29

Arithmetic Circuits

The model of computation provided by an ordinary computer assumes that
the basic arithmetic operations—addition, subtraction, multiplication, and
division—can be performed in constant time. This abstraction is reason-
able, since most basic operations on a random-access machine have simi-
lar costs. When it comes to designing the circuitry that implements these
operations, however, we soon discover that performance depends on the
magnitudes of the numbers being operated en. For example, we all learned
in grade school how to add two natural numbers, expressed as n-digit dec-
imal numbers, in ©(n) steps (although teachers usually do not emphasize
the number of steps required).

This chapter introduces circuits that perform arithmetic functions. With
serial processes, ©(n) is the best asymptotic time bound we can hope to
achieve for adding two n-digit numbers. With circuits that operate in par-
allel, however, we can do better. In this chapter, we shall design circuits
that can quickly perform addition and multiplication. (Subtraction is es-
sentially the same as addition, and division is deferred to Problem 29-1,)
We shall assume that all inputs are #-bit natural numbers, expressed in
binary.

We start in Section 29.1 by presenting combinational circuits. We shall
se¢ how the depth of a circuit corresponds to its “running time.” The
full adder, which is a building block of most of the circuits in this chap-
ter, serves as our first example of a combinational circuit. Section 29.2
presents two combinational circuits for addition: the ripple-carry adder,
which works in 6(n) time, and the carry-lookahead adder, which takes
only O(lgn) time. It also presents the carry-save adder, which can reduce
the problem of summing three numbers to the problem of summing two
numbers in ©(1) time. Section 29.3 introduces two combinational multi-
pliers: the array multiplier, which takes ©(n) time, and the Wallace-tree
multiplier, which requires only ©(Ig n) time. Finally, Section 29.4 presents
circuits with clocked storage elements (registers) and shows how hardware
can be saved by reusing combinational circuitry.

29.1 Combinational circuits 655

— e ———————— e —————— ——

99,1 Combinational circuits

D

Like the comparison networks of Chapter 28, combinational circuits op-
erate in parallel. many elements can compute values simultaneously as a
single step. In this section, we define combinational circuits and investi-
gate how larger combinattonal circuits can be built up from elementary
gates.

Combinational elements

Arithmetic circuits in real computers are built from combinational ele-
ments that are interconnected by wires. A combinational element is any
circuit element that has a constant number of inputs and outputs and that
performs a well-defined function. Some of the elements we shall deal with
in this chapter are boolean combinational elements—their mputs and out-
puts are all drawn from the set {0,1}, where O represents FALSE and 1
represents TRUE.

A boolean combinational element that computes 2 simple boolean func-
tion is called a fogic gate. Figure 29.1 shows the four basic logic gates that
will serve as combinational elements in this chapter: the NOT gate (or
inverter), the AND gate, the OR gate, and the XOR gate. {1t also shows two
other logic gates—the NAND gate and the NOR gate—that are required
by some of the exercises.) The NOT gate takes a single binary input x,
whose valué is either 0 or 1, and produces a binary output z whose value
is opposite that of the input value. Each of the other three gates takes two
binary inputs x and y and produces a single binary output Z.

The operation of each gate, and of any boolean combinational element,
can be described by a trath table, shown under each gate in Figure 29.1. A
truth table gives the outputs of the combinationat element for each possible
setting of the inputs. For example, the truth table for the XOR gate tells
us that when the inputs are x = 0 and y = 1, the output value is z = 1;
it computes the “exclusive OR” of its two inputs. We use the symbols ~
to denote the NOT function, A to denote the AND function, V to denote
the OR function, and & to denote the XOR function. Thus, for example,
0pi=1

Combinational elements in real circuits do not operate instantaneously.
Once the input values entering a combinational element sertle, or become
stable—that is, hold steady for a long enough time—the element’s output
value is guaranteed to become both stable and correct a fixed amount
of time later. We call this time differential the propagation delay of the
element. We assume in this chapter that all combinational elements have
constant propagation delay.

056

Chapter 29 Arithmetic Circuits

{a} (b (e

(d) (e) (f)

Figure 29.1 Six basic logic gates, with binary inputs and outputs. Under each gate
is the truth table that describes the gate's operation. (a) The NOT gate. (b) The
AND gate. (¢) The OR gate. (d) The XOR (exclusive-OR) gate. (e) The NAND
(NOT-AND) gate. (f) The NOR (NOT-OR) gate.

Combinational circuits

A combinational circuit consists of one or more combinational elements
interconnected in an acyclic fashion. The interconnections are called
wires. A wire can connect the output of one element to the input of an-
other, thereby providing the output value of the first element as an input
value of the second. Although a single wire may have no more than one
combinational-element output connected to it, it can feed several element
inputs. The number of element inputs fed by a wire is called the far-out of
the wire. If no element output is connected to a wire, the wire is a circuit
input, accepting input values from an external source. If no element input
is connected to a wire, the wire is a circuit output, providing the results of
the circuit’s computation to the outside world. (An internal wire can also
fan out 1o a circuit output.) Combinational circuits contain no cycles and
have no memory elements (such as the registers described in Section 29.4).

[
~1

Q2 b Combundarional circuits 6

Full adders

As an example. Figure 29.2 shows a combinational circuit, called a full
adder. that takes as input three bits x, v, and z. [t outputs two bits, s
and ¢, according to the following truth table:

—_— = = O O D] -
—_—— O = e
— 0 — D — (O e 1
—_ 0 0 = O = e (Sl

b (O — (SO OS

Qutput s is the parity of the input bits,

3 =parity(x,y,Z) = x5 vz, (29.1)
and output ¢ is the majorizy of the input bits,

¢ =majority(x,p, Z) = (X AYIV(yAZIVIXAZ) . (29.2)

(In general, the parity and majority functions can take any number of
input bits. The parity is | if and only if an odd number of the inputs
are I's. The majority is t if and only if more than half the inputs are I's.)
Note that the ¢ and s bits, waken together, give the sum of x, y, and z.
For example, if x = 1, y = 0, and z = 1, then {c¢,s} = {10},' which is the
binary representation of 2, the sum of x, y, and :z.

Each of the inputs x, y, and z to the full adder has a fan-out of 3.
When the operation performed by a combinational element is commuta-
tive and associative with respect to its inputs (such as the functions AND,
OR, and XOR), we call the number of inputs the fan-in of the element.
Although the fan-in of each gate in Figure 29.2 is 2, we could redraw the
full adder 10 replace XOR gates 4 and E by a single 3-input XOR gate
and OR gates F and & by a single 3-input OR gate.

To examine how the full adder operates, assume that cach gate operates
in unit time. Figure 29.2(a) shows a set of inputs that becomes stable at
time 0. Gates A-D, and no other gates, have all their input values stable
at that time and therefore produce the values shown in Figure 29.2(b) at
time 1. Note that gates 4-D operate in parallel. Gates £ and F, but
not gate G, have stable inputs at time 1 and produce the values shown in
Figure 29.2{c) at time 2. The output of gate £ is bit 5, and so the 5 output
from the tull adder is ready at time 2. The ¢ oulput is not yet ready,
however. Gate ¢ finally has stable inputs at time 2, and it produces the ¢
output shown in Figure 29.2(d) at time 3.

'Far cluritv. we omit the commas between sequence elements when they are bits.

Hix Clepter 2V critfuneiic Circniity

depth]
(a) b}

I o |1 . Lo i

depth 1 2 depth i 2 3
ic) {d)

Figure 29.2 A full-adder circuit. (a) At time 0, the input bits shown appear on
the three input wires. (b) At time I. the values shown appear on the outputs of
gates A-D, which are at depth 1. (c) At time 2, the values shown appear on the
outputs of gates £ and F, at depth 2. (d} At time 3, gate ¢ produces its output,
which is also the circuit output.

207 Comhindtionad circudéts 6309

Circuit depth

As 1n the case of the comparison networks discussed in Chapter 28, we
measure the propagation delay of a combinational circuit in terms of the
largest number of combinational elements on any path from the inputs
to the outputs. Specifically, we define the depth of a circuit, which corre-
sponds to its worst-case “running time,” inductively in terms of the depths
of 1ts constituent wires. The depth of an input wire is 0. [f a combinational
element has inputs x,, x3,...,x, at depths d,,d>,....d, respectively, then
its outputs have depth max {d,,d>,....d,} + 1. The depth of a combina-
tional element is the depth of its outputs. The depih of a combinational
circuit is the maximum depth of any combinational element. Since we pro-
hibit combinational ¢ircuits from containing cycles, the various notions of
depth are well defined.

