
1

The Importance of Generalizability in Machine
Learning for Systems

Varun Gohil, Sundar Dev, Gaurang Upasani, David Lo, Parthasarathy Ranganathan, and Christina Delimitrou

Abstract—Using machine learning (ML) to tackle computer
systems tasks is gaining popularity. One of the shortcomings of
such ML-based approaches is the inability of models to generalize
to out-of-distribution data i.e., data whose distribution is different
than the training dataset. We showcase that this issue exists
in cloud environments by analyzing various ML models used
to improve resource balance in Google’s fleet. We discuss the
trade-offs associated with different techniques used to detect
out-of-distribution data. Finally, we propose and demonstrate the
efficacy of using Bayesian models to detect the model’s confidence
in its output when used to improve cloud server resource balance.

I. INTRODUCTION

In recent years, there has been growing interest in using
machine learning (ML) to tackle computer systems challenges.
This is motivated by the increasing complexity of modern
systems and the effectiveness of ML in vision and natural
language tasks with similar complexity. Prior work has demon-
strated the effectiveness of using ML for scheduling, resource
management, power management, debugging, memory alloca-
tion, and compiler optimizations [1], [2], [3], [4].

Despite the popularity of using ML in systems, there exist
three major concerns that hinder its widespread adoption. The
first is the interpretability or explainability of ML models.
Many models act as black boxes, making it hard to extract
useful insights from them and debug them when they do
not work as intended. The second concern is scalability.
As ML models become larger, their execution must scale
to their respective system setting. The final concern is the
generalizability of ML models. Generalizability refers to the
model’s ability to perform well on data that differs from its
training data in its statistical properties, such as independence
and identical distribution (ID). This is an issue in environments
that change dynamically. One specific example is a cloud
environment, where the system changes frequently due to high
workload churn and increasingly heterogeneous hardware.

Interpretability and scalability have received significant at-
tention from the systems community, with prior work evaluat-
ing their proposals for these metrics [1], [2], [5]. However, the
generalizability of models has not received similar attention.
ML models rely on the assumption that their training and
testing data are independent and identically distributed (IID).
When this assumption is violated, models perform poorly.
Given that models deployed in a cloud environment often
encounter data that violate the IID assumption, it is critical to

Varun Gohil and Christina Delimitrou are affiliated with Massachusetts
Institute of Technology (email: {varuncg, delimitrou}@csail.mit.edu)

Sundar Dev, Gaurang Upasani, David Lo and Parthasarathy
Ranganathan are with Google. (email:{sundarjdev, gupasani, davidlo,
parthas}@google.com)

Machine Learning Model
Decision
Making
ModuleUncertainty Estimator Uncertainty

PredictionInput

Decision

Fig. 1. Logical block diagram of an ideal uncertainty-aware system.

consider their generalizability. Fortunately, this is well-studied
by the ML community and is known as out-of-distribution
(OOD) generalization [6].

The most effective way to improve a model’s performance
on OOD data is to retrain it on the OOD data [7]. However,
retraining is expensive and time-consuming, especially for
larger models. Even though retraining helps generalizabilty,
it can only be done retroactively, i.e., after observing that
the model’s prediction was inaccurate. The system relying on
the model still uses the inaccurate prediction, which can be
harmful, particularly in the systems domain, where errors can
be costly. For example, a scheduler using an ML model with
OOD data as input can hurt its Quality of Service (QoS).

Ideally, the system should ignore the model’s prediction on
OOD data and fall back to a heuristics-based approach. To
achieve this one needs to include an uncertainty estimation
that detects when the model cannot generalize. We refer to
such a system as an “uncertainty-aware” system. Figure 1
shows a logical block diagram of such an ideal system.

We make the following contributions:
• We show that generalizability is critical when using ML

in cloud systems by studying a representative example
where ML has been extensively applied, namely resource
provisioning in cloud environments.

• We also demonstrate the efficacy of using Bayesian
models for OOD detection, which provides a quantitative
confidence score for the model’s output.

II. THE NEED FOR GENERALIZABILITY

We now describe the setting we use as a running example
to motivate the need for generalizable ML for systems.

