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INTRODUCTION

Since the early years of the digital computer era, there
has been a continuing attempt to gain processing power
by organizing hardware processors so as to achieve some
form of parallel operation.* One important thread has
been the use of an array of processors to allow a single
control stream to operate simultaneously on a multiplic-
ity of data streams; the most ambitious effort in this
direction has been the ILLIAC IV project.”* Ancther
important thread has been the partitioning of problems so
that several control streams can operate in parallel. Often
functions have been unloaded from a central processor
onto various specialized processors; examples include
data channels, display processors, front-end communica-
tion processors, on-line data preprocessors—in fact, I;0
processors of all sorts. Similarly, dual processor systems
have been used to provide load sharing and increased
reliability. Still another thread has been the construction
of pipeline systems in which sub-pieces of a single
(generally large) processor work in parallel on successive
phases of a problem.* In some of these pipeline
approaches the parallelism is “hidden” and the user con-
siders only a single control stream.

In recent years, as minicomputers have proliferated,
groups of identical small machines have been connected
together and jobs partiticned quite grossly among them.
Most recently, our group and several others have been
investigating this avenue further, attempting to reduce
the specialization of the processors in order to employ
independent processors with independent control streams
in a cooperative and “‘equal’ fashion.5"*

This paper describes a new minicomputer/multipro-
cessor architecture for which a fourteen-processor proto-
type is now (February 1973) being constructed. The
hardware design and the software organization include
many novel features, and the system may offer significant
advantages in modularity and cost/performance. The
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system contains an expandable number of identical proc-
essors, each with some “private” memory; an expandable
amount of “shared” memory to which all processors have
equal access; and an expandable amount of I/0 interface
equipment, controllable by any processor. The system
achieves unusual modularity and reliability by making
all processors equivalent, so that any processor may per-
form any system task; thus systems can be easily config-
ured to meet the throughput requirements of a particular.
job. The scheme for interconnecting processors, memo-
ries, and I/0 is also modular, permitting interconnection
cost to vary smoothly with system size. There is no “exec-
utive” and each processor determines its own task alloca-
tion.

A key issue throughout most of the attempts at parallel
organization has been the difficulty of partitioning prob-
lems in such a way that the resulting computer pro-
gram(s) can really take advantage of the parallel organi-
zation. This issue is raised in its most serious form when
the parallel machine is expected to work well on a great
diversity of problems as, for example, in a time-sharing
system. Qur machine design has been developed under
the highly favorable circumstances that (1) the initial
application, and a prior software implementation in a
standard machine, was well understood; (2) the initial
application lent itself to fragmentation into parallel struc-
tures; and (3) the design would be deemed successful if it
handled only that one application in a meritorious fash-
ion. However, we now believe that the design is advanta-
geous for many other important applications as well and
that it may herald a broadly useful new way to achieve
increased performance and reliability.

The machine has been designed to serve initially as a
modular switching node for the ARPA Network® and, in
the following section, we briefly describe the ARPA
Network application and the requirements that the net-
work imposed upon the machine design. In subsequent
sections we discuss our choice of minicomputer, describe
our system design in some detail, discuss certain of the
more interesting characteristics of multiprocessor behav-
ior, and summarize our present status and plans for the
near future.
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ARPA NETWORK REQUIREMENTS

The ARPA Network, a nationwide interconnection of
computers and high bandwidth (50 Kb) communication
circuits, has grown during the past four years to include
over 35 sites, with more than one computer at many sites.
The computers at each site, called Hosts, obtain access to
the net via a small communications processor known as
an Interface Message Processor or IMP." In order to
permit groups without their own computer facility to
access this powerful set of computer resources, a version
of the IMP called a Terminal IMP allows, in addition,
attachment of up to 63 local or remote terminals of & wide
range of types.”?

As a considerable simplification, the job to be handled
by an IMP is that of a communications processor. Arriv-
ing messages must pass through an error control algo-
rithm, be inspected to some degree (e.g., for destination),
and generally be directed out onto some other line. Some
incoming messages (e.g., Touting control messages) must
be constructed or digested directly by the IMP. The IMP
must also concern itself with flow control, message assem-
bly and sequencing, performance and flow menitoring,
Host status, line and interface testing, and many other
housekeeping functions. To perform these functions an
IMP requires memory both for program and for message
buffers, processing power for executing the program, and
I/0 units of various sorts for connecting to a variety of
lines and devices. The original IMP, built around a
Honeywell 516 processor with a 1 us cycle time, could
handle approximately three-quarters of a megabit per
second of full duplex communications traffic. A later,
smaller and cheaper (Honeywell 316) version handles
about two-thirds as much traffic.