If each combinational element takes constant time to compute its output
values, then the worst-case propagation delay through a combinational
circuit is proportional to its depth. Figure 25.2 shows the depth of each
gate in the full adder. Since the gate with the largest depth is gate G, the
full adder itself has depth 3, which is proportional to the worst-case time
1t takes for the circuit to perform its function.

A combinational circuit can sometimes compute faster than its depth.
Suppose that a large subcircuit feeds into one input of a 2-input AND gate
but that the other input of the AND gate has value 0. The output of the
gate will then be O, independent of the input from the large subcircuit. In
general, however, we cannot count on specific inputs being applied to the
circuit, and the abstraction of depth as the “running time”™ of the circuit
is therefore quite reasonable.

Circuit size

Besides circuit depth, there is another resource that we typically wish to
minimize when designing circuits. The size of a combinational circuit is
the number of combinational elements it contains. Intuitively, circuit size
corresponds to the memory space used by an algorithm. The full adder of
Figure 29.2 has size 7, for example, since it uses 7 gates.

This definition of circuit size is not particularly useful for small circuits,
After all, since a full adder has a constant number of inputs and out-
puts and computes a well-defined function, it satisfies the definition of a
combinational element. A full adder built from a single full-adder combi-
national element therefore has size 1. In fact, according to this definition,
any combinational element has size 1.

The definition of circuit size is intended to apply to families of circuits
that compute stmilar functions. For example, we shall soon see an addition
circuit that takes two #-bit inputs. We are really not talking about 2 single
circuit here, but rather a family of circuits—one for each size of input.

A6t}

Chapier 20 Arichametn: Clrcuits

[n this coniext, the dehnition of circuit size makes pood sense. It allows
us to define convenient circuit elements without alfecting the size of any
implementation of the ¢ircuit by more than a constant factor. OF course,
in practice, measurements of size are much more complicated. invelving
not only the choice of combinational elements, but also concerns such as
the area the circuit requires when integrated on a silicon chip.

Exercises

29.1-1
In Figure 29.2, change input y to a 1. Show the resulting value carried on
each wire.

29.1-2
Show how to construct an r-input parity circuit with n — 1 XOR gates and
depth [ign].

29.1-3

Show that any boolean combinational element can be constructed from
a constant number of AND, OR. and NOT gates. {Hins: Implement the
truth table for the element.)

29.1-4 :
Show that anv boolean function can be constructed entirely out of NAND
gates.

29.1-5
Construct a combinational circuit that performs the exclusive-or function
using only four 2-input NAND gates.

29.1-6

Let C be an n-input, n-output combinational circuit of depth 4. If two
copies of C are connected, with the outputs of one feeding directly into the
inputs of the other, what is the maximum possible depth of this tandem
circuit? What 1s the minimum possible depth?

29.2 Addition circuits

We now investigate the problem of adding numbers represented in binary.
We present three combinational circuits for this problem. First, we look at
ripple-carry addition, which can add two #-bit numbers in ©{#)} time using
a circuit with ©(s} size. This time bound can be improved to O(lg n) using
a carry-lookahead adder, which also has ©(n) size. Finally, we present
carry-save addition, which in O([) time can reduce the sum of 3 n-bit

-
-

U0 Lo cirenits o661

807 6 5 403 o100 {
Lt 0 1 01 0 0 0 = ¢
o i1 0 = u
I L0 1 0 1 = §
N VR b0 0 1 1 = 3

Figure 293 Adding two 8-bit numbers @ = (01011110) and b = (L0100 to
produce a 9-bit sum s = {10011001[}. Each bit ¢; is a carry bit. Each column of
hits represents, from 1op w bottom. ¢, 4., &, and s, for some i. Carry-in ¢y is
always 0.

numbers to the sum of an n-bit number and an {# + 1)-bit number. The
circuit has &{n) size.

29.2.1 Ripple-carry addition

We start with the ordinary method of summing binary numbers, We as-
sume that a nonnegative integer & is represented in binary by a sequence
of n bits {a,_|.an-1,...,ay), where n > [lg(a + 1)] and

n—1
= Za;?.’ -
i=0

Given two n-bit numbers @ = (@,_1,8,_2,...,ay} and b = {baeiy by,
..., by}, we wish to produce an (# + 1)-bit sum s = {$nsSu-1,--.,50). Fig-
ure 29.3 shows an example of adding two 8-bit numbers. We sum columns
right to left, propagating any carry from column / to column ¢ + 1, for
i=0,1,...,n=1. In the ith bit position, we take as inputs bits a; and &;
and a carry-in bit c,, and we produce a sum bit s; and a carry-out bit Civl
The carry-out bit ¢;,; from the ith position is the carry-in bit into the
(£ + 1)st position. Since there is no carry-in for position 0, we assume that
co = 0. The carry-out ¢, is bit s, of the sum.

Observe that each sum bit s; is the parity of bits a;, &;, and ¢; (see
equation (29.1)). Moreover, the carry-out bit ¢;,, is the majority of a;,
b;, and ¢; (see equation (29.2)). Thus, each stage of the addition can be
performed by a full adder.

An n-bit ripple-carry adder is formed by cascading n full adders Fdy,
FA,..., Fd,_, feeding the carry-out ¢;,, of FA, directly into the carry-
in input of Fi,,,. Figure 29.4 shows an 8-bit ripple-carry adder. The
carry bits “ripple” from right to left. The carry-in ¢ to full adder Fd, 15
kardwired to 0, that is, it is 0 no matter what values the other inputs take
on. The output is the (n + 1)-bit number s = {5,,5,_,...., 5, where 5,
equals ¢,. the carry-out bit from full adder FA,,.

Because the carry bits ripple through all # full adders, the time required
by an #-bit ripple-carry adder is ©{n). More precisely, full adder F4, 15 at

ol

Chapter 29 Aerthmetic Circudiy

'!h j.“ .’!_l ""_i .\2 ._l '|”

I

-
U

by 0 t 1 ' Lo "
BLET U o S ...‘.._JJ A futs Fa, o] Fa, F% Fay [« 3>
1 | |
I &
o 0

U]
T o TR % 7 5% o

Figure 29.4 An B-bit nipple-carry adder performing the addition of Figure 29.3.
Carry bit ¢ is hardwired to 0. indicated by the diamond. and carry bits ripple
from right to left.

depth / + [in the circutt, Because FA4,_ is at the largest depth of any full
adder in the circuit, the depth of the ripple-carry adder is n. The size of
the circuit 158 ©(s} because it contains # combinational elements.

29.2.2 Carry-lookahead addition

Ripple-carry addition requires ©(n) time because of the rippling of carry
bits through the circuit. Carry-lookahead addition avoids this €{#n)-time
delay by accelerating the computation of carries using a treelike circuit. A
carry-lookahead adder can sum two »#-bit numbers in O(lg #) time.

The key observation is that in ripple-carry addition, for { > 1, full adder
FA4, has two of its input values, namely a; and &;, ready long before the
carry-in ¢, 1s ready. The idea behind the carry-lookahead adder is to exploit
this partial information.

As an example, let a,_; = §,_). Since the carry-out ¢, 1s the majority
function, we have ¢; = a,_ = b, regardless of the carry-in ¢;_,. 1f
a,—y = b,y =0, we can kill the carry-out ¢; by forcing it to 0 without
waiting for the value of ¢, _; 1o be computed. Likewise, ifa,_; = 6,_, = 1,
we can generate the carry-out ¢; = 1, irrespective of the value of ¢, ;.

If a,_, # &,—\, however, then ¢; depends on ¢,_(. Specifically, ¢; = ¢,—1,
because the carry-in ¢;_ casts the deciding “vote™ in the majority election
that determines ¢;. In this case, we propagate the carry, since the carry-out
is the carry-in.

Figure 29.5 summarizes these relationships in terms of carry statuses,
where k is “carry kill,” g is “carry generate,” and p is “carry propagate.”

Consider two consecutive full adders F4,_, and F4; together as a com-
bined unit. The carry-in to the unit is ¢,_j, and the carry-out is ¢;,.,. We
can view the combined unit as killing, generating. or propagating carries,
much as for a single full adder. The combined unit kills its carry if F4,
kills its carry or if FA,_, kills its carry and FA, propagates it. Similarly,
the combined unit generates a carry if F4; generates a carry or if Fd,
generates a carry and Fd; propagates it. The combined unit propagates
the carry, setting ¢,,| = ¢,—|. if both full adders propagate carries. The

292 Addirion corenaty o3

a0 b] ¢ CArTY Status
0 0|0 k
)] 1 [P
|)] [P P
1 1 1 g

Fipure 29.5 The carry-out bit «, and carry status corresponding to inputs 4,_ .,
b, _y. and ¢, _; of tull adder £, _, in ripple-carry addition.

e
v |k p g
k |k k g
Fil... plk p g
glk g g

Figure 29.6 The carry status of the combination of full adders F4,_, and F4, in
terms of their individual carry statuses, given by the carry-status operator © over
the domain {k,p. g}

table in Figure 29.6 summarizes how carry statuses are combined when
full adders are juxtaposed. We can view this table as the definition of the
carry-status operator © over the domain (k,p,g}. An important property
of this operator is that it is associative, as Exercise 29,2-2 asks you to
verify.

