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Abstract—The lack of publicly-available cloud services has
been a recurring problem in architecture and systems. While
open-source benchmarks exist, they do not capture the complexity
of cloud services. Application cloning is a promising approach,
however, prior work is limited to CPU-/cache-centric, single-node
services.

We present Ditto, a framework for cloning end-to-end cloud
applications, monolithic and microservices, which captures I/O
and network activity, as well as kernel operations, in addition to
application logic. Ditto takes a hierarchical approach to appli-
cation cloning, capturing the dependency graph across services,
recreating each tier’s control/data flow, and generating system
calls and assembly that mimics individual applications. Ditto does
not reveal the logic of the original application, facilitating publicly
sharing clones of production services.

We show that across a diverse set of applications, Ditto
accurately captures their resource characteristics as well as their
performance metrics, is portable across platforms, and facilitates
a wide range of studies.

I. INTRODUCTION

Cloud computing now hosts a large fraction of the world’s
computation, ranging from machine learning workloads to
latency-critical interactive services [1]. Understanding these
applications is imperative to correctly design the systems that
populate future cloud infrastructures.

Directly executing real-world applications using representa-
tive workloads provides the most accurate insights into their
behavior. However, due to factors such as privacy and intellec-
tual property concerns, such applications and workloads often
remain inaccessible to researchers. To address this challenge,
alternative methodologies have been proposed. These can be
broadly classified into three categories: open-source bench-
marks [4], simulation and trace replay [8], and application
performance cloning with synthetic benchmarks [6].

Each of these approaches presents inherent trade-offs. Open-
source benchmarks, while flexible, often fail to mirror the
complexity and evolving nature of production cloud deploy-
ments. Simulation and trace replay provide greater realism,
but lack flexibility; results are constrained by the original
system configuration under which the trace was captured.
Synthetic benchmarks seek a balance by modeling key aspects
of the target application while retaining adaptability. However,
existing techniques for synthetic benchmark cloning largely
focus on CPU-centric, single-tier, user-level applications [6].

When evaluating cloud workloads, focusing solely on CPU-
centric microarchitectural events provides an incomplete pic-
ture. Cloud services inherently dedicate significant resources
to networking and OS-level operations. Moreover, their dis-
tributed nature, composed of interdependent components, de-
mands that cloning efforts capture this complex, multi-tier
behavior. Additionally, an assembly-level focus on metrics like
IPC, cache miss rate, and dependency distance neglects the
crucial higher-level performance indicators that cloud services
prioritize, such as average and tail latency.

Our paper on Ditto [9], presented in ASPLOS’23, addresses
these limitations. Ditto is an application cloning framework
designed for the cloud era. It automatically reproduces the
end-to-end application structure as well as key performance
characteristics of distributed services, from monolithic ap-
plications to complex microservice topologies. In particular,
Ditto transcends traditional cloning limitations by mirroring
behavior across the entire system stack – hardware, I/O,
networking, and OS. More importantly, Ditto does not reveal
any code or high-level functionality of the original application,
which motivates researchers to share and study realistic cloud
application clones without compromising sensitive data or
intellectual property.

Ditto employs several key techniques for transparently
cloning application topologies. First, it leverages distributed
tracing tools to capture cross-service dependency graphs. Sec-
ond, it reconstructs internal service control and data flow using
thread and network I/O modeling. Finally, Ditto generates
appropriate system calls and user-space assembly code to
replicate both on-CPU and off-CPU behavior. The application
cloning process is entirely automated. The methodology of
Ditto can be adapted to different platforms, deployments and
application configurations, such as load and thread pools
without requiring retraining, ensuring synthetic applications
closely mirror their production counterparts.

Ditto is beneficial to hardware vendors, cloud providers, and
researchers. Hardware vendors can obtain synthetic versions of
production applications to test new platforms, cloud providers
can specify performance and/or resource specs to hardware
vendors using the synthetic workloads, and researchers can
use representative end-to-end cloud services without the need
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for production code access. Ditto is open-source software. 1

II. APPLICATION CLONING ACROSS THE SYSTEM STACK

Application cloning for cloud services is challenging due
to the complexity and heterogeneity of the implementation,
and the various platforms they can be deployed on. Different
services can have entirely different bottlenecks across different
systems stacks ranging from hardware to application layer.
For example, key-value stores (KVS) require high single-core
performance and memory bandwidth to retrieve a large amount
of data under a strict latency SLO, while databases are usually
bottlenecked by disk I/O bandwidth. Therefore, it is important
to consider the performance breakdown across the system
stack to accurately clone the performance of end-to-end cloud
services.
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Fig. 1: General system stack for cloud applications [5]. Dashed
boxes are optional layers for virtualization.