A. Problem Description and Relevance

Over the past few years, the heterogeneity in datacenters
has increased dramatically, making performance optimizations
more challenging. One such challenge is balanced resource
provisioning. Balance is achieved when the amount of provi-
sioned resources matches the amount of resources required to
execute a workload. This ensures no resources are stranded at
the target utilization. Resources include the server’s memory
and network bandwidth, cache, and storage and compute
capacity. Balance is important to optimize performance per

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2024.3384449

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

2

cost. If a resource is under-provisioned, it hurts performance.
On the flip side, if a resource is over-provisioned it will be
underutilized, which hurts cost. Below we show an analysis
of system balance from Google’s fleet, which shows that one
of the platforms is imbalanced in terms of CPU and memory
bandwidth. We collect CPU and memory bandwidth utilization
data over a 5 min interval for over 10 days on each machine
in the fleet and use the median value per machine.

Fig. 2. Fleet-wide memory bandwidth utilization versus CPU utilization. Each
datapoint represents the median CPU and bandwidth utilization per node.
Distributions along the axes show the histograms of CPU (horizontal) and
memory bandwidth utilization (vertical).

Figure 2 shows the fleet-wide memory bandwidth utilization
vs CPU utilization for two platforms. For the platform code-
named Quartz (left), memory bandwidth utilization scales
linearly with CPU utilization. However, for the platform code-
named Topaz we see a roofline plot. Here, memory bandwidth
utilization plateaus after reaching 60% CPU utilization. Fig-
ure 2 illustrates the imbalance in platform Topaz due to under-
provisioned memory bandwidth.

Such imbalanced resource provisioning affects multiple
policies deployed in Google’s datacenters, including job
scheduling, and Quality-of-Service-based (QoS-based) evic-
tion. Incorporating such imbalances across all resource di-
mensions in various system level policies is difficult due to
the increasing server heterogeneity and the high job variation
frequency. Owing to the problem’s complexity, ML becomes
an attractive candidate. Specifically, we develop an ML model
that predicts the memory bandwidth utilization of a given
workload mix on a platform to assess its resource imbalance.

This model can help platform designers decide the memory
bandwidth needed for a new platform to be balanced. Second,
it can be used during scheduling to ensure that the memory
bandwidth utilization on a given machine remains within an
acceptable range after new workloads are scheduled on it.

Our model takes the platform configurations and workload
mix characteristics as inputs, and predicts the 90th percentile
memory bandwidth utilization. The platform configurations
include various resources, such as CPU and memory capacity,
network bandwidth, cache capacities, etc. Workload mix char-
acteristics include percentile vectors of resource utilization for
the mix like CPU, memory, and network utilization along with
scheduler hints for cache and NUMA affinity.

We focus on workload mixes rather than individual jobs
because platforms employ colocation to improve utilization.
Further, since Google has a diverse set of applications, it is
not possible to manually select a few workload mixes that are
representative of the fleet-wide behavior. Hence, we abstract

away the individual workloads within a mix by representing
mixes by their resource utilization and scheduling scores.
B. Methodology

We focus on four platform types deployed in Google’s fleet,
namely, Quartz, Jade, Topaz and Opal. The platform names
are anonymized to preserve confidentiality. This list includes
platforms developed by different vendors, as well as multiple
platforms developed by the same vendor. These four platforms
execute the majority of cycles in Google’s fleet. We collect
data across five representative clusters, each consisting of tens
of thousands of servers. We obtain the platform configurations
from the platform specification documentation. We collect
resource metrics for each workload for a 24 hour period
using Google-Wide Profiling (GWP) [8]. Our final dataset
consists of 1.2 million data samples, each of which is a unique
combination of a workload mix and platform configuration.

We train six different models including random forests,
decision trees, histogram gradient boosters, neural networks,
a bagging regressor, and a linear regressor. Table I shows the
description of each model and its hyperparameters.

We use 75% of the dataset for training and the remaining
25% for testing. To decide on the models’ hyperparameters,
we use 20% of the training data for validation. We use mean
square error loss for training all models.
C. Effectiveness and Challenges of Using ML

We use Mean Absolute Percentage Error (MAPE) to eval-
uate each model’s inference performance, in Table I.