We can use the carry-status operator to express each carry bit ¢; in terms
of the inputs. We start by defining xy = k and

k if di—1 = bg_.,| =0 N
x,=4p ifa_ #b_, (29.3)
g ifa, 1 =6_=1,
for i = 1,2,...,n. Thus, for { = 1,2,...,n, the value of x, is the carry
status given by Figure 29.5.
The carry-out ¢; of a given full adder FA,_; can depend on the carry
status of every full adder F{; for j =0,1,...,i = 1. Let us define 33 =
xp =k and

Vi = Y @X (29.4)
= HBXE- - BX

for{=12,....n. Wecanthink of y; as a “pretix” of xp2x,%---2 x,; we
call the process of computing the values yg,¥1,..., v, a prefix computation.
(Chapter 30 discusses prefix computations in a more general parallel con-
text.) Figure 29.7 shows the values of x, and y, corresponding to the binary
addition shown in Figure 29.3. The following lemma gives the significance
of the y; values for carrv-lookahead addition.

004

Chaprer 29 drithmetic Uireuiis

! 7 6 5 4 31 2 0Lon

« 0101 1 1 1o

};F 1L 1 0L 0 101

Y. P 9gkg g ppPEk

Y 99k gggkkHk

¢ Lio 11000

Figure 29.7 The values of x, and y, for i = 0.1,...,8 that correspond 1o the

villues of a,. &, and ¢, in the binarv-addition problem of Figure 29.3. Each value
of ., is shaded with the values of o, and b, that it depends on.

Lemma 29.1

Define Xy, x1,...,x, and yy. yi,. ... ¥, by equations (29.3) and (29.4). For
{=0,1,...,n, the following conditions hoid:

l. y; =k implies ¢, = 0,

2. y; =g implies ¢, = 1, and

3. y, = p does not occur.

Proof The proof is by induction on . For the basis, £ =0, We have
¥o = xo = k by definition, and also ¢; = 0. For the inductive step, assume
that the lemma holds for i — 1. There are three cases depending on the
value of y;.

1. If y; = k, then since y; = y;_; @ x;, the definition of the carry-status
operator & from Figure 29.6 implies either that x; = k or that x, = p

and y,—) = k. H x; = k, then equation {29.3) implics that a,-; =
bi_y = 0, and thus ¢; = majority(a;_,b,,¢;) = 0. If x, = p
and y;-| = k, then a;_; # b,~, and, by induction, ¢,_; = 0. Thus,
majority{a;—, b;_1,¢i—1} = 0, and thus ¢; = 0.

2. If y; = g, then either we have x; = g or we have x;, = pand y,_, =g
If x; =g, then g, = b_, = 1, which implies ¢; = 1. If x; = p and
Vi1 = g then g, # b;_ and, by induction, ¢;,_; = 1, which implies
o = L.

3. If p; = p, then Figure 29.6 impties that v,_; = p, which contradicts the
inductive hypothesis. n

Lemma 29.1 implies that we can compute each carry bit ¢; by computing
each carry status y,. Once we have all the carry bits, we can compute
the entire sum in ©(1) time by computing in parallel the sum bits s, =
parity(a,, &;,¢;) for i =0, 1,...,n (taking a, = b, = 0). Thus, the problem
of quickly adding two numbers reduces to the prefix computation of the
carry statuses Yo, Vi,..., Va.

292 deldition cirendts 663

Computing carry statuses with a paralle! prefix circuit

By using a prefix circuit that operates in paraliel. as opposed to a ripple-
carry circuit that produces its outputs one by one, we can compute all
A carry statuses Vo, ¥i...., ¥, more quickly. Specifically, we shall design
a parallel prefx circurt with O(lgn) depth. The circuit has &(n) size—
asymptotically the same amount of hardware as a ripple-carry adder.

Before constructing the parallel prefix circuit, we introduce a notation
that will aid our understanding of how the circuit operates. For integers {
and j in the range 0 < § € j < 1, we define

=% @x. @ 8.

Thus, for i =0,1,..., n, we have [i,{] = x,, since the composition of just
one carry status x, is itself. For /, j, and & satisfying 0 < i < j < k < n,
we also have the identity

[Lkl=1[67 - 1= [LK], (29.5)
since the carry-status operator is associative. The goal of a prefix computa-
tion, in terms of this notation, is to compute y, = [0,/] for i =0, 1,..., .

The only combinational element used in the parallet prefix circuit is a
circult that computes the © operator. Figure 29.8 shows how pairs of ® el-
ements are organized to form the internal nodes of a complete binary tree,
and Figure 29.9 illustrates the parallel prefix circuit for n = 8. Note that
the wires in the circuit follow the structure of a tree, but the circuit itself
is not a tree, although it is purely combinational. The inputs x|, X3,..., X,
are supplied at the leaves. and the input xg is provided at the root. The
outputs yp, yi....,¥s~ are produced at leaves, and the output y, is pro-
duced at the root. (For ease in understanding the prefix computation,
variable indices increase from left to right in Figures 29.8 and 29.9, rather
than from right to left as in other figures of this section.)

The two ¢ elements in each node typically operate at different times
and have different depths in the circuit. As shown in Figure 29.8, if the
subtree rooted at a given node spans some range x;, X;,1,..., X, of inputs,
its left subtree spans the range x;, X;.1,...,X,_,, and its right subtree spans
the range x;,x,,,..., X, then the node must produce for its parent the
product [, k] of all inputs spanned by its subtree. Since we can assume
inductively that the node’s left and right children produce the products
[/, /—11and [/, k], the node simply uses one of its two elements to compute
[i, k]~ {i,j = 1] & [J. k]

Some time after this upward phase of computation, the node receives
from 1ts parent the product [0, ¢ — 1] of all inputs that come before the
leftmost input x, that it spans. The node now likewise computes values for
its children. The feftmost tnput spanned by the node’s left child is also x,,
and so it passes the value [0, i — 1] to the left child unchanged. The leftmost
(nput spanned by its right child is x;, and so it must produce [0, j — 1].
Since the node receives the value [0, { — 1] from its parent and the value

-
-

alalg)

Chapter 29 AArithmetic Circudts

[i.k] [0.=1]

i1 0. -1

lij~11 (k]

\

\

Vi r_;—l B Y et Ly

Figure 29.8 The organization of a parallel prefix circuit. The node shown is the
root of a subtree whose leaves input the values v, to x,. The node’s left subtree
spans’inputs X, to x, y, and tts right subtree spans inputs x; to x;. The node
consists of two @ elements, which operate at different times during the operation
of the circuit. One element computes [{ k] — [/, f — 118 [j. k], and the other
element computes [0,/ — 1] — [0,/ - 1] ® [i.f — []. The values computed are
shown on the wires.

{1, j— 1} from its left child, it simply computes [0, j ~ 1] — [0,i — 1]18]{, k]
and sends this vatue to the right child.

Figure 29.9 shows the resulting circuit, including the boundary case that
arises at the root. The value xp = [0, 0] is provided as input at the root,
and one more & element is used to compute (in general) the value y, =
[0,#] =[C, 0] [1,n].

[f n is an exact power of 2, then the parallel prefix circuit uses 2n — 1 ©
elements. It takes only O(lg#) time to compute all # + | prefixes, since the
computation proceeds up the tree and then back down. Exercise 29.2-5
studies the depth of the circuit in more detail.

Completing the carry-lookahead adder

Now that we have a parallel prefix circuit, we can complete the description
of the carry-lockahead adder. Figure 29.10 shows the construction. An
n-bit carry-lookahead adder consists of n + | KPG boxes, cach of O(1)
size, and a parallel prefix circuil with inputs xp, x;....,. ¥, (xn is hardwired

J 2 Aedelirron cfronrty 667

[13.0)] n8]
(@) ¥

X
. .
el T &Y

{61

j13,0]

} [t.2] (3.4] ’)\ {56] |7.8]

16.0] 0.1 [0aL wi 0.5 {08 10.7]
/_/ll.ll (2.2 A3 AT 1551 [6.6] (7.7] [R.8]
YooY kb ¥y ¥y Y& Ly ¥ ¥y Ny Yy ¥y

Figure 29.9 A parallel prefix circuit for n = . (a) The overall structure of the
circuit, and the values carried on each wire. {b) The same circuit with values
corresponding to Figures 29.3 and 28.7.