Figure 1 demonstrates an abstract view of a generic system
stack for a single cloud server [5]. The performance of an
application is determined by factors that range from the ap-
plication code and inputs, to the environment it is running on,
including containerization technology, the hypervisor, server
platforms, and any collocated applications. We briefly describe
why these factors matter below.

A. Application Inputs

The behavior and performance of cloud applications is
significantly impacted by the service configuration and input
load, with the latter going through well-documented fluctua-
tions [2]. The application’s configuration, although changing
less frequently than load, can substantially alter the execution
flow of an application and impact performance. For instance,
configuring a smaller in-memory cache for a database can
cause more disk I/O accesses, significantly increasing latency.

1https://github.com/Mingyu-Liang/Ditto.

B. Application Codebase and Binary

The application and its linked libraries are intrinsic to its
performance, regardless of the platform it is deployed on.
Modifications in the application code can alter the control
and data flow of a service, its memory access patterns, and
its resource bottlenecks. This is especially true for new cloud
programming frameworks, like microservices and serverless,
where services are updated on a daily basis.

C. Deployment Environment

1) Containers and Virtual Machines (VMs): Cloud services
are often deployed with containers and/or VMs. These add
different levels of performance overheads, primarily due to
the extra I/O and network layers [3]. Unlike prior work, Ditto
faithfully clones the I/O behaviors of the cloud services, and
thus, the synthetic applications generated by Ditto can be
affected by virtualization the same way as the original services.

2) OS Kernel: Cloud applications are especially dependent
on OS performance, given that they spent a large fraction
of their execution at kernel level for interrupt handling, I/O
requests, memory management, task scheduling, etc. [4]. Prior
work on application cloning has mostly focused on user-
level application logic; for cloud services overlooking kernel
operations leads to very different performance characteristics
compared to the original application.

3) CPU-Memory Subsystem: The CPU-memory subsystem
is a dominant factor in cloud application performance, even
for services that spend significant time processing network re-
quests. We follow the top-down analysis methodology in [12]
to identify the key CPU performance metrics that impact the
overall IPC and reproduce them in the synthetic applications.

4) Hardware Devices: Services interact with hardware de-
vices, including disks, and NICs through system calls. In cloud
services specifically, peripherals can dominate performance,
especially when they experience long queueing delays. We
mainly consider the impact of storage and network devices in
our study, as many cloud services involve I/O and network
operations. Ditto can be extended to clone the behavior of
other devices, such as GPUs and hardware accelerators, which
we defer to future work.

D. Multi-Tenancy

Multi-tenancy improves datacenter utilization by deploying
multiple services on the same node. Applications share re-
sources, including CPU cores, LLC, and memory, disk I/O,
and network bandwidth [10]. Resource contention can degrade
performance, and should be accounted for in the application
cloning process.

III. SYSTEM DESIGN AND IMPLEMENTATION

Ditto is an application cloning framework for both single-
tier and microservice applications. It generates services that
faithfully reproduce the performance, resource profile, and
thread-level control/data flow of the original workload, decou-
pling representative system studies from access to the source
code or binary of production cloud services.
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1  // Main thread
2  void main_loop() {
3    while (!stop) {
4      epoll_wait(listen_fd, events, MAX_EVENTS, -1);
5      int socket_fd = accept(listen_fd, addr, len);
6      init_worker_thread_a(socket_fd);
7    }
8  }
9
10 // Worker thread type A
11 void worker_a_loop() {
12   while (!conn_closed) {
13     epoll_wait(socket_fd, events, MAX_EVENTS, -1);
14     read(socket_fd, buffer, BUFFER_SIZE);
15     // Handler to be generated in next step
16     worker_a_main(req_id);
17     dispatch_to_worker_b(req_id);
18     wait_worker_b();
19     sendmsg(socket_fd, buffer, BUFFER_SIZE);
20   }
21 }
22
23 // Worker thread type B
24 void worker_b_loop() {
25   ...
26 }