As the network has grown and as usage has increased, a
number of demands for improvement have led to the need
for a new ‘line” of IMP machines. Qur intent is to pro-
vide a modular arrangement of fiexible hardware from
which it will be possible to construct both smaller and less
expensive IMPs as well as far more powerful IMPs. An
important specific objective is to obtain an IMP whose
communications bandwidth could be at least an order of
magnitude greater than the 516 IMP; such a high speed
IMP would permit the direct connection of satellite cir-
cuits or land T-carrier circuits operating at approxi-
mately 1.3 megabits/second. :

It is also desirable to improve the present IMP design
in a number of other areas, as follows.

® Expandability of I/0: The present IMPs permit
connection to a total of only seven high-speed circuits
and/or Host computers. We would like to permit a
much greater fanout so that an IMP might be con-
nected to as many as 20 or more Host computers or
to hundreds of terminals. This means that the num-
ber of interface units should be expandable over a
wide range.

® Modularity: A number of groups have wished to
make a network connection from a single Host at a

considerable distance (miles) from the nearest IMP.
We feel that such Hosts should be locally connected
to a very small IMP in order to preserve consistency
and standardization throughout the network. There-
fore, a goal of this new hardware effort is the provi-
sion of a small and inexpensive but compatible IMP
which could serve to connect a single, distant spur
Host.

® Expandability of Memory: The new line of equip-
ment is required for use in connection with satellite
links (or longer faster links in general) and must
therefore be able to expand its memory easily to
provide the much greater buffer storage require-
ments of such links.

® Reliability: The new line of processors should be
more reliable than the existing IMPs and ought to
permit hetter self-diagnosis and simple isolation and
replacement of failing units.

Of the requirements posed by the ARPA Network
application, the most central was to obtain an order-of-
magnitude traffic bandwidth improvement. We first con-
sidered meeting this requirement with highly specialized
hardware, but the need to allow evolution of the commu-
nications algorithms, as well as the “bookkeeping”’ nature
of much of the IMP task, militate against hardwired
approaches and require the flexibility of a stored program
computer. Thus we need a machine with an effective
cycle time of 100 nanocseconds, a factor of ten faster than
the present 1 us IMP. Realizing that a single very fast
and powerful machine would be difficult to build and
would not give us compatible machines with a wide spec-
trum of performance, we began to consider the possibility
of a minicomputer/ multiprocessor in order to achieve the
flexibility, reliability, and effective bandwidth required.

With the idea of a multiprocessor in mind we consid-
ered the TMP algorithm to determine which parts were
inherently serial in nature and which could proceed in
parallel. It seemed difficult te process a single message in
a parallel fashion: the job was already relatively short
and intimately coupled to I/0 interfaces. However, there
was much less serial coupling between the processing of
separate messages from the same phone line and no cou-
pling at all between messages from different phone lines.
We thus envisage many processors, each at work on a
separate message, with the number of processors carefully
matched to the number of messages we expect to encoun-
ter in the time it takes one processor to deal with one
message. With this simple image there seems to be no
inherent limit to the parallelism we can achieve—the
ultimate limit would be set by the size of the multiproces-
sor we can build.

CHOICE OF THE PROCESSOR

In designing a multiprocessor for the IMP application,
we found ourselves iteratively exploring two related but
distinct issues. First, assuming that the problem of inter-

_connection could be solved, what minicomputer would be
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a sensible choice from the price/performance and physi-
cal points of view? Second, and much harder: for any
specific machine, how did the CPU talk to memory, how
would multiple CPUs, memories, and 1/0 be intercon-
nected to form a system, and how would the program be
organized?

Since the program for the existing IMPs was well
understood, it was possible to identify key sections of that
program which consumed the majority of the processing
bandwidth. Then, for each sensible minicomputer choice,
we could ask how many CPUs of this type would be
needed to provide an effective 100 nanosecond cycle time;
and given a price list, physical data, and a meodest
amount of design effort, we could define the physical
structure and the price of the resulting multiprocessor.
With this general approach, we examined the internal
design of about a dozen machines, and actually wrote the
key code in many cases. Using the fastest available mini-
computers it was possible to artive at configurations with
only three or four processors; using the slowest choices,
systems with 20 CPUs or more were required.