10 k) and outputs yo. ¥i,..., ¥o. KPG box KPG, takes external inputs a;
and b, and produces sum bit s5,. (Input bits a, and b, are hardwired to 0.)
Given g;_, and b,_;, box KPG;_; computes x; € {k,p,g} according to
equation (29.3) and sends this value as the external input x, of the parallel
prefix circuit. {The value of x,,. is ignored.) Computing all the x; takes
O(1) time. After a delay of Oflgn), the parallel prefix circuit produces
¥0.¥1. ..., yn. By Lemma 29.1, y; is either k or g; it cannot be p. Each
value y, (ndicates the carry-in to full adder F4, in the ripple-carry adder:
y: = kimpliesc, = 0, and ¥, = g implies ¢; = 1. Thus, the value of p, is fed
mto KPG, to indicate the carry-in ¢;, and the sum bit 5, = paritv{(a,, b;, ¢;)
is produced in constant time. Thus, the carry-loockahead adder operates in
O(lg#) tume and has ©(») size.

64

[-"s rxf' (V5 -"7{ J‘rn "_hII E
\ k

9 Pl 49 g‘ A
r(a&*ms HKPG? |] ﬁmab
L]
3 Ty v 3
00 10 I ‘ 1 l i
a0 by &, by by

y!

R

¥

Chapter 29 drithmcti: Circtiies

I

parallel prefix circuit

&

a
7

yo
'\II‘!

Figure 29.10 The coastruction of an n-bit carry-lookahiead adder. shown here for
n = 8. It consists of » + I KPG boxes KPG, for i = 0, l,....n Each box KPG,
takes external inputs ¢, and &, {where a, and b, are hardwired to 0. as indicated
by the diamond) and computes carry status x,;;. These values are fed into the
parallel prefix circuit, which returns the results ¥, of the prefix computation. Each
box KPG, now takes y, as input. Interprets it as the carry-in bit ¢,. and then outputs
the sum bit 5, = parity(a,, b,.¢,). Sample values corresponding to those shown in
Figures 29.3 and 29.9 are shown.

29.2.3 Carry-save addition

A carry-lookahead adder can add two #-bit numbers in O(lgn) 1ime. Per-
haps surprisingly, adding three #-bit numbers takes only a constant addi-
tional amount of time. The trick is to reduce the problem of adding three
numbers to the problem of adding just two numbers.

Given three n-bit numbers x = (Xn_1s Xno3y..,20), ¥ = (Fue1s ¥nn.

ye)sand 7=z, 2, 3,..., 7}, an n-bit carry-save adder produces an
n-bit number « = (1, 1, u,-1,...,4,) and an {(n + 1)-bit number v = (v,
Un_t,...,) such that

H+U=X+y+1.

As shown in Figure 29.11(a), it does this by computing

u, = parity(x;, ¥, =)},
Vipl = majc}rity(x;,y;x Z,) »

fori=0,1,...,n — 1. Bit vy always equals 0.

The n-bit carry-save adder shown in Figure 29,1 1{b) consists of n full
adders £y, FA,,...,F4,_,. Fori =0, Li...,n =1, full adder FA4, takes
inputs x,, ¥,, and z;. The sum-bit output of FA, is taken as «,, and the
carry-out of £4, is taken as v,,;. Bit vy is hardwired 10 0.

Since the computations of all 2n + 1 output bits are independent, they
can be performed in parallel. Thus. a carry-save adder operates in ©(1)
time and has ©(n) size. To sum three #-bit numbers, therefore, we need

20D duddditinn cfrcuils any

9100 1 1 1
L o9 1 g1 01 0 = .
[aL}

’K IL.I' 1': ffl.., \'h “5 |.‘ N-l ‘l.l (l'.‘ \'; M, V" Hi 'v'l “” 1‘”
k| Ady A 4 Yo I 4 4y ol A o

RE Lol Lo RE | [] [I 1 | , ‘{J

‘ Fa, FA FA, } FA, FA, FA, ‘ FA, J FA, ‘

!]

(b}

Figure 29.11 {a) Carry-save addition. Given three n-bit numbers x, », and o, we
produce an 2-bit number u# and an {# + 1)-bit number v such that x+y+z = u+v.
The ith pair of shaded bits are a function of x,, y,. and z,. (b) An 8-bit carry-save
adder. Each full adder FA, takes inputs x;, v,, and z, and produces sum bit 4, and
carry-out bit v;,;. Bit vy is hardwired to 0.

only perform a carry-save addition, taking 6(1) time, and then perform a
carry-lookahead addition, taking Oflg n) time. Although this method s not
asymptotically better than the method of using two carry-lookahead addi-
tions, it is much faster in practice. Moreover, we shall see in Section 29.3
that carry-save addition is central to fast algorithms for multiplication.

Exercises

29.2-1

Let a = (01111111}, b = {00C0OC0O0Y), and n = 8. Show the sum and
carry bits output by full adders when ripple-carry addition is performed on
these two sequences. Show the carry statuses xp, x;,...,xy corresponding
to a and b, label each wire of the parallel prefix circuit of Figure 29.9
with the value it has given these x, inputs, and show the resulting outputs

¥, Vi, .o Vs

29.2.2
Prove that the carry-status operator @ given by Figure 29.5 is associative.

71

Chaprer 20 Urithmene Cieudts

-

AR

X X x X 3 X X, x AL

Figure 29.17 A paralle] prefix circuit for use in Exercise 29.2-6.

29.2-3

Show by example how to construct an O(lg n)-time parallel prefix circuit
for values of n that are not exact powers of 2 by drawing a parallel prefix
circuit for # = 11. Characterize the performance of parallel prefix circuits
built in the shape of arbitrary binary trees.

29,.2-4

Show the gate-level construction of the box KPG,. Assume that each out-
put x; 1s represented by {00} if x; = k, by {11} if x;, = g, and by (01}
or {10} if x; = p. Assume also that each input y, is represented by 0 if
yi=kandbylify,=¢g

29.2-5

Label each wire in the parallel prefix circuit of Figure 29.9(a) with its
depth. A critical path in a circuit is a path with the largest number of
combinational elements on any path from inputs to outputs. Identify the
critical path in Figure 29.%(a), and show that its length is O{lgn). Show
that some node has @ elements that operate ©(lgn} time apart. Is there a
node whose ® elements operate simultaneously?

29.2-6

Give a recursive block diagram of the circuit in Figure 29.12 for any num-
ber n of inputs that is an exact power of 2, Arguc on the basis of your block
diagram that the circuit indeed performs a prefix computation. Show that
the depth of the circuit is &(lgn) and that it has ©(xnlgn) size.

JU b Mwkiphearion circuits 674

29.2-7

What 15 the maximum fan-out of any wire 1n the carry-lookahead adder?
Show that addition can still be performed 1in Ollg #) time by a ©(n)-size
circult even if we restrict gates to have Of) fan-out.

29.2-8

A tally circuit has n binary inputs and m = [lg{n + 1}] outputs. Interpreted
as a binary number. the outputs give the number of ['s in the inputs. For
example. if the input s ([COLEL10}. the output is (101}, (ndicating that
there are five ['s in the input. Describe an O(lg n)-depth tally circuit having
6{n) si1ze.

29.2-9 «

Show that n-bit addition can be accomphlished with a combinational circuit
of depth 4 and size polynomial in n if AND and OR gates are allowed
arbitrarily high fan-in. (Optional; Achieve depth 3.)

29.2-10 *

Suppose that two random #n-bit numbers are added with a ripple-carry
adder, where each bit is independently 0 or | with equal probability. Show
that with probability at least 1 — 1/n, no carry propagates farther than
O{ig n) consccutive stages. In other words, although the depth of the ripple-
carry adder 1s ©(n), for two random numbers, the outputs almost always
settle within O(lg#) time. '

29.3 Multiplication circuits

The “grade-school” multiplication algorithm in Figure 29.13 can compute
the 2n-bit product p = {pro_1. P22, ..., 0y) of two n-bit numbers a =
{@y 1 @y_2....,apyand & = {b,_ . byoa. ..., bo). We examine the bits of b,
from by up to b,.,. For each bit §; with a value of !, we add a into the
product, but shifted left by ¢ positions. For each bit &, with a value of 0,
we add in 0. Thus, letting m' =g . b, - 2!, we compute

n—1

p=a-b=3 mi
1=0

Each term m'" is called a partial product. There are n partial preducts to
sum, with bits in positions 0 to 27 — 2. The carry-out from the highest bit
yields the final bit n position 2n - 1.

In this section, we examine two circuits for multiplying two n-bit num-
bers. Array multipliers operate in ©(#n) time and have ©(n") size. Wallace-
tree multipliers also have ©{n’} size, but they operate in ©{lg n) time. Both
circuits are based on the grade-school algorithm.

