
SUPERTECH SEMINAR

32 VASSAR STREET, CAMBRIDGE, MASSACHUSETTS 02139

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

CSAIL

Date: Tuesday, June 8 2004

Refreshments: 3:00 p.m.

Talk: 3:15 p.m.

Place: 32-D507

“On-the-Fly Maintenance of Series-Parallel
Relationships in Fork-Join Multithreaded

Programs”
by Jeremy Fineman

Abstract: A key capability of data-race detectors is to determine whether
one thread executes logically in parallel with another or whether the
threads must operate in series. This talk provides two algorithms, one
serial and one parallel, to maintain series-parallel (SP) relationships “on
the fly” for fork-join multithreaded programs. The serial SP-order algo-
rithm runs in O(1) amortized time per operation. In contrast, the previ-
ously best algorithm requires a time per operation that is proportional
to Tarjan’s functional inverse of Ackermann’s function. SP-order em-
ploys an order-maintenance data structure that allows us to implement a
more efficient “English-Hebrew” labeling scheme than was used in earlier
race detectors, which immediately yields an improved determinacy-race
detector. In particular, any fork-join program running in T1 time on a
single processor can be checked on the fly for determinacy races in O(T1)
time. Corresponding improved bounds can also be obtained for more
sophisticated data-race detectors, for example, those that use locks.

By combining SP-order with Feng and Leiserson’s serial SP-bags algo-
rithm, we obtain a parallel SP-maintenance algorithm, called SP-hybrid.
Suppose that a fork-join program has n threads, T1 work, and a critical-
path length of T∞. When executed on P processors, we prove that SP-
hybrid runs in O((T1/P + PT∞) lg n) expected time. To understand this
bound, consider that the original program obtains linear speed-up over
a 1-processor execution when P = O(T1/T∞). In contrast, SP-hybrid ob-
tains linear speed-up when P = O(

√

T1/T∞), but the work is increased by
a factor of O(lg n).

This research represents joint work with Michael A. Bender, Seth Gilbert, and
Charles E. Leiserson.

Host: Charles E. Leiserson