If we defer the interconnection and contention proh-
lems for a moment, it is interesting to note that “slow and
cheap” may win over “fast and expensive” in this kind of
multiprocessor competition to achieve a stated processing
bandwidth. This is an especially happy situation if, as in
our case, a spectrum of configurations is needed, includ-
ing a very tiny cheap version.

In considering which minicomputer might be most eas-
ily adaptable to a multiprocessor structure, the internal
communication between the processor and its memory
was of primary concern. Several years ago machines were
introduced which combined memeory and I/0 busses into
a single bus. As part of this step, registers within the
devices (pointers, status and control registers, and the
like) were made to look like memory cells so that they
and the memory could be referenced in a homogeneous
manner. This structure forms a very clean and attractive
architecture in which any unit can bid to become master
of the bus in order to communicate with any other desired
unit. One of the important features of this structure is
that it made memory accessing ‘‘public”; the interface to
the memory had to become asynchronous, cleanly isolable
electrically and mechanically, and well documented and
stable. A characteristic of this architecture is that all ref-
erences between units are time multiplexed onto a single
bus. Conflicts for bus usage therefore establish an ulti-
mate upper bound on overall performance, and attempts
to speed up the bus eventually run into serious problems
in arbitration.®

In 1972 a nmew processor—the Lockheed SUE"—was
introduced which follows the single bus philosophy but
carries it an important stép further by removing the bus
arbitration logic to a module separate from the processor.
This step permits one to consider configurations embody-
ing multiple processors and multiple memeries as well as
I;0 on a single bus. The SUE CPU is a compact, rela-
tively inexpensive (approximately $600 in quantity),
quite slow processor with a microcoded inner structure.

This slowness can be compensated for by simply doubling
or trebling the number of processors on the bus; perform-
ance is limited largely by the speed of the bus. With this
bus architecture it becomes attractive to visualize multi-
bus systems with a “bus coupling” mechanism to allow
devices on one bus to access devices on other busses.
Similar approaches can be implemented with varying
degrees of difficulty in systems with other bus structures,
and we examined several approaches in some detail for
those processors whose cost/performance was attractive.

" Rather fortuitously, the minicomputer which exhibited

the most attractive bus architecture also was extremely
attractive in terms of cost/performance and physical
characteristics. This machine, the Lockheed SUE, would
require fourteen processors to achieve the effective 100
nanosecond cycle time, and we embarked on the detailed
design of our multiprocessor on that basis.

SYSTEM DESIGN

Although our design permits systems of widely varying .
size and performance, in the interest of clarity we will
describe that design in terms of the particular prototype
now under construction. Qur overall design is represented
in Figure 1. We require fourteen SUE processors to obtain
the necessary processing bandwidth, and we estimate that
39K words of memory will be required for a complete
copy of the operational program and the necessary
communication buffer sterage. The I/0 arrangements
must allow easy connection of all the communications
interfaces, appropriate to the IMP job {(modem inter-
faces, Host interfaces, terminal interfaces) as well as
standard peripherals and any special devices appropri-
ate to the multiprocessor nature of the system.

Some of the basic SUE characteristics are listed in
Table 1. From a physical point of view, the SUE chassis
represents the basic construction unit; it incorporates a
printed circuit back plane which forms the bus into which
24 cards may be plugged. From a logical point of view this
bus simply provides a common connection between all

PROCESSORS
AND PRIVATE
MEMORY

SHARED

\ MEMORY

MODULAR SWITCH

Figure 1—System structure
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TABLE I—8UE Characteristics

16-hit word

8 General Registers

A3.7 us add or load time

Microcoded

Twao words/instruction typical

B-14" %19 % 18" chassis

64K bytes addressable by a single instruction
~§3K for: 1 CPTU+4K Memory+Power, Rack, ete.
200 ns minimum bus cycle time

850 ns memory cycle time

425 ns memory access time

units plugged into the chassis. We are using these chassis
for the entire system: processor, memary, and I;0. All
specially designed cards as well as all Lockheed-provided
modules plug into these bus chassis, With this hardware,
the terms “bus” and “chassis” are used somewhat inter-
changeably, but we will commonly call this standard
building unit a “bus.” Each bus requires one card which
performs arbitration. A bus can be logically extended (via
a bus extender unit) te a second bus if additional card
space is required; in such a case, a single bus arbiter
controls access to the entire extended bus.

