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Abstract
MicroVM snapshotting significantly reduces the cold start
overheads in serverless applications. Snapshotting enables
storing part of the physical memory of a microVM guest into
a file, and later restoring from it to avoid long cold start-up
times. Prefetching memory pages from snapshots can further
improve the effectiveness of snapshotting. However, the effi-
cacy of prefetching depends on the size of the memory that
needs to be restored. Lossless page compression is therefore
a great way to improve the coverage of the memory foot-
print that snapshotting with prefetching achieves. Unfortu-
nately, the high overhead and high CPU cost of software-based
(de)compression make this impractical.

We introduce Sabre, a novel approach to snapshot page
prefetching based on hardware-accelerated (de)compression.
Sabre leverages an increasingly pervasive near-memory ana-
lytics accelerator available in modern datacenter processors.
We show that by appropriately leveraging such accelerators,
microVM snapshots of serverless applications can be com-
pressed up to a factor of 4.5×, with nearly negligible decom-
pression costs. We use this insight to build an efficient page
prefetching library capable of speeding up memory restora-
tion from snapshots by up to 55%. We integrate the library
with the production-grade Firecracker microVMs and eval-
uate its end-to-end performance on a wide set of serverless
applications.

1 Introduction

Serverless is an emerging cloud computing paradigm gain-
ing widespread