equiv 1 & (\bmod 2)
\end{array}\right.
$$

and

$$
\beta_{k}=\left\{\begin{array}{lll}
\alpha_{k-2}+\frac{\alpha_{k-1}+\beta_{k-1}}{2} & k \equiv 0 & (\bmod 2) \tag{3.2}\\
\beta_{k-1}+\alpha_{k-2} & k \equiv 1 & (\bmod 2)
\end{array}\right.
$$

This interpretation permits the statement of this problem in terms of the successor operator method introduced by DeTemple and Webb in [7]. Thus, we may define helper sequences

$$
\begin{align*}
w_{n} & =\alpha_{2 n}, \tag{3.3}\\
x_{n} & =\alpha_{2 n+1}, \tag{3.4}\\
y_{n} & =\beta_{2 n}, \tag{3.5}\\
z_{n} & =\beta_{2 n+1} . \tag{3.6}
\end{align*}
$$

This allows us to rewrite (3.1) and (3.2) as

$$
\begin{array}{rc}
w_{n}=y_{n}= & w_{n-1}+\frac{1}{2} x_{n-1}+\frac{1}{2} z_{n-1} \\
x_{n}= & w_{n}+z_{n-1} \\
z_{n}= & y_{n}+x_{n-1} \tag{3.9}
\end{array}
$$

Which in terms of the successor operator E gives the following linear system of sequences:

$$
\left[\begin{array}{cccc}
E-1 & -\frac{1}{2} & 0 & -\frac{1}{2} \tag{3.10}\\
-E & E & 0 & -1 \\
-1 & -\frac{1}{2} & E & -\frac{1}{2} \\
0 & -1 & -E & E
\end{array}\right]\left[\begin{array}{l}
w_{n} \\
x_{n} \\
y_{n} \\
z_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Thus, the determinant of this system gives the characteristic polynomial of a recurrence relation that annihilates all of the sequences. The determinant is equal to $E\left(E^{3}-2 E^{2}-2 E+1\right)$ and hence the sequences $\left\{w_{n}\right\},\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ all satisfy the third order homogeneous, linear recurrence relation

$$
\begin{equation*}
t_{n}=2 t_{n-1}+2 t_{n-2}-t_{n-3} \tag{3.11}
\end{equation*}
$$

This recurrence (3.11) has eigenvalues $\left\{-1, \frac{3 \pm \sqrt{5}}{2}\right\}$, and, with initial values of unity yields the 'coupled' sequence $\{1,1,1,3,7,19,49,129,337, \ldots\}[6]$. This sequence appears in the OEIS as A061646, with a variety of combinatorial interpretations [16]. Additionally, the polynomial factors further as $E(E+1)\left(E^{2}-3 E+1\right)$. From this factorization the sequence $\left\{w_{n}\right\}$ and $\left\{y_{n}\right\}$ (the even α and β terms) satisfy the second order relation

$$
\begin{equation*}
t_{n}=3 t_{n-1}-t_{n-2} \tag{3.12}
\end{equation*}
$$

which is also satisfied by alternate terms of the Fibonacci sequence (A001519 and A001906 [16]).

Finally, putting the sequences back together we would expect to need a sixth order recurrence. Instead, we find that both of the original α_{n} and β_{n} sequences satisfy the fourth order recurrence

$$
\begin{equation*}
t_{n}=t_{n-1}+t_{n-3}+t_{n-4} \tag{3.13}
\end{equation*}
$$

This recurrence (3.13) has roots $\left\{ \pm i, \frac{1 \pm \sqrt{5}}{2}\right\}$ and with unit initial values yields the sequence $\{1,1,1,1,3,5,7,11,19,31,49,79,129, \ldots\}$, contained in the OEIS as A126116 [16], of which the couple sequence above is a subsequence. The connections among all these sequence are not surprising since, as is well known, $i^{2}=-1$ and $\left(\frac{1+\sqrt{5}}{2}\right)^{2}=\frac{3+\sqrt{5}}{2}$, and so on.

4. Concluding Comments

In summary then, we have that the given recursive sequences satisfy the following recurrences:

Sequence	Recurrence Relation
α_{n} and β_{n}	$t_{n}=t_{n-1}+t_{n-3}+t_{n-4}$
$w_{n}=\alpha_{2 n}=\beta_{2 n}=y_{n}$	$t_{n}=3 t_{n-1}-t_{n-2}$
$x_{n}=\alpha_{2 n+1}$ and $z_{n}=\beta_{2 n+1}$	$t_{n}=2 t_{n-1}+2 t_{n-2}-t_{n-3}$

The two sequences discussed in $[2,3]$ we called 2 -Pulsated Fibonacci sequences (from (a;b) and (a;b;c)-types). In [4] they were extended to what were called s-Pulsated Fibonacci sequences, where $s \geq 3$. In future research, it is planned to extend the present

2-Pulsated Fibonacci sequences from ($a ; 2 b ; 2 c$)-type, to s-Pulsated Fibonacci sequences from ($a ; 2 b_{1} ; \ldots, 2 b_{s}$)-type. Other related possibilities for research concern

- conjectures on the number of distinct prime divisors of these sequences [13, 22],
- connections with geometry $[6,8,12]$.