We can build a small multiprocessor just by plugging
several processors and memories (and I/0) into a single
bus. Fer larger systems we quickly exceed the bandwidth
capability of a single bus and we are forced to multi-bus
architecture. Then, from a construction viewpoint, our
multiprocessor design involves assigning processors,
memories and I;0 units to busses in a sensible manner
and designing a switching arrangement to permit inter-
connection of all the busses. Of course, the superficial
simplicity of this construction viewpoint completely hides
the many difficult problems of multiprocessor system
design; we will try to deal with some of those issues in the
following sections.

Resources

A central notion in a parallel system is the idea of a
“resource,” which we define to mean a part of the system
needed by more than one of the parallel users and there-
fore a possible source of contention. The three basic
hardware resources are the memories, the I1/0, and the
processors. It is useful to consider the memories, further-
more, as a collection of resources of quite different char-
acter: a program, queues and variables of a globhal nature,
local variables, and large areas of buffer storage.

The basic idea of a multiprocessor is to provide multi-
ple copies of the vital resources in the hepe that the algo-
rithm can run faster by using them in parallel. The
number of copies of the resource which are required to
allow coneurrent operation is determined by the speed of
the resource and the frequency with which it is used. An
additional advantage of multiple copies is reliability: if a
system contains a few spare copies of all resources, it can
continue to operate when one copy breaks.

It may seem peculiar to think of a processor as a
resource, but in fact in our system the parallel parts of
the algorithim compete with each other for a processor on
which to run. We take the view that all processors shall be
identical and equal, and we go to some trouble to insure
that this is in fact so. As a consequence no single proces-
sor is of vital importance, and we can change the number
of processors at will. A later section will describe how the
processors coordinate to get the job done without a master
of some gort.

Processor busses

A SUE bus can physically and logically support up to
four processors. As more processors are added to a hus,
the contention for the bus increases, and the performance
increment per processor drops; but the effective cost per
processor also drops, since the cost for the chassis, power
supply, bus arbitration, etc., is amortized over the num-
ber of processors.

Roughly speaking, using two processors per bus loses
almost nothing in processor performance, using three
processors per bus loses significant efficiency, and adding
a fourth processor gains less than half an “effective proc-
essor.”” After careful examination of the logical, economic
and physical aspects of this choice, we decided to use two
processors per processor bus, and we thus require seven
processor busses in our initial multiprocessor system.

The next question was how the processors should access
the program. In our application, some parts of the pro-
gram are run very frequently and other parts are run far
less frequently. This fact allows a significant advantage to
be gained by the use of private memory, When a proces-
sor makes access to shared memory via the switching
arrangement, that access will incur delays due to conten-
tion and delays introduced by the intervening switch. We
therefore decided to use a 4K local memory with each
processor on its bus to allow faster local access to the
frequently run code; these local memories all typically
contain the same code. With this configuration and in our
application, the ratio of accesses to local versus shared
memory is better than three to one. This not only reduces
contention delays for access to the shared memory but
also cuts the number of accesses which suffer the delays.

The final configuration of a processor bus is shown in
Figuré 2(a). The units marked “Bus Coupler’” have to do
with our multiprocessor switching arrangement, which
will be discussed below.

Shared memory busses*

The shared memory of our multiprocessor is intended
to contain a copy of the program as well as considerable
storage space for message buffering, glohal variables, etc.
Application-dependent considerations led us to select a

*The terms “1/0 bus” and “"memory bus’ as used here and henceforth
are not the same as conventional I/ 0 and memory busses.
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Figure 2—Bus structures

39K memory, but it is possible to configure this mernory
on a single bus or to divide the memory onto several bus-
ses. We first concluded that four logical memory units
would be appropriate in order to reduce processor conten-
tion to an acceptable level. Then, since the bus is consid-
erably faster than the memories, it is feasible to place two
logical memory elements on a single bus with almost no
interference. Thus, we are planning two memary busses
in the imitial multiprocessor; the configuration of a
common memory bus is shown in Figure 2(b).