1  // Main function of worker A
2  void worker_a_main(req_id) {
3    // Syscalls
4    int fd = open(file, O_RDONLY);
5    int size = read(fd, buffer, BUFFER_SIZE);
6    close(fd);
7
8   // Assembly blocks
9   __asm__ __volatile__ (
10     ...
11  );
12
13  // Block for data_size = i & inst_size = j
14  __asm__ __volatile__ (
15    "xor r9, r9\n"
16    ".BLOCK_I_J:\n" // Inner loop
17    "add <X_REG>, <R_REG>\n"
18    "sub <R_REG>, DWORD PTR [r10 + <OFFSET>]\n"
19    "mul QWORD PTR[r10 + <OFFSET>]\n"
20    "mov r11, QWORD PTR [r11]\n" // Ptr chasing
21    "test r8d, <BIT_MASK>\n"
22    "jz .COND_BR_FOO\n"
23    ...
24    "cmp r9, <LOOP_COUNT>\n"
25    "jl .BLOCK_I_J\n"
26  );
27 
28  __asm__ __volatile__ (
29    ...
30  );
31 }

A

B C

D E F

1.0 1.0

0.30.5 0.5 0.7

Fig. 2: Overview of Ditto’s synthetic benchmark generation process.

Ditto adheres to the following design principles:
• End-to-end system stack modeling: Cloud services

often contain a large fraction of kernel-space operations
for network and disk I/O. Ditto captures the inputs, RPC
dependency graph, application binary, OS kernel, CPU,
memory, disk, networks, and resource interference.

• Portability: Ditto uses platform-independent features to
ensure that generated services are portable across plat-
forms without reprofiling. Synthetic applications also
faithfully adjust to load and configuration changes, such
as queries per second (QPS), and scaling, because of the
fine-grained network and thread modeling.

• Abstraction: Ditto does not disclose the implementation
of the original application, only exposing the skeleton
and post-processed performance characteristics to the
synthetic benchmark user. It replaces the skeleton of an
application with a template, refills the body with artificial
instructions and their operands, and abstracts the mem-
ory access patterns away to avoid side-channel attacks.
Application-specific characteristics, including user-space
function calls, memory accesses, and application inputs,
are also concealed. Thus, the synthetic workload can be
publicly shared, without a user reverse engineering the
implementation of the original service.

• Automation: Ditto automates the profiling and gener-
ation process. It entirely relies on static and dynamic
profiling of the original application to generate a bench-
mark. Users are not required to have expertise in the
implementation of a service to use the framework.

Figure 2 shows an overview of Ditto’s profiling and gen-
eration process. If the target service consists of a set of
microservices, Ditto first learns their Remote Procedure Call

(RPC) dependency graph, using distributed tracing. This graph
is then used to generate the API interfaces between the
different synthetic microservices. Next, Ditto analyzes the
thread and networking model, e.g., single- or multi-threaded,
and synchronous or asynchronous respectively using kernel-
level profiling, and builds the skeleton of each service. The
application skeleton contains empty handlers which are filled
with appropriate functionality in the next step. The handlers
can either be triggered upon receiving requests for worker
threads, or by a timer for background threads.

To generate the synthetic application body, Ditto instru-
ments the application binary using kernel- and user-space
profilers for different subsystems. Finally, Ditto uses the de-
viation in performance metrics between original and synthetic
application to fine tune the generator. The eventual synthetic
service can serve as a performance and resource proxy for the
original service.

A. Microservice Topology

A topology of microservices is a directed acyclic graph
(DAG), where the nodes are microservices and the edges
indicate the dataflow between dependent tiers. Ditto leverages
the distributed tracing frameworks present in most production
deployments to collect traces of end-to-end requests. The
performance overhead is negligible if the traces are sampled
properly. It then automatically extracts the dependency graph
between microservices and uses it as input to the skeleton
generator.

B. Application Skeleton

We define the application skeleton as the network and thread
models of an application, which determine how it handles
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remote service communication, and how tasks are assigned
to different threads, respectively. The application skeleton
is a critical design choice for cloud services facing tight
latency constraints, as it directly impacts their performance
and scalability.

The network model defines the mechanisms through which
an application interacts with other services. An application
can operate as a client, a server, or a combination of the
two. Client-side services often employ either synchronous or
asynchronous communication paradigms. On the server-side,
network models typically include blocking, non-blocking, and
I/O multiplexing. Ditto uses SystemTap to profile the network
model by probing kernel-space functions and data structures. It
then chooses one out of several network models that combine
the different design choices described above, to match the
profiled network configurations.