672

Chapter 29 Arithmetic Covnits

I 1t 0 =
0o 0 0 v = m
N I ¥ = m*
1 1 1 0 = m?
I 0 1 L0 1 0 = p

Figure 29.13 The “grade-school™ multiplication method, shown here multiply-
ing a = {L110) by b = (1101} 1o obtain the product p = (10110110}, We add
S mY where m" = g - b - 2. Here. n = 8. Each term m'"' is formed by
shifting either g {if &, = 1) or 0 {if b, = 0} { positions to the left. Bits that are not
shown are 0 regardless of the values of 2 and 4.

29.3.1 Array multipliers

An array muitiplier consists conceptually of three parts. The first part
forms the partial products. The second sums the partial products us-
ing carry-save adders. Finally, the third sums the two numbers resulting
from the carry-save additions using either a ripple-carry or carry-lookahead
adder.

Figure 19.14 shows an array multiplier for two input numbers g =
{@p—1,an-2,...;ap) and & = (b, |, b,-2,...,by). The a, values run ver-
tically, and the &, values run horizontally. Each input bit fans out to
AND gates to torm partial products. Fuli adders, which are organized as
carry-save adders, sum partial products. The lower-order bits of the fi-
ral product are ouiput on the right. The higher-order bits are formed by
adding the two numbers output by the last carry-save adder.

Let us examine the construction of the array multiplier more closely.
Given the two input numbers @ = (@,_1,ds-2,...,a0) and b = (b, |, bp_,
..., by}, the bits of the partial products are easy to compute. Specifically,
fori,j=0,1,...,n -1, we have

i

My =4a; b

Since the product of 1-bit values can be computed directly with an AND
gate, all the bits of the partial products (except those known to be ¢, which
need not be explicitly computed) can be produced in one step using #°
AND gates.

Figure 29.15 illustrates how the array multiplier performs the carry-save
additions when summing the partia! products in Figure 29.13. It starts by
carry-save adding m'”, m''", and 0, yielding an (n + 1)-bit number #'"

and ar (7 + 1)-bit aumber »'". (The number vV has only # + | bits,
not n + 2, because the (n + [)st bits of both 0 and m™ are 0.) Thus,
m' b ot = W™ 4w Tt then carry-save adds wil, v'', and m'Y,

yielding an (# +2)-bit number «'* and an (n + 2)-bit number v, {Again,

203 Mudriplication circnies

{1

N
o
ilab\l

O \0

6873

tih
N "y,

Py

A
'L“ {l.
1
Y
P

|
b

(3
(]

(3

1

. . 5]

INES (3)

It 'ir_l 13
10 0

7,

.

£y

Figure 29.14 An array multiplier that computes the product p = {(Pan_1,Pn-2,
....ps) of two a-bit numbers @ = (2,1, Gu-1,-
shown here for n = 4. Fach AND gate G\ computes partial-product bit mj”. Each
row of full adders constitutes a carry-save adder. The lower n bits of the product are
m".,"' and the i bits coming out from the rightmost column of full adders. The upper
n product bits are formed by adding the ¥ and v bits coming out from the bottom
row of full adders. Shown are bit values for inputs @ = {I110} and & = (1100}
and product p = (10110110}, corresponding to Figures 29.13 and 29.15.

apyand b = {hy_y beoa. . Bod,

G4

Chapror 2v 0 Urithawtic Circuiis

o0 0 0 = n

O 0 0 0 = m'b

D1 1 L 9 = !

0 a0 0 =

l | (I). = nr-

1 1 0 1 1 0 = uy-

g 1 0 =

i1 10 = ur?
Lo 1 0 1t 1 0 = w3
1 L 0 = pt¥

1 0 1 1 O 1 T 0 = p

Figure 29.15 Evaluating the sum of the partial products by repeated carry-save
addition. For this example, ¢ = {1110} and b = (! 101). Bits that are blank are 0
regardless of the values of ¢ and 6. We first evaluate m'™ + ' = 0 = 411 4 p*U
then «''' + 2" o = W 4w then W ™ £ o = ™Y w0 and finally
p=m" e e ' = Y L' Note that py = m and p, = W' for
i=12...,n-1

v*>' has only n + 2 bits because both u“’, and u' Y are 0. } We then have

m'® ot g2 =l g g2 The multiplier continues on, Carry-save
adding &=, ¢~ and m*) fori = 2,3,...,n—1. The result isaf(2n—1)-
bit number u~" and 2 (2n — 1)-bit number v'"~!', where
n=1
fo—1} L b 13
R LA I
i=0
== p .

In fact, the carry-save additions in Figure 29.15 operate on more bits
than strictly necessary, Observe that for i = L2,...,n—1 and j =
0,1,...,i — 1, we have m”’ = 0 because of how we shift the partial

products. Observe also that v, =0fori=1,2,...,n-1and j =
O, L,...,ii+ni+n+1,...,2n~1. (See Exercise 29.3-1.) Each carry-save
addition, therefore, needs to operate on only # — 1 bits,

Let us now examine the correspondence between the array multiplier and
the repeated carry-save addition scheme. Each AND gate is labeled by G[”

for some { andj intheranges 0 <i<n—1land 0<j<2n-2. Gate G‘”

produces m . the jth bit of the ith partial product. Fori=0.1.. =1,
the fth row of AND gates computes the n significant bits of the partiai
product m'Y, that is. (m)] _ m" ey,

Except for the full adders in the top row (that is, tor: =23....,n— 1)

each full adder Fl”' takes three :npul blts—m" W'Y and z.';"'“—and

J
produces two ouiput bits— f- "and vm. (Note that in the lefimost column

Ly

203 Nhwlripficanion cirenis 67

of full adders, u:’__l" =pr'

n—1 ten—1

} Each full adder FAZ,I" in the top row takes
inputs m;m, pt ", and 0 and produces bits uL“ and ¢'',.
Finally. let us examine the output of the array multiplier. As we observed

above, """ = 0 for j = O0.1,...,n — 1. Thus. p, = u""" for j =
: il 1 m :
O.1,....n — 1. Moreover. since m))’’ = 0, we have 1) = m},". and since
g . ' . . o
the lowest-order / bits of each s and v~ are 0. we have o =)™ for

(=23, ..n—tand j=0,1,...,i—1. Thus, py = m":}’ and, by induction,
po=u' fori = 12....,n— 1. Preduct bits {pr,_y.p2s-2.....0x) are
produced by an #-bit adder that adds the outputs from the last row of full
adders:

(pln-—l-:{?ln—l- L «p*r} =

=ty =1 in=1j .
(“lrr—.‘f . u;'rr—_l veeea lp } + {L’: -

Analysis

Data ripple through an array multiplier from upper left to lower right, Tt
takes ©(n) time for the lower-order product bits (g, |, Pu-2.....Py) to be
produced. and it takes ©(n) time for the tnputs to the adder to be ready.
If the adder is a ripple-carry adder, it takes another ©(#) time for the
higher-order product bits {p-,— |, P2a—2,...,Dn} 10 emerge, If the adder is
a carry-lookahead adder, only ©(lgn) time is needed, but the total time
remains ©(n).

There are n> AND gates and #n° — n full adders in the array muttiplier.
The adder for the high-order output bits contributes only another ©(n)
gates. Thus, the array multiplier has €(n?) size.

20.3.2 ‘Wallace-tree multipliers

A Wallace tree 1s a circuit that reduces the problem of summing n n-
bit numbers to the problem of summing two ©(z)-bit numbers. It does
this by using {#n/3] carry-save adders in parallel to convert the sum of n
numbers to the sum of [2n/3] numbers. It then recursively constructs
a Wallace tree on the [2n/3] resulting numbers. In this way, the set of
numbers is progressively reduced until there are only two numbers left.
By performing many carry-save additions in parallel, Wallace trees allow
two #-bit numbers to be multiplied in ©{lg#) time using a circuit with
O(n") size.

Figure 29.16 shows a Wallace tree’ that adds 8 partial products m'%,
m', ... m'7". Partial product m'" consists of n + { bits, Each line repre-
sents an entire number, not just a single bit; next to each line 15 the number

2As vou can see from the fgure, a3 Wallace tree is not truly a tree, bui rather a directed acyclic
graph, The name s historical.