I;0 busses

The 1;0 system of the multiprocessor employs stand-
ard SUE busses with standard bus arbitration units on
these busses. Into the bus will be plugged cards for each
of the various types of 1/0 interfaces that are required,
including interfaces for modems, terminals, Hest comput-
ers, etc., as well as interfaces for standard peripherals.
Our initial system has a single 1/0 bus and Figure 2(c)
shows its configuration; the specialized units shown (a
“(Clock” and “Pseudo Interrupt Device”) are system-wide
resources that are used to control the operation of the
multiprocessor. The 1/ 0 bus will also be the access route
for the multiprocessor console; we plan to use a standard
alphanumeric display terminal which can be driven by
code in any processor, and ne conventional consoles will
be used.

(R

Interconnection system

Qur prototype multiprocessor iz nmow seen to contain
seven processor busses, two shared memory busses and an
1;0 bus. To adhere to our requirement that all processors
must be equal and able to perform any system task, these
busses must be connected so that all processors can access
all shared memory, so that I;0 can be fed to and from
chared memory, and so that any of the processors may
control the operation and sense the status of any 1/0 unit.

A distributed inter-communication scheme was chosen
in the interest of expandability, reliability, and design
simplicity. The atom of this scheme is called a Bus Cou-
pler, and consists of two cards and an interconmecting
cable. In making connections between processors and
shared memory, one card plugs into a shared memory
bus, where it will request cycles of the memory; the other
card plugs into a processor’s bus, where it looks like
memory. When the processor requests a cycle within the
address range which the Bus Coupler recognizes, a
request is sent down the cable to the memory end, which
then starts contending for the shared memory bus. When
selected, it requests the desired cycle of the shared
memory. The memory returns the desired information to
the Bus Coupler, which then provides it to the requesting
processor, which, except for an additional delay, does not
know that the memory was not on its own bus. Note that
the memory access arbitration inherent in any memory
switching arrangement is handled by the SUE Bus Arbi-
ter controlling the shared memory bus, while the Bus
Coupler itself is conceptually straightforward.

One additional feature of the Bus Coupler is that it
does address mapping. Since a processor can address only
64K bytes (16 bit address), and since we wished to permit
multiprocessor configurations with up to 1024K bytes (20
bit address) of shared memory, a mechanism for address
expansion is required. The Bus Coupler provides four
independent 8K byte windows inte shared memory. The
processor can load registers in the Bus Coupler which
provide the high-order bits of the shared memory address
for each of the four windows.

Given a Bus Coupler connecting each processor bus to
each shared-memory bus, all processors can access all
shared memory. 170 devices which do direct memory
transfers must also access these shared memories. These
I/0 devices are plugged into as many 1/0 busses as are
required to handle the bandwidth involved, and bus cou-
plers then connect each 170 bus to each memory bus.
Similarly, I/0 devices also need to respond to processor
requests for action or information; in this regard, the I/0
devices act like memories and Bus Couplers are again
used to connect each processor bus to each I/0 bus. The
path between processor busses and I;0Q busses is also
used in a more sophisticated fashion to allow processors
to examine and control other processors; this subject is
described in a later section.

The resulting system is shown in Figure 3. One is struck
by the number of bus couplers: P*I+I*M+P*M bus
couplers are required for a system with P processor bus-



534 National Computer Conference, 1973

F] = PSEUDO
. BUS ¢ | = COMMUNICATION
EXTENDER )| BEERRUPT INTERFACE
= BUS g = BUS COUPLER, ? = REAL TIME
ARBITER S| PROCESSOREND |2 CLOCK

PROCESSOR BUSSES(7)

power |B]C 1C | 4Kk | 4K
SUPPLY |A MEM] MEM

=V
v

—HoOw
— 0 O
— o0m
C‘U

PowER {BIC [C | 4K | 4K
SUPPLY |A U |MEM|MEM

@

b
noOw
— 0o
— oo

POWER [B|C [C | 4K | 4K

€ |= CENTRAL
PROCESSOR

BUS COUPLER,

MEMORY END MEM} = MEMORY

Eoo]