The Random forest model performs the best, with 6.6%
MAPE on the test data. The second and third best-performing
models are the histogram gradient booster and the bagging
regressor, both with 6.9% and 7.0% MAPE. The results indi-
cate that these models are effective at predicting the memory
bandwidth utilization of a workload mix on a given platform.

We further test these models on data collected from an
unseen platform. Here, an unseen platform refers to a platform
whose data was not used to train the model. Here, we have
trained the models on data collected on platforms Quartz, Jade,
Topaz and Opal. We test these models on data collected from
unseen platform Amber. We follow the methodology described
in Section II-B to collect data from the Amber platform.

The last column in Table I shows the results on the unseen
platform. All top-performing models like RF, gradient boost-
ers, and NNs have significantly higher MAPE on the unseen
platform. The RF still performs the best with a MAPE of
56%. Gradient booster and Decision Tree are the next best
performing with MAPE of 57% and 57.2% respectively.

The high MAPE values demonstrate the models’ inability
to make high-accuracy predictions on unseen platforms. If
they were used in production, they would lead to memory
bandwidth contention and QoS violations. Alternatively, if
such a model is used to provision a new platform’s memory
bandwidth, it would lead to either excess cost or poor perfor-
mance. This inability to generalize prevents deploying them
in production, where they would encounter unseen data.

III. POOR PERFORMANCE ON UNSEEN PLATFORMS

Since unseen platforms have different resources than seen
platforms, the model would have to extrapolate from seen

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2024.3384449

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

3

TABLE I
ML MODEL PERFORMANCE WHEN TESTED ON ID AND OOD DATA.

Model Hyperparameters
MAPE on data from Quartz, MAPE on data from
Jade, Topaz, Opal (seen or ID) Amber (unseen or OOD)

Random Forest Max depth = 40, Features used for splitting = 50% 6.6% 56%
Hist. Grad. Boosters Base Estimator = decision tree, Max depth = 15, L2 regul. = 0.7 6.9% 57%
Bagging Regressor Base Estimator = decision tree, Features by each estimator = 95% 6.9% 60.9%

Neural Network 2 hidden layers with 200 neurons each using ReLU activation 7.0% 94%
Decision Tree Max depth =14 7.4% 57.2%

Linear Regression Standard features, removing the mean and scaling to unit variance 8.5% 73.2%

Fig. 3. Histogram of 90th percentile CPU utilization and 90th percentile
memory bandwidth utilization on different platforms.

TABLE II
RESULTS OF BAYESIAN NEURAL NETWORK MODEL

Bayesian NN trained on platforms Quartz, Jade, Topaz, and Opal

Test on data from MAPE Uncertainty

Quartz, Jade, Topaz, Opal 8.7% 1.2
Amber 47.7% 15.6

Bayesian NN trained on Quartz, and Topaz

Test on data from MAPE Uncertainty

Quartz, Topaz 8.0% 1.0
Amber 56.0% 15.0

Jade 12.8% 1.9
Opal 11.8% 3.4

datapoints, leading to high inaccuracy. On the other hand, the
distribution of workload mix characteristics across platforms
can also differ depending on the policies used by the cluster
scheduler. Figure 3 shows the distributions of the 90th per-
centile memory bandwidth and 90th percentile CPU utilization
on different platforms. Distributions on platforms Quartz, Jade,
Topaz and Opal are similar, however, the distribution for
platform Amber is significantly different. The distributions
differ because of different hardware characteristics of the
platforms and differences in workload mixes.

The models perform worse on unseen platforms because
data collected from seen and unseen platforms are not identi-
cally distributed. Since data from platform Amber violate the
IID assumption, they can be classified as out-of-distribution
(OOD), emphasizing the need for generalizable ML models.

IV. USING BAYESIAN MODELS FOR OOD DETECTION

Our observations suggest that a model can be used on data
that is identically distributed but not on out-of-distribution
data. Hence, one can fall back to a non-learning approach
for OOD data and only use the model for the remaining
data inputs. Unfortunately, detecting OOD data is not trivial,

Bayesian
Neural Network

(Run multiple
times)

If σ2 > threshold:
 cannot predict
Else :
 output μ

Server
Configurations

+
Workload Mix

Characteristics

μ,σ2

Distribution
of

predictions

μ
or

Cannot
Predict

Fig. 4. Logical block diagram showing how we use Bayesian neural network.

as it requires access to ground truth to check the prediction
accuracy, which is not available during deployment.