Acknowledgments

An earlier draft of this paper was presented at the Sixteenth International Conference on Fibonacci Numbers and their Application at Rochester Institute of Technology, July 20-26, 2014, and gratitude is expressed to a number of participants who subsequently suggested relevant references for this work.

References

[1] K. T. Atanassov, On a Second New Generaliztion of the Fibonacci Sequence, The Fibonacci Quarterly, 24(4), (1986), 362-265.
[2] K. T. Atanassov, Pulsating Fibonacci Seqences, Notes on Number Theory and Discrete Mathematics, 19(3) (2013), 12-14.
[3] K. T. Atanassov, Pulsating Fibonacci Seqences, Notes on Number Theory and Discrete Mathematics, 19(4) (2013), 33-36.
[4] K. T. Atanassov, n-pulsated Fibonacci Sequences. Part 2., Notes on Number Theory and Discrete Mathematics, 20(1), (2013), 32-35.
[5] K. T. Atanassov, L. Atanassova, D. Sasselov, Recurrent Formulas of the Generalized Fibonacci and Tribonacci Sequences, The Fibonacci Quarterly, 23(1), (1985), 21-28.
[6] K. T. Atanassov, V. Atanassova, A. Shannon, J. Turner, New Visual Perspectives on Fibonacci Numbers, World Scientific, New Jersey (2002).
[7] D. DeTemple, W. Webb, Combinatorial Reasoning: An Introduction to the Art of Counting, Wiley, New Jersey (2014).
[8] P. Frankl, R. M. Wilson, Intersection Theory with Geometric Consequences, Combinatorica, 1(4), (1981), 357-368.
[9] M. Hall, Jr., The Theory of Groups, MacMillan, New York, (1959).
[10] A. F. Horadam, Generalization of Two Theorems of K. Subba Rao, Bulleting of the Calcutta Mathematical Society, 58(1), (1966), 23-29.
[11] P. Kiss, On Common Terms of Linear Recurrences, Acta Mathematica Academiae Scientiarum Hungarica, 40(1-2), (1982), 119-123.
[12] H. V. Krishna, A Note on Number Quartets, Mathematics Student, 40(1), (1973), 1.
[13] R. R. Laxton, On a Problem of M. Ward, The Fibonacci Quarterly, 12(1), (1974), 41-44.
[14] H. Neumann, Varieties of Groups. (Ergebnisse der Mathematik und ihrer Grenzgebiete, (Bd. 37)., Springer, Berlin, (1967).
[15] S. Northshield, Two Analogues of Stern's Diatomic Sequence, Sixteenth Internation Conference on Fibonacci Numbers and their Applications, RIT, New York 2014.
[16] OEIS Foundation Inc. (2014), The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[17] A. G. Shannon, Intersections of Second Order Linear Recursive Sequences, The Fibonacci Quarterly, 21(1) (1983), 6-12.
[18] S. K. Stein, The Intersection of FIbonacci Sequences, Michigan Mathematical Journal, 9, (1962), 399-402.
[19] S. K. Stein, Finite Models of Identities, Proceedings of the American Mathematical Society, 14, (1963), 216-222.
[20] K. S. Rao, Some Properties of the Fibonacci Numbers $-I$, Bulletin of the Calcutta Mathematical Society, 46, (1954), 253-257.
[21] K. S. Rao, Some Properties of the Fibonacci Numbers -II, Mathematics Student, 27, (1959), 19-23.
[22] M. Ward, The Laws of Apparition and Repetition of Primes in a Cubic Recurrence, Transactions of the American Mathematical Society, 79 (1955), 72-90.

MSC2010: 11B39
Department of Bioinformatics and Mathematical Modeling, Institute of Biophysics and Biomedical Sciences, Bulgarian Academy of Sciences, Sofia-1113, Bulgaria,

E-mail address: krat@bas.bg
Department of Mathematics, Dartmouth College, Hanover, NH 03755,
E-mail address: ddeford@math.dartmouth.edu
Faculty of Engineering and Information Technology, University of Tcchnology, Sydney NSW 2007, Australia

E-mail address: t.shannon@warrane.unsw.edu.au Anthony.Shannon@uts.edu.au