POWER

BlB
SUPPLY

BK | 8K
Clcl,,
pi MEM|MEM
3

> W
W=om

N eYri]
[

3]
=om

MM

oOm

SuPPLY (Al 'y} [MEM[MEM

e ZOm

|—— wom

—— TOm

rower B[S |C | 4K | ax [B
SUPPLY (4] "l T, [MEMIMEM]5

MEMORY

8]
— T Om
— T m

POWER 4K | 4K

BUSSES

=]
i

B
Ll

POWER
SUPPLY

BK | 8K
MEM|MEM

>
=

o34
Qm
=0

Z O
Z0m

»m
L 2]
[ g ]

SUPPLY

nam
(2]
priel-:l

P
ul "y |MEMIMEM

=

POWER |B[C CP 4K | a4k
suppLY 1Al | fy|MEMIMEM

TOm

|—- TOm

—lTow

POWER [B|C. |C 4K | 4K
suppLy [a Pl P IMEM(mEM|S

[gle1]
oD
naOm

L=

R 1

170 BUS g

M

BB
cic
M|V

8lg
C|

POWER B g
MM

C
SUPPLY M

B
CCC(;:

> m
mm

i 1/0 BUS

EXTENSION

POWER |B
SUPPLY (E

oaym
[g]"]

\x)
=

V&

Figure 3—Prototype system

ses, I I/0 busses, and M memory busses. In the case of
our initial multiprocessor, 23 are needed.

This modular interconnection approach clearly permits
great flexibility in the number and configuration of bus-
ses, and allows interconnection cost to vary smoothly with
systemn size. We believe that this modular interconnection
scheme also permits a complex hierarchical arrangement
of busses. Actually the system exhibits a pronocunced
hierarchical structure already. A processor accesses the
local memory when it needs instructions or local varia-
bles. Two such processer-memory combinations form a

dual processor, which can be regarded as a unit and
which needs access to shared resources, such as global
variables, free buffers, and I/0 interfaces. When one
copy of a resource can only support a limited number of
users, it seems sensible to provide only the corresponding
limited number of connections. If a multiprocessor of this
type were {o grow larger, the physical number of bus
couplers as well as increasing contention problems might
not permit the connection of each processor to all of
common memnory, but might instead require a multi-level
structure where groups of processors were connected to an
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intermediate level bus which was in turn connected to a
centralized commen memory. We have not explored this
. domain but feel it is an interesting area for future work.

MULTIPROCESSOR BEHAVIOR

Until the processors interact, a multiprocessor is a
number of independent single processor systems: it is the
interaction which poses the conceptual as well as the
practical problems. If the various processors spend their
time waiting for each other, the system degrades to a sin-
gle processor equivalent; if they can usefully run concur-
rently, the processing power is multiplied by the number
of processors. If the failure of a single processor takes the
system down, the system reliability is only the probability
of all processors being up; if working processors can diag-
nose and heal or amputate faulty processors and proceed

with the job, the system reliability approaches the proba-

bility of any processor being up. We now consider how to
keep processors running concurrently, and then how to
keep the system running in the case of module failure.

The first problem in making the machines run inde- -

pendently is the allocation of runnable tasks to proces-
sors, so that the full requisite power can be quickly
brought to bear on high priority tasks. Our scheme for
doing this rests on four key ideas: (1) We break the job up
into a set of tiny tasks. (2) Qur processors are all identi-
cal, asynchronous, and capable of doing any task. {3) We
keep a queue of pending tasks, ordered by priority, from
which each processor at its convenience gets its next task.
(4) For speed and efficiency, we use a hardware device to
help manage the queue.

By breaking the job up into smaller and smaller tasks
until each one runs in under 300 us, we effectively deter-
mine the responsiveness of our system. Once started, a
task must run to completion, but there will be a reconsi-
deration of priorities at the beginning of each new task.
We have chosen 300 microseconds as the maximum task
execution time because this compromise between effi-
ciency and responsiveness is well matched to the execu-
tion time of key IMP functions.

By making the processors identical, we can use the
' same program in systems of widely varying size and
throughput capability. Any processor can be added to or
removed frem a running system with only a slight change
in throughput. The power of all processors quickly shifts
to that part of the algorithm where it is most needed.

By queuing pending tasks, we keep track of what must
be done while focusing on the most important tasks. By

using a passive queue in which the processors check fora

new task when they are ready, we avoid some nasty tim-
ing problems. Tasks may be entered into the queue at any
time, either by a processor or by the hardware I/0
devices. This approach is an extremely important depar-
ture which avoids the use of conventional interrupts and
the associated costs of saving and restoring machine state.
Further, this approach neatly sidesteps the problem of
routing interrupts to the proper processor.