0o

Chapter 29 lrdhinrctie vty

b [[[(=] [ity 17,
£ " mne " s H 2 LA
- 1 - | 7 i
N8 f9 A1t \I ti2 A3 b 71s
| carry-save adder | [carry -yave adder .!
)) e \ | j
10 N0 I3 A3 ['
| .-/ l_-,s._____f_.h__
{ CdrTv-save ;ldder] L carry-save adder |
\) T
13 3 TR AT5
- \\ el e
| corry-save adder | -

| -
s N e
\‘\;\ e

L carry-save adder [

I’li il[fa

L carry-lookahead adder T

B
¥
7

1T

Figure 29.16 A Wallace tree that adds # = § partjal products m'"™ ' T
Each line represents a number with the number of bits indicated. The left cutput
of each carry-save adder represenis the sum bits, and the right output represents
the corry bits,

of bits the line represents {see Exercise 29.3-3). The carry-lockahead adder
at the bottom adds a {27 — 1)-bit number to a 2n-bit number to give the
2n-bit product.

Analysis

The time required by an #-input Wallace tree depends on the depth of the
carry-save adders. At each level of the tree, each group of 3 numbers is
reduced to 2 numbers, with at most 2 numbers left over (as in the case
of m'% and m'™ at the top level). Thus, the maximum depth Din) of a
carry-save adder in an #-input Wallace tree is given by the recurrence

0 ifn<2,
D[n): l if”ZB,
DM2nf310+1 iTn>4,

which has the solution D(n) = ©(lgn) by case 2 of the master theorem
(Theorem 4.1). Each carry-save adder takes Oi1) time. All # partial prod-
ucts can be formed in ©(1) time in parallel. (The lowest-order i - | bits of
mofori=1.2,....n—1.are hardwired 1o 0.) The carry-lookahcad adder

25 Mindipfianon clrcuits 677

taxes Olg 7} time. Thus, the entire multiplication of two n-bit numbers
takes ©(lg #} time,

A Wallace-tree multiplier for two n-bit numbers has &{(n”) size, which
we can see as follows, We first bound the circuit size of the carry-save
adders. A lower bound of Q(n°) is easy to obtain, since there are |2n/3]
carry-save adders at depth 1, and each one consists of at least » full adders.
To get the upper bound of O{n*}, observe that since the final product has
2u bits. each carry-save adder in the Wallace tree contains at most 2 full
adders. We need 1o show that there are O(n) carry-save adders altegether.
Let ('(n) be the total number of carry-save adders in a Wallace tree with
»1nput numbers. We have the recurrence

| 1 ifn=13,
Cin) < {C'(i’.’ln/ﬂ) +n/3] ifn>4,

which has the solution C(n) = ©{n) by case 3 of the master theorem. We
thus obtain an asymptotically tight bound of &(n-) size for the carry-save
adders of a Wallace-tree multiplier. The circuitry to set up the n partial
products has ©(xn°) size, and the carry-lookahead adder at the end has ©(n)
size. Thus. the size of the entire multiplier is ©(n°).

Although the Wallace-tree-based multiplier 15 asymptotically faster than
the array multiplier and has the same asymptotic size, its layout when it is
implemented 1s not as regular as the array multiplier’s, nor is it as “dense”
{in the sense of having little wasted space between circuit elements). In
practice, a compromise between the two designs is often used. The idea
1s to use two arrays in parallel, one adding up half of the partial products
and one adding up the other half. The propagation delay is only half
of that mcurred by a single array adding up all n partial products. Two
more carry-save additions reduce the 4 numbers output by the arravs to 2
numbers, and a carry-lookahead adder then adds the 2 numbers to yteld
the product. The total propagation delay is a little more than half that of
a full array multiplier, plus an additional O{lg) term.

Exercises

29.3-1
Prove that in an array multiplier, vj” =0fori=12_...,n—1 and
j=0.1,..., fLi+ni+n+1,...,2n-1.

29.3-2
Show that tn the array multiplier of Figure 29.14, all but one of the full
adders in the top row are unnecessary. You will need to do some rewiring.

29.3-3

Suppose that a carry-save adder takes inputs x, v, and z and produces
outputs s and ¢, with s, n,, n., #,, and n. bits respectively. Suppose also,
without {oss of generality, that n, < n, < n-. Show that n, = n. and that™

(I Chapter 2V Lrthimetic Cleciits

", thn, < n. .
.= ‘s
‘ -+ oabn=n- .

29.3-4
Show that multiplication can still be performed in Oflg 7 time with O(n?)
size even if we restrict gates to have O(1) fan-out.

29.3-5

Describe an efficient circuit to compute the quotient when a binary num-
ber x is divided by 3. (Hinr: Note that in binary, O1010[... = .01 % [.01 x
1.OGOL =~ -3

29.3-6

A cyclic shifter, or barrel shifter, is a circuit that has two inputs x =
(X1 X, %) and 5 = {Sm—t>Sm_2,...,5). where m = [lgn]. Its
output v = (¥y_1.¥4-2,...,)0) is specified DY ¥ = X,iimodn. TOT | =

0.1....,n — 1. That is, the shifter rotates the bits of x by the amount
specitied by 5. Describe an efficient cyclic shiftec. In terms of modular
multiptication, what function does a cyclic shifter implement?

T T T T ——— e e T —

- 29.4 Clocked circuits

The elements of a combinational circuit are used only once during a com-
putation. By introducing clocked memory elements into the circuit, we
can reuse combinational elements. Because they can use hardware more
than once, clocked circuits can often be much smaller than combinational
circuits for the same function.

This section investigates clocked circuits for performing addition and
multiplication. We begin with a ©(1)-size clocked circuit, called a bit-serial
adder, that can add two n-bit numbers in ©(n) time. We then investipate
linear-array multipliers. We present a linear-array multiplier with &(n)
size that can multiply two #-bit numbers in ©(n) time,

29.4.1 Bit-serial addition

We introduce the notion of a clocked circuit by returning to the problem
of adding two n-bit numbers. Figure 29.17 shows how we can use a single
full adder to produce the (n + b)-bit sum s = {(Sn.Su=1.....5) of two n-
bit numbers g = {du—1.@p_3.....40) and b = oy by_s. ... by, The
external world presents the input bits one pair at a time: first @, and b
then a; and A, and so forth. Although we want the carry-out from one
bit position to be the carry-in to the next bit position, we cannot just feed
the full adder’s ¢ output directly into an input. There is a timing issue:
the carry-tn ¢, entering the full adder must correspond to the appropriate

B) '
H regisier [~ == register ,—‘ - register ‘— Lo registar ’— —’-i register

{a)

Sud Clocked curcuits 679
.\'l .'1': Sj J-l-
| f ;
1 |

< B L Y T
Y ! e 6y € s LJ.i

r S O T B e

¢ .':i2 iy h's i ul_; bIJ

tbj (c) {d) ()

Figure 29.17 Thc operation of a bit-serial adder. During the ith clock period,
for i = O.1.....n, the full adder FA takes input bits @, and b, from the outside
world and a carry bit ¢, from the register. The full adder then outputs sum bit s,
which is provided externally, and carry bit ¢4, which is stored back in the register
to be used during the next clock period. The register is initialized with ¢ = 0.
(a}-{e) The state of the circuit in each of the five clock perieds during the addition
of & = (1011) and & = (1001} to produce 5 = {10100).

inputs a, and b,. Unless these input bits arrive at exactly the same moment
as the fed-back carry, the output may be incorrect.

As Figure 29.17 shows, the solution is to use a clocked circuit, or sequen-
tial circuit, consisting of combinational circuitry and one or more registers
(clocked memory elements). The combinational circuitry has inputs from
the external world or from the output of registers. It provides outputs
to the external world and to the input of registers. As in combinational
circuits. we prohibit the combinational circuitry in a clocked circuit from
containing cycles.

Each register in & clocked circuit 1s controlled by a periodic signal, or
clock. Whenever the clock pulses, or ticks, the register loads in and stores
the value at its input. The time between successive clock ticks 15 a clock
period. In a globally clocked circuit, every register works off the same clock.

Let us examine the operation of a register in a little more detail. We
treat each clock tick as a momentary pulse. At a given tick, a register reads
the input value presented to it at that moment and stores it. This stored
value then appears at the register’s output, where it can be used to compute
values that are moved into other registers at the next clock tick. In other
words. the value at a register’s input during one clock period appears on
the register’s output during the next clock period.

Now let us examine the circuit in Figure 29.17, which we call a bit-
serial adder. In order for the full adder’s outputs to be correct, we require
that the clock period be at least as long as the propagation delay of the
full adder. so that the combinational circuitry has an opportunity to settle
between clock ticks. During clock period O, shown in Figure 29.17(a),
the externat world applies input bits aq and by to two of the full adder’s

lih13)

Chapter 29 dednnetic Crreudty

mputs. We assume that the regisier is initialized to stoce a O the initia
carry-1a bit. which is the register output. is thus ¢, = 0. Later in this clock
period. sum bit s and carry-out ¢; emerge from the full adder. The sum
bit goes 10 the external world, where presumably it will be saved as part
of the entire sum 5. The wire from the carry-out of the full adder feeds
(into the register, so that ¢ is read into the register upon the next clock
tick. At the beginning of clock period 1. therefore, the register contains ¢.
During clock period 1, shown in Figure 29,1 7{b). the outside world applies
a; and & to the full adder, which, reading ¢; from the register, produces
outputs 5, and ¢;. The sum bit 5| goes out to the cutside world. and ¢
goes to the register. This cyele coatinues until clock period n. shown in
Figure 29.17{e), in which the register contains ¢,. The external world then
applies a, = b, = 0, 50 that we get s, = ¢,,.