We propose using uncertainty estimates provided by
Bayesian models to detect OOD data samples. For our run-
ning example, we use Bayesian neural networks that learn
weight distributions instead of specific weight values. During
inference, the network samples from this weight distribution to
produce a prediction. Inference involves probabilistic sampling
and hence produces a different output for the same input for
each inference. By running the Bayesian neural network x
times, one obtains x different predictions. These x predictions
together define a distribution of predictions. The larger the
standard deviation of this distribution, the more uncertain the
network is. Hence, we define the uncertainty of predictions as
the standard deviation of the prediction distribution. Figure 4
shows that the Bayesian model acts as both the ML model
performing the prediction and the uncertainty estimator.

We train a 2-layered Bayesian NN on data collected from
platforms Quartz, Jade, Topaz, and Opal. Once trained, we
test the network on data collected from unseen platform
Amber. While testing, we run the model 100 times to obtain
a distribution of predictions. We use the standard deviation
of this distribution as uncertainty. Further, to obtain accuracy,
we compare the test label with the mean of the prediction
distribution. Table II shows the MAPE values obtained when
testing the Bayesian model. When tested on seen platforms,
the model has a MAPE of 8.7% with uncertainty of 1.2. When
tested on an unseen platform (Amber), the Bayesian model has
a MAPE of 47% and an uncertainty of 15.6. The Bayesian
model is similar to previously mentioned models in that it
does not perform well on OOD data. However, it differs in
that it also indicates when it has a high uncertainty.

Next, we train a Bayesian neural network only on data
collected on platforms Quartz and Topaz. Table II shows the
results when the Bayesian network is tested on data collected
from platforms Jade, Opal, and Amber. As expected, the model
performs well on test data collected from seen platforms
Quartz and Topaz. It does not perform well on data collected

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2024.3384449

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

4

from platform Amber, which is OOD, where the model does
give a high uncertainty of 15. Next, we test the model on
data coming from platforms Jade and Opal. Both Jade and
Opal are unseen platforms, since their data is not used to
train the Bayesian neural network. However, the distribution
of data collected on Jade and Opal is similar to that of data
collected on Quartz and Topaz. Our Bayesian neural network
has 12.8% MAPE and 11.8% MAPE on platforms Jade and
Opal respectively. It also provides low uncertainty estimates
of 1.9 and 3.4 for them. This indicates that for unseen
servers, our Bayesian neural network provides predictions with
low uncertainty estimates, as long as the data has a similar
distribution to the data coming from a seen server.

Using Bayesian NNs as an uncertainty estimator helps us
realize a system which knows when to not trust the model’s
prediction. When using such a Bayesian model in a schedul-
ing system, the model will provide a prediction with high
uncertainty on Amber. The scheduler decides a threshold of
tolerable uncertainty above which it ignores the model’s pre-
diction and uses other heuristics to make scheduling decisions.
If the model was used for memory bandwidth provisioning
on a new platform, the server design can check the model’s
uncertainty and refrain from using its prediction to guide the
design process when uncertainty is high.

The workflow in Fig. 4 requires a domain expert to tune
the uncertainty threshold. Since uncertainty equals the standard
deviation of predictions, it has the same units as the prediction
target. In our case, an uncertainty of 1 means that the model’s
memory bandwidth prediction is off by ±1GBps. A domain
expert needs to analyze the criticality of the task and determine
an acceptable uncertainty level. Additionally, one also needs
to decide how many times to run the Bayesian model. The
approach we used is to measure the uncertainty after each run
and stop when the change in uncertainty is below 5%.

On an A100 GPU, the Bayesian model takes 600ms for
inference with batch size of 512. This overhead limits its use
for tasks like microsecond-scale scheduling. However, it is
useful for resource partitioning that runs for a few seconds, as
well as for resource provisioning during server design.