We could net afford a software queue both because it
was slow to use and because processors would have been
waiting for each other to get access to the queue. Instead
we use a special hardware device called a Pseudo Inter-
rupt Device (PID), which keeps in hardware a list of
what to do next. A number can be written to the PID at
any time and and it will be remembered. When read, the
PID returns (and deletes) the highest number it has
stored. By coding the numbers to represent tasks, and
keeping the parameters of the tasks in memory, a proces-
s0r can access the PID at the end of each task and deter-
mine very rapidly what it should do next.

Contention

Clearly, the PID must give any task to exactly one
processor. This is guaranteed because the PID is on a bus
that can be accessed by cnly one processor at a time and
because the PID completes each transaction in a single
access. This is an example of the more general problem
that whenever two users want access to a single resource
there must be an interlock to let them take turns. This is
true at many levels, from contention for a bus to proces-
sor contention for shared software resources such as a {ree
list. When all the appropriate interlocks have been pro-
vided, the performance of the multiprocessor will depend
rather critically on the time wasted waiting at these inter-
locks for a resource to become free. As discussed above,
whenever conflicts become a serious problem one pro-
vides another copy of the resource. We studied our system
behavior carefully, noting areas of conflict, in order to
knew how many additional copies of heavily accessed
resources to provide. Table II provides examples of
delays due to various conflicts. Practically speaking, the
curve of delay vs. number of resources has a rather sharp
knee, so that it is meaningful to make such statements as
“a memory bus supports eight processors” or “a free list
supports eight processors.” Of course, these statements
are application related and depend on the frequency and
duration of accesses required.

With interlocks, deadlocks become possible (in both
hardware and software). For example, a deadlock occurs

TABLE IT—Expected System Slowdown Due to Contention Delays

Slowdown Cause

5.5%  Contention for a Processor Bus,
3% Contention for the Shared Memory Busses.
5% Contention for the Shared Memotries.

109, Contention for a single system-wide software resource, gs-
suming each processor wants the resource for 6 instrue-
tions out of every 120 instructions executed.

1.7%  Contention for one of two copies of a system-wide software
. Tesource, a3 shove,

0.15% Contention for the parameters of a single 1.3 megabit
phone line, assuming the parameters will be used for 160
microseconds every 8300 microseconds.
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when each of two processors has claimed one of two
resources needed by both. Each waits indefinitely for
the other's resource to become available.!* Unless there
is a careful systematic approach to interlocks, deadlocks
interlock, and require that a processor never compete for
a tesource when it already owns a higher pumbered
resource. It is not always practical or possible to do this,
although we expect to be able to do so with the IMP algo-
rithms.

An interesting example of a deadlock occurs in our bus
coupling. T'o permit processors to access one ancther, for
mutual turn on, turn off, testing, etc., the path connecting
each processor bus with the I/0 bus is made bi-direc-
tional. Thus processors access one another via the 1/0
bus. In a bi-directional coupler, a deadlock arises when
units obtain control of their busses at each end and then
request access via the coupler to the bus on the other end.
Because the backward path is infrequently used, we
simply detect such deadlocks, abort the backward request
and try again.

Reliability

We have taken a rather ambitious stand on reliability.
We plan to detect a failing module automatically, ampu-
tate it, and keep the system running without human
intervention if at all possible. Critical to our approach is
the fact that there are several processors each with pri-
vate memory and thus each able to retreat to local opera-
tion in the face of system problems. To reduce our vulner-
ability further, power and cooling are provided on a
modular basis so that loss of a single unit does nat jeop-
ardize system operation. We are only mildly concerned
with the damage done at the time of a failure, because the
IMP system includes many checks and recovery proce-
dures throughout the network.

The first sign of a failure may be a single bit wrong
somewhere in shared memory, with all units apparently
functioning properly. Alternatively, the failure may strike
catastrophically, with shared memory in shambles and
the processors running protectively in their local memo-
ries. Against this spectrum we cannot hope for a system-
atic defense; instead we have chosen a few defensive
strategies.