Analysis

To determine the total time ¢ taken by a globally clocked circuit, we need
to know the number p of clock periods and the duration & of each clock
period: ¢ = pd. The clock period & must be long enough for all combina-
tional circuitry to settle between ticks. Although for some mputs it may
settle earlier, if the circuit is to work correctly for all inputs. d must be at
least proportional to the depth of the combinational circuitry.

Let us see how long it takes to add two #-bit numbers bit-serially. Each
clock period takes ©(1) time because the depth of the full adder is & 1).
Since n + 1 clock ticks are required to produce all the outputs, the total
lime to perform bit-serial addition is (n+ 1) 8(1) = &{n).

The size of the bit-serial adder (number of combinational elements plus
number of registers) is 6(1).

Ripple-carry addition versus bit-serial addition

Observe that a ripple-carry adder is like a replicated bit-serial adder with
the registers replaced by direct connections between combinational ele-
ments. That is, the ripple-carry adder corresponds to a spatial “unrolling”
of the computation of the bit-serial adder. The fth full adder in the ripple-
carry adder implements the fth clock period of the bit-serial adder.

In general, we can repiace any clocked circuit by an equivalent combina-
tional circuit having the same asymptotic time delay if we know in advance
how many clock periods the clocked circuit runs for. There 1s, of course, a
trade-off involved. The clocked circuit uses fewer circuit elements (a factor
of ©(n} less for the bit-serial adder versus the ripple-carry adder), but the
combinational circuit has the advantage of less control circuitry—we need
no clock or synchronized external circuit to present input bits and store
sum bits. Moreover, although the circuits have the same asymptotic time
delay, the combinational ¢ircuit typically runs slightly faster in practice.

2t Clocked circnses o8

o b i b

19 24 Ipotl 11101

9 38 1001 111910

4 116 100 11108100

323 10 11101000

1 464 1 111010000
531 1go0 100111

Ry {h)

Figure 29.18 Multiplying 19 by 29 with the Russian peasant’s algorithm. The a-
column entry in each row is half of the previous row’s entry with fractions ignored.
and the A-column entries double from row to row. We add the b-column entries
in all rows with odd g-column entries, which are shaded. This sum is the desired
product. {#) The numbers expressed in decimal. (b) The same numbers in binary.

The extra speed is possible because the combinational circuit doesn't have
to wait for values to stabilize during each clock period. If all the inputs
stabilize at once, values just ripple through the circuit at the maximum
possible speed. without waiting for the clock.

29.4.2 Linear-array multipliers

The combinational multipliers of Section 29.3 need ©(n?) size to multiply
two 7-bit numbers. We now present two multipliers that are linear, rather
than two-dimensional, arrays of circuit elements. Like the array multiplier,
the faster of these two linear-array multipliers runs in ©(n) time.

The linear-array multipliers implement the Russian peasant’s algorithm
(so called because Westerners visiting Russia in the nineteenth century
found the algorithm widely used there), illustrated in Figure 29.18(a).
Given two input numbers a and b, we make two columns of numbers,
headed by a and b. ln each row, the a-column entry is half of the previ-
ous row’s g-column entry, with fractions discarded. The b-column entry
is twice the previous row's b-column entry. The last row is the one with
an a-column entry of 1. We look at all the g-column entries that contain
odd values and sum the corresponding b-column entries. This sum is the
product a - b.

Although the Russian peasant’s algorithm may seem remarkable at first,
Figure 29.18{b) shows that it is really just a binary-number-system imple-
mentation of the grade-school multiplication method, but with numbers
expressed in decimal rather than binary. Rows in which the g-column entry
is odd contribute 10 the product a term of & multiplied by the appropriate
power of 2.

62

Chapter 29 Avithaetio Crrendcy

A slow linear-array implementation

Figure 29.19(a) shows one way to implement the Russian peasant’s aigo-
rithm for two #-bit numbers. We use a clocked circuit consisting of a
linear array ot 2n cells. Each cell contains three registers. One register
holds a bit from an a entry. one holds a bit from a & entry, and one holds
a bit of the product p. We use superscripts to denote cell values before
cach step of the algorithm. For example, the value of bit a, before the jth

. ' - [] L
step is @, and we define ¢/ = (alf_ @\, . sy)

The algorithm executes a sequence of # steps, numbered 0.1,....n - 1,
where each step takes one clock period. The algorithm maintains the in-
vanant that before the jth step,

all Bt p i~ g b (29.6)

(see Exercise 29.4-2). Initially, a'” = q, " = p, and p'® = 0. The jth

step consists of the following computations,

1. If @ is odd (that is, af)” = 1), then add b into p: p'*1' —) 4 pi,
(The addition is performed by a ripple-carry adder that runs the length
of the array; carry bits ripple from right to left.) If a'/' is even, then
carry p through to the next step: pis~1i — ptul,

2. Shift a right by one bit position:

FI :
UHJ‘_{a,;’_, if0<i<2n-2,

4 0 ifi=2n-1,

3. Shift & left by one bit position:

et {bj{‘i ifl<i<2n—1,
! 0 ifi=0.

After running n steps, we have shifted out all the bits of a; thus, &' = (),
Invariant {29.6) then implies that p*! = g . b,

We now analyze the algorithm. There are » steps, assuming that the
control information is broadcast to each cell stmultaneously. Each step
takes ©(n) time in the worst case, because the depth of the ripple-carry
adder is ©(n), and thus the duration of the clock period must be at least
©(n). Each shift takes only ©(1) time. Overall, therefore, the algorithm
takes €(n?) time. Because each cell has constant size, the entire lincar
array has ©(n) size,

A fast linear-array implementation

By using carry-save addition instead of ripple-carry addition, we can de-
crease the time for each step to ©(1), thus improving the overall time to
©(n). As Figure 29.19(b) shows. once again each cell contains a bit of an «
entry and a bit of a 4 entry. Each cell also contains two more bits. from #«
and v, which are the outputs from carry-save addition. Using a carry-save

204 Clocked circuits

cell o ber
LU 2 L
L_]| ““UT (} l_O_ L1 f;m':li,\
|ﬂ EL 0 !l himzl‘}
o) !{1 JLJL{E olloflo)ior V=0
1'{1”{1_ {1][o]io][1] 4" =9
o }__' IOJLA D hmzsg
ojlo]io] Hlgloff =2
—r=="——r 1 r .:r .1 1 -
olin'oljollo] 001 _{LE d' =
Uumﬂﬁqiliﬂﬁlm
EMELQLQILQH%M
o] [01f0][0][e][o EEZ@ JRI
11ﬂ310L11M#¥m
o]l o] Loy [p™ = w7
El_]_l-l u{-h:
olloo] 5™ =164
LU =87
F‘ET{L uf_i]:
ol[o][o] "= 92
1 Lj p =551

(i)

=]=] =

[e]=]

[elel=]=]

(elslcle]
EIEIEIER

[ele]=o]

clel-1=]

[ele]-1=]

[e]=1-1=]

[ela]=]a] ~

EIEIENEY

[ele]=]=]

EISIEIEY

633

vell number

o 3 4 3 1 0
ol[o][1|00 11| =19
ollo] [T 11 e 1] 4" <
11 ™ 1 N
olio|[o:o]folloilel @
rinirnisn G
Logio]lo‘[o]jo}[0:Jo] "=
. i] 1]
ojjo)lo-[1]]o}[of|1] &"=v
12| O Y P
O[O0 L =19
ojlo]loJ[0[o][ojle] +"=0
o][o] (0] [ol[t][0][0] 4=+
ol follo] 47 =16
:
o] [thojoy L] =50
plotiyleileflofio] v =8
o] o} [0] 0! [o] [t]lo] 4~
i OIlD ollo] p* 2232
I | duiuinn
ololo L W =39
ofLtjl]iojlojloflo] v"=us
o[o][o}i0][0][o][1] & =1
F 1
1][o]1]i0]o}]o]jo] 5= 464
O [Ljioffoflu 1]« =39
oluji]lollojloflop v =48
o] [o]io][o][o}[allo] <=0
ofjtliollollollojo] 5° =928
1jojjojol LT[« =455
L lo][of o]{o][0; v*= 96
{b)

Figure 29.19 Two linear-array implementations of the Russian peasant’s algo-
rithm, showing the multiplication of @ = {9 = {1001} by b = 29 = (11101}, with
n = 5. The situation at the beginning of each step j is shown, with the remaining

s:gmﬁcant bits of a"*! and b"' shaded.