Cloud services frequently leverage multithreading to facili-
tate asynchronous I/O operations and enable parallel process-
ing. To characterize these threading patterns, Ditto utilizes
SystemTap to conduct call stack analysis. This provides in-
sights into the functionality, lifecycles, and invocation points
of threads within a target application. Threads are subsequently
clustered based on these shared characteristics. During the gen-
eration of synthetic counterparts, Ditto emulates the observed
threading behavior via a set of threads dedicated to executing
synthetic code designed to mirror the profiled application’s
behavior.

C. Application Body

The application body corresponds to the workload-specific
work, consisting of kernel-space functions, via system calls
and user-level functions. While assembly-level profiling for
kernel-space functions is unnecessary, since they can be cloned
by imitating the system calls themselves, it is critical to clone
user-space functions at assembly level to capture the low-level
usage of CPU resources.

To replicate kernel-space performance, Ditto profiles system
calls excluding those focused on network handling and process
management that are explicitly modeled in the previous step.
Using SystemTap, Ditto captures the distribution of these
system calls, including counts and arguments, to precisely
characterize kernel-level behavior. This data informs the gener-
ation of synthetic applications that mirror the original system’s
kernel-space patterns.

At the user level, Ditto analyzes factors which significantly
impact application on-CPU performance. These factors include
instruction mix, memory access patterns (data and instruction),
branch behavior, and data dependencies [12], [11]. To collect
platform-independent metrics, Ditto employs a suite of tools
including SystemTap, Intel SDE, and Valgrind. These data
guide the generation of synthetic applications using carefully
crafted inline assembly code, which exhibits similar user-level
on-CPU performance characteristics without disclosing the
original code’s functionality. The use of platform-independent
metrics ensures that Ditto-generated synthetic applications can

be ported to other platforms without the need for additional
profiling.

D. Fine Tuning

Finally, Ditto implements fine tuning to counterbalance
the impact of the instrumentation tools themselves. Ditto
iteratively runs the synthetic application, computes the errors
between target and synthetic service, adjusts the inputs to the
generator accordingly, and regenerates the synthetic applica-
tion. Although there are many knobs to tune, most of them are
orthogonal with each other. Since relationships between knobs
and performance are locally linear, we use a feedback-based
heuristic to tune knobs.

E. Implementation

Ditto is implemented primarily in Python and C in about
16,000 lines of code. It supports C/C++ applications, the
Apache Thrift and gRPC RPC frameworks, and x86 ISAs,
which are commonly used in cloud environments. It can be ex-
tended to more languages, frameworks, and ISAs, by leverag-
ing compatible profiling tools. Ditto can generate applications
that run on a single machine or containerized microservices
that run distributed in a server cluster, using Docker Swarm
or Kubernetes. While the runtime profilers and emulators,
including SystemTap, Intel SDE, and Valgrind, can introduce
overheads to the original application during profiling, this
overhead only occurs once, and does not affect the accuracy of
the platform-independent features collected during profiling.

To generate a clone, cloud providers only need to specify
a representative input for their service. Ditto automatically
instruments the application at runtime, collecting profiling
statistics and feeding them to the code generator, followed by
the fine-tuning process. Ditto does not require reprofiling if
the input change does not affect the application body, such as
changes in QPS or number of connections. Inevitably, if a new
input exercises an entirely new code path or memory access
pattern, this will need to be profiled to create a new clone. We
have been able to run binaries synthesized by Ditto directly on
hardware as well as on execution-driven simulators including
gem5 and ZSim, and trace-driven simulators like Ramulator.

IV. EVALUATION

A. Methodology

We evaluate Ditto across a diverse set of services, including
key-value stores (Memcached and Redis), webservers (NG-
INX), databases (MongoDB), and complex microservices (So-
cial Network). To generate input loads for different services,
we employ tools like wrk2, YCSB, tcpkali, and an open-loop
variant of Mutated. For all synthetic applications, we use the
same load generator as the original application.

Ditto is validated on a heterogeneous cluster, with two types
of servers. All servers run x86 ISA, but differ in the CPU and
memory architectures, and their storage and network.
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Fig. 3: CPU performance metrics (IPC, branch mispredictions, L1i, L1d, L2 and LLC miss rates), network bandwidth, disk
bandwidth (MongoDB only) and service latency under varying load across six services. CPU metrics are normalized to each
original application’s metrics under low load. Network and disk bandwidth are, by exception, normalized to each original
application’s bandwidth under current load, because their magnitudes change significantly, and would obscure the figure’s
shape.