So long as a module is failing, recovery is meaningless.
We must run diagnostics to identify the bad module, or
see if cutting a module out at random helps things. We
feel that identifying such a salid failure will be relatively
easy. Since a processor without couplers is completely
harmless, once we identify a malfunctioning processor, we
amputate it by turning off its bus couplers. We consid-
ered the possibility of a runaway processor turning good
processors off. This is unlikely to begin with but we
decided to make it even less likely by requiring a particua-
lar 16-bit password to be used in turning off a coupler. A
runaway processor storing throughout shared memory
would need this password in its accumulator to acciden-

tally amputate. Similarly we require a password for one
processor to get at another’s local memory.

Against intermittents we use a strategy of dynamic
reinitialization. Every data structure is periedically
checked; every waiting state is timed out; the code is
periodically checksummed; memory transfers are hard-

. ware parity checked; memory is periodically tested; proc-

essors are periodically given standard tests. Whenever
anything is found wrong, the offending structure is initial-
ized. Using this scheme we may not know what caused a
failure, but its effects will not persist. In the most
extreme cases we will need to reload all the program in
main memory. Fortunately we have a communications
network handy to load from. This technique of reloading
has worked remartkably well in the current ARPA Net-
work. Each processor has a copy of the reload program in
its local memory, thus making loss of reload capability
unlikely.

We might seem to be vulnerable to memory or 1/0 fail-
ures, particularly these involving the PID and the clock.
If these modules fail it does indeed hurt us more, but only
because we have fewer modules of these types in our sys-
tem. If we provide redundant modules, the system can
reconfigure itself to substitute a spare module for a failed
one. Our design allows multiple I/0 busses with multiple
PIDs and clocks, and we could even have separate
backup interfaces to vital communication lines on sepa-
rate busses.

To summarize, the mainstay of our reliability scheme is
a system continually aware of the state of things and
quickly responding to unpleasant changes. The second
line of defense consists of drastic actions like amputation
and reloading. Assuming we can make all this work, we
will have quite a reliable system, perhaps even one in
which maintenance consists of periodic replacement of
those parts which the system itself has rejected.

STATUS AND NEAR FUTURE

In February 1973, as this paper is submitted, we are
very much in the middle of cur multiprocessor develop-
ment. Much progress has been made and we are increas-
ingly confident of the design, but much werk remains to
be done.

The broad design is complete; all Lockheed-provided
units (CPUs, memories, busses, etc.) have been delivered;
prototype wire-wrapped versions of the crucial special
meodules have been completed, including the Bus Cou-
plers, Pseudo Interrupt Device, clock, and modem inter-
faces; and a multi-bus, multi-processor-per-bus assembly
has been successfully tried with a test program. A sub-
stantial program design effort has been in progress and
coding of the first operational program has been started.
We are still doing detailed design of some hardware, and
we are still learning about detailed organizational issues
as the software effort proceeds. An example of such an
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area is: exactly how is it best for processors to watch each
other for signs of failure?

We currently anticipate the parts cost of the prototype
fourteen-processor system, without communication inter-
faces, to be under $100K.

Hopefully, by the time this paper is presented in June
1973, we will be able to report an operational prototype
multiprocessor system. Beyond that, our schedule calls
for the installation of a machine in the ARPA Network by
about the end of 1973. We also plan to construct many
variant systems out of this kit of building blocks, and to
experiment with systems of varying sizes. As part of this
work, we plan to concentrate on the very smallest version
that may be sensible, in order to provide a minimum cost
IMP for spur applications in the ARPA Network.

As the design has proceeded, our attraction to the gen-
eral approach has increased (perhaps a common malady),
and we now believe that the approach is applicable to
many other classes of problems. We expect to explore
such other applications as time permits, with initial
attention to two areas: (1) certain specialized multi-user
systems, and (2) high bandwidth signal processing.

With our presently planned building blocks, although
we do not yet know what will limit system size, we de not
now see any intrinsic problem in constructing systems
with fifty or a hundred processors. As improvements in
integrated circuit technology occur, and processors and
memories become smaller and cheaper, organization and
connection become the paramount questions in multipro-
cessor design. We expect to see many attempts at multi-
processors, and are hopeful that the ideas embodied in
this design’ will help to steer that technology. Perhaps
minicomputer/ multiprocessors will soon represent real
competition for the various brontosaurus machines that
now abound.
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