(a) A slow implementation that runs in

©(x*) time. Because a3 = 0. we have p'¥ = g - b. There are # steps, and each
step uses a ripple-cacry addition. The clock penod is therefore proportional to the
2y time overall. (b) A fast implementa-
tion that runs in €(n) time because vach step uses carry-save addition rather than
ripple-carry addition, thus taking only ©(1} time. There are a total of 22 - 1 =19
steps; after the last step shown, repeated carry-save addition of u and v yields

length of the array, or ©in), leading to &(n

u =g b

B34

Chaptor 29 Arithietic Clrouly

representation to accumulate the product. we maintain the invariant that
before the jth step.

a"f.:' ‘ b;j-:, + “"Jr'u +¢ =g h (2971

(again, see Exercise 29.4-2;. Each step shifts a and A in the same way as the
slow implementation, so that we can combine equations {29.6) and (29.7)
to yield &'/' + v'/* = p'/'. Thus, the & and ¢ bits contain the same infor-
mation as the p bits 10 the slow implementation.

The jth step of the fast implementation performs carry-save addition
on ¥ and v. where the operands depend on whether a is odd or even. It

11 : ’
a," = 1, we compute
A arity(p 1 ¢y for i =0, 1 2n—1
u;‘ . p y{. I * i‘ + 'II — ¥ Avawa -
and
. P (40 () : ;
LU majority(b,” L vl) 1 <i<2n-1,
d ifi=0.

‘)
Otherwise, ;' = 0, and we compute

] . Y fi .
j’”’ }f—par1ty(0,u{{”-,r”) fori=0,1,...,2n -1

‘'t

i

and

S majority(0, ui*’_)l,vfj_}l} Hl<i<3n-1,
{ if i =0.

After updating « and v, the jth step shifts a to the right and # to the left
in the same manner as the slow implementation,

The fast implementation performs a total of 2n — [steps. For j > n, we
have a/' = 0, and invariant (29.7} therefore implies that &'/' + v/} = g. b,
Once a'/) = (, all further steps serve only to carry-save add u and v.
Exercise 29.4-3 asks you to show that ¥!2"=V' =0, so that 42"~ = 4. b.

The 1otal time in the worst case is ©(n), since each of the 2n7 — 1 steps
takes ©(1) time. Because each cell still has constant size, the total size
remains ©(n).

Exercises

29.4-1
Let a = {1011Gt}, & = (011110}, and » = 6. Show how the Russian
peasant’s algorithm operates, in both decimal and binary, for inputs a
and b.

29.4-2
Prove the tnvariants {29.6) and (29.7) for the linear-array multipliers.

29.4-3
Prove that in the fast linear-array multipliee, 777! = 0.

Problems

Priffens for Chamor v 633

29.4-4
Describe how the array muliiplier from Section 29.3.1 represents an "un-
rolling” of the computation of the fast ltnear-array multiiplier.

29.4-5

Consider a data stream {xj.x»....) that arrives at a clocked circuit at the
rate of | value per clock tick. For a fixed value #, the circuit must compute
the value

y, = max x,
F—hnel ey
for 1 = n,n + 1..... That is, ¥, is the maximum of the most recent #

values received by the circuit. Give an O(n)-size circuit that on each clock
tick inputs the value x, and computes the output value y, in O(1) time.
The circuit can use registers and combinational elements that compute the
maximum of two inputs.

280.4-6 *
Redo Exercise 29.4-5 using only O(lg n) "maximum” elements,

29-1 Division circuits
We can construct a division circuit from subtraction and multiplication
circuits with a technique called Newton iteration. We shall focus on the
related problem of computing a reciprocal, since we can obtain a division
circuit by making one additional multiplication.

The idea is to compute a sequence yo, ¥1, Y=, ... of approximations to the
reciprocal of a number x by using the formula

YVivr = 2.'*": - xyg: .
Assume that x is given as an #-bit binary fraction in the range 1/2 <
x < 1. Since the reciprocal can be an infinite repeating fraction, we shall

concentrate on computing an #-bit approximation accurate up to its least
significant bit.

a. Supposce that |y, — 1/x| £ € for some constant € > 0. Prove that
]yn—l -]fX| < fz-

4

b. Give an initial approximation g such that y, satisfies [y, — 1/x] < 27
for all & > 0. How large must k& be for the approximation y; to be
accurate up to its least significant bit?

¢. Describe a combinational circuit that, given an n-bit input x, computes
an n-bit approximation to 1/x 1n O(lg3 n) time. What is the size of your
circuit? (Hint: With a little cleverness, you can beat the size bound of
©i{n’lgn).)

anth

Chapter notes

Caapeer 29 eithctic Clvetides

29-2 Boolean formulus for symmerric fanctions

A A-input function fix, xs, ..., Y. 1s spmmetric if
Filx o V) = S e Vg ey X]
for any permutation w of {1.2. ... #}. In this problem. we shall show that

there is a boolean formula representing £ whose size is polynomial in n.
{For our purpeses. a boelean formula is a string comprised ot the vari-
ables X v Yr. parentheses. and the beolean operators v, A, and -}
Our approach will be to convert a logarithmic-depth boolean circuit to
an equivalent polynomial-size boolean formula. We shall assume that all
circuits are constructed from 2-input AND. 2-input OR, and NOT gates.

a. We start by considering a simple symmetric function. The generalized
majority function on n boolean inputs is defined by

D+ ++x, >n/2,

majority, (x|, s, ..., x,) = {O othe rwise

Deseribe an O{lg n)-depth combinational circuit for majority,. (Hint:
Build a tree of adders.)

4. Suppose that / is an arbitrary boolean function of the # boolean vari-
ables xy, x-.., ... t,. Suppose further that there is a circuit C of depth o
that computes f. Show how to construct from C a boolean formulia
for f of length O{24). Conclude that there is polynomial-size formula
for majority,.

¢. Argue that any symmetric boolean function Fx.x, ... x,) can be ex-
pressed as a function of 377, x,.

d. Argue that any symmetric function on # boolean Inputs can be com-
puted by an O(lg n)-depth combinational circuir.

e. Argue that any symmetric boolean function on s boolean variables can
be represented by a boolean formula whose length is polynomial in ».

Most bocks on computer arithmetic focus more on practical implemen-
tations of circuitry than on algorithmic theory. Savage [173] is one of
the few that investigates algorithmic aspects of the subject. The more
hardware-oriented bocks on computer arithmetic by Cavanagh [39] and
Hwang {108] are especially readable. Good books on combinational and
sequential fogic design include Hill and Peterson [96] and, with a twist
toward formal language theory, Kohavi [126].

Aiken and Hopper [7] trace the early bistory of arithmetic algorithms.
Ripple-carry addition is a5 at least as old as the abacus. which has been

Moy for Cliapier 24 Hd~

around tor over 30300 vears. The first mechanical calculator employing
ripple-carry addition was devised by B. Pascal in 1642, A calculating
machine adapted to repeated addition for multiplication was concelved
by S. Morland in 1666 and independently by G. W. Letbnitz in 1671. The
Rassian peasant’s algorithm for multiplication is apparently much older
than its use in Russia in the nineteenth century. According to Kauth [122],
it was used by Egyptian mathematicians as long ago as 18300 B.c.

The kill. generaie, and propagate statuses of a carry chain were exploited
in a relay calculator built at Harvard durning the mid-1940's [189]. Ongz
of the frst implementations of carry-lookahead addition was described by
Weinberger and Smith [199]. but their lookahead method requires large
gates. Ofman [152] proved that #-bit numbers could be added in Oflgn)
time using carry-lookahead addition with constant-size gates.

The idea of using carry-save addition to speed up multiplication is due to
Estrin, Gilchrist, and Pomerene [64]. Atrubin [13] describes a linear-array
multiplier of infinite length that can be used to multiply binary numbers
of arbitrary length. The multiplier produces the nth bit of the product
immediately upon receiving the nth bits of the inputs. The Wallace-tree
multiplier 15 attributed to Wallace [197], but the 1dea was also indepen-
dently discovered by Ofman [152].

Division algorithms date back to 1. Newton, who around 16635 invented
what has become known as Newton iteration. Problem 29-1 uses Newton
iteration to construct a division circuit with 9[1gz-n) depth. This method
was tmproved by Beame, Cook, and Hoover [19], who showed that »n-bit
division can in fact be perfermed in ©(lg n) depth.