V. DISCUSSION OF TRADE-OFFS

While we use a Bayesian NN for uncertainty estimation,
other uncertainty estimators can also be used. The choice of
estimator offers trade-offs between the ability of the model to
detect when it cannot generalize and the model’s scalability.

Our Bayesian neural network uses the standard deviation of
the prediction of distributions as uncertainty. However, gener-
ating this distribution requires running the Bayesian network
multiple times. While these runs can be parallelized, the total
resource consumption is greater than running the model once,
limiting scalability. The exact trade-off is contingent on the
number of runs of the Bayesian network. The higher the
number of runs the more accurate the prediction distribution,
but the higher also the resource consumption. Hence, the
Bayesian network is good for detecting when the model can
generalize but it is not optimal for scalability.

Another way to deal with OOD data is to model the training
data distribution and to measure the distance of any new data

sample from the training distribution. Here the uncertainty
estimator would produce this distance as the uncertainty esti-
mate. This method is scalable, since the distance calculation
requires few vector operations. This uncertainty estimator
requires defining a threshold distance for a high-dimensional
distribution consisting of multiple features. Defining such
a threshold is not intuitive, and defining it incorrectly can
limit the system’s ability to detect when the model cannot
generalize. The Bayesian neural network avoids this issue
because one only needs to define the threshold uncertainty
in the target label space which tends to be one-dimensional
for most systems tasks, and hence is easier to reason about.

Alternatively, one can use a Bayesian neural network that
produces the parameters of a distribution as the output, instead
of point estimates. In our case, the model would produce the
mean and variance that define the distribution of memory
bandwidth utilization. With such a network, one only needs
to perform one inference to obtain the prediction distribution.
However, when trying such a model we found that its memory
usage exceeded the capabilities of a single GPU, due to the
size of the weight and activation matrices for the intermediate
layers needed to learn the representation for the distribution.
Here again there is a trade-off between the ability to detect
generalizability and the model’s scalability, with the latter
being limited by the memory and not the CPU usage.

Given these trade-offs, one should decide the estimator
by analyzing the properties of the specific use case. If the
input feature space is low-dimensional, using a simple distance
based approach can be sufficient. If one has a high-dimensional
feature space, using a Bayesian model would be a better
approach. We plan to perform a thorough quantitative analysis
of the trade-offs offered by different uncertainty estimators and
their effects of the task in future work.

VI. CONCLUSION

We highlight the importance of generalizability of ML
models when using them for systems tasks. We showcase that
models deployed in cloud environments can have poor gen-
eralizability and propose estimating uncertainty via Bayesian
models to identify scenarios where models do not generalize.

REFERENCES

[1] Y. Zhang, W. Hua, Z. Zhou, E. Suh, and C. Delimitrou, “Sinan: ML-
Based and QoS-Aware Resource Management for Cloud Microservices,”
in Proceedings of ASPLOS, April 2021.

[2] S. Chen, A. Jin, C. Delimitrou, and J. Martinez, “ReTail: Opting for
Learning Simplicity to Enable QoS-Aware Power Management in the
Cloud,” in Proceedings of HPCA-28, February 2022.

[3] M. Maas, D. G. Andersen, M. Isard, M. M. Javanmard, K. S. McKin-
ley, and C. Raffel, “Learning-based memory allocation for c++ server
workloads,” in Proceedings of ASPLOS, 2020, p. 541–556.

[4] Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin,
“A hierarchical neural model of data prefetching,” in ASPLOS, 2021.

[5] N. P. Jouppi, C. Young, N. Patil, D. Patterson, and et al., “In-datacenter
performance analysis of a tensor processing unit,” in ISCA, 2017.

[6] Z. Shen, J. Liu, Y. He, X. Zhang, R. Xu, H. Yu, and P. Cui, “Towards
out-of-distribution generalization: A survey,” CoRR 2108.13624, 2021.

[7] I. Gulrajani and D. Lopez-Paz, “In search of lost domain generalization,”
arXiv:2007.01434, 2020.

[8] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt, “Google-
wide profiling: A continuous profiling infrastructure for data centers,”
IEEE Micro, vol. 30, no. 4, pp. 65–79, 2010.

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2024.3384449

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