TABLE I: Server platform specifications.
Platform A Platform B

CPU model Gold 6152 E5-2660 v3
Base Frequency 2.10GHz 2.60GHz

CPU cores 22 10
CPU family Skylake Haswell

Sockets 2 2
L1i/L1d 32KB/32KB 32KB/32KB

L2 1MB 256KB
LLC 30.25MB 25MB
RAM 192GB@2666 128GB@2400
Disk 1TB SSD 2TB HDD

Network 10Gbe 1Gbe
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Fig. 4: End-to-end latency for the Social Network.

B. Validation

1) Validation on Varying Loads: Figure 3 shows CPU,
network and disk performance metrics, and latency for six

applications under different QPS on platform A. In addition
to the four single-tier applications, we also show resource
characteristics for TextService and SocialGraphService, two
applications in Social Network, which are representative of
the other tiers of the service. All applications are generated
using profiling data under a single load configuration; Ditto
has not profiled any other load. We increase the load until the
single-tier application or bottleneck tier in the microservice
topology saturates in one or more resources (e.g., disk I/O for
MongoDB and CPU for the other applications).

The upper two rows show IPC, branch misprediction, L1i,
L1d, L2, LLC miss rates, and network and disk I/O bandwidth
under low and high load, with average errors across all
applications being 4.1%, 9.9%, 7.1%, 5.1%, 6.9%, 12.1%,
0.1%, 0.1%, respectively. This indicates that Ditto accurately
clones the overall hardware performance metrics. Memcached
and NGINX have low IPC under low load because of high
branch misprediction, and L1i and L2 misses, while Social-
GraphService has high IPC due to fewer LLC misses. At high
load, Redis maintains metrics similar to those observed under
low load. In contrast, the other five applications demonstrate
varying degrees of change in L2 misses, LLC misses, and
branch mispredictions. The results illustrate that applications
can have very different characteristics under different loads,
which are accurately captured by Ditto in their synthetic
counterparts. The network and disk bandwidth also conform
to the original by faithfully reproducing the system calls. We

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3419067

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



A B
0

0.1

0.2

0.3

A B
0

0.2

0.4

0.6

A B
0

5

10

15

20

A B
0

0.05

0.1

0.15

A B
0

2

4

6

A B
0

0.2

0.4

0.6

0.8

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch

L1i

L1d

L2

LLC
Net BW

Disk BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 1 2 3
IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 3 6 912
IPC

Branch

L1i

L1d

L2

LLC
Net BW

Disk BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 2 4 6
IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 2 4 6
IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 2 4 6

Actual Synthetic Actual avg Synthetic avg Actual p95 Synthetic p95 Actual p99 Synthetic p99

Memcached NGINX MongoDB Redis TextService SocialGraphService

Platform Platform Platform Platform Platform Platform

La
te

nc
y 

(m
s)

Pl
at

fo
rm

 A
Pl

at
fo

rm
 B

Fig. 5: CPU metrics (IPC, branch misprediction, L1i, L1d, L2 and LLC misses), network BW, disk BW (MongoDB only) and
latencies across platforms. CPU metrics are normalized to each original service on Platform A.

only show disk bandwidth for MongoDB since other services
do not involve disk I/O. The bottom line plot shows the
average, 95th, and 99th percentile latencies, which also match
the originals, with the p99 diverging at high load, due to the
queueing behavior in the network stack at saturation. Since we
use a close-loop workload generator for MongoDB and Redis,
which only allows one outstanding request per connection,
the latency does not increase significantly at high load. While
the end-to-end latency of Social Network increases at high
load, the latency of TextService and SocialGraphService only
increases slightly, since they are not bottleneck tiers.

Fig. 4 shows the end-to-end latency of original and syn-
thetic Social Network when every individual microservice is
replaced with a synthetic one. Both the end-to-end latency and
saturation point closely match across loads.

2) Validation on Varying Platforms: We validate CPU,
network, and disk performance along with service latencies
across different x86 platforms. Each application is initially
profiled on Platform A, with subsequent validation conducted
on both Platforms A and B. Figure 5 shows that the synthetic
benchmarks react to platform changes in a similar way to
the original applications. More specifically, all six applications
have different degrees of L2 cache miss increases on Platforms
B due to their smaller L2 cache sizes. Applications running
on Platform B, which is an older CPU generation, have
consistently lower IPC. Network and disk I/O bandwidths are
identical across platforms, since the amount of data transferred
is independent of the platform.

The line plots at the bottom show the latency on the two

platforms, where the synthetic always matches the original.
All applications experience the highest latency on Platform
B because it has the lowest IPC. The latency of MongoDB
is significantly lower on Platform A because it benefits from
the low random access latency of SSDs. In general, the fact
that the synthetic applications react to platform changes the
same way as the original, without reprofiling, shows that Ditto
accurately captures critical, platform-independent features that
impact performance.

C. Case Study: CPU Core and Frequency Scaling

Fig. 6 shows using Ditto to evaluate power management
in Memcached with CPU core and frequency scaling. Each
cell represents the p99 latency under a given number of cores
and frequency. We set the QoS as 1ms and cells with marks
mean that QoS cannot be satisfied for that configuration.
Memcached cannot meet the QoS at low frequency even with
the maximum number of cores, which prohibits aggressive
power management. Synthetic Memcached accurately captures
the latency variation of Memcached under different settings.
This similarity indicates that cloud providers can use synthetic
applications to determine whether power management is ben-
eficial for a service, without needing access its source code.

V. DISCUSSION

End-to-end Application Cloning. Ditto is the first framework
to facilitate end-to-end cloning of distributed cloud applica-
tions. Though cloning has proven effective for microarchitec-
tural analysis, its broader impact on cloud systems has been
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Fig. 6: 99th percentile latency of actual and synthetic Mem-
cached under varying CPU frequency core count.

constrained due to the limitations of prior work when trying to
capture the application’s activity across the full system stack.

This is essential for cloud services and has required a
carefully-engineered, tiered approach to ensure that capturing
this information does not result in an impractical, hard-to-use
framework. Additionally, Ditto is designed to be modular, with
each layer of the framework being able to easily be replaced
to increase or decrease the detail of cloning. For example, a
user can easily replace the default memory access generation
layer with a memory access replay tool, which would be more
appropriate for data locality studies.

Simplifying “What-if” Simulation: Estimating how a
change to an application’s design or deployment will im-
pact its performance and resource needs is both critical and
challenging. Critical, because it allows application developers
and cloud operators to evaluate whether that change will be
beneficial in the long term, and challenging, because without
direct, expensive experimentation, estimating the impact of
a change is very difficult, especially for complex, multi-tier
application topologies.

Frameworks like Ditto offer a powerful solution. Consider
a microservice provider evaluating a shift from RPC-based
communication to message passing. With Ditto, they can
seamlessly swap the one communication framework for the
other for rapid assessment. This contrasts starkly with the
significant implementation effort that would be required to
deploy this change in a production environment.

Similarly, Ditto can easily assess the impact that changing
the application’s instruction mix, data and instruction footprint,
or the amount of data transfers over the network would have
on performance and resource usage. This simply requires
adjusting a few configuration knobs in the cloning framework,
and without actually making these changes in the original
application.

Finally, Ditto empowers developers to investigate appro-
priate service granularities for their applications. By manip-
ulating the communication-to-computation ratio for service
tiers, developers can evaluate the performance implications
of making their tiers more or less fine-grained, without the
substantial overhead of redesigning each application version.
This is invaluable, given the profound effect service granularity
has on end-to-end performance [4], [7].

Enabling realistic cloud studies without access to produc-
tion code: The scarcity of realistic cloud application bench-
marks presents a persistent challenge within the architecture
and system communities. While open-source benchmarks offer
value, they fall short of replicating the intricate dynamics and
scale of production-level services.

This lack of publicly-available benchmarks extends beyond
academia, profoundly impacting industry practices. When
cloud providers seek to acquire next-generation servers, they
are unable to share production services with hardware vendors
for benchmarking purposes due to intellectual property (IP)
concerns. Consequently, they often rely on legacy benchmarks
like SPECCPU and SPECJBB, which poorly reflect the na-
ture of contemporary cloud applications. Ditto addresses this
limitation by enabling cloud providers to generate end-to-end
proxies of their services. These proxies allow secure sharing
with hardware vendors without compromising IP.

In fact, in the short time since its publication, Ditto has
already been extensively used by hardware vendors and cloud
providers, as an application cloning framework for benchmark-
ing next generation servers.
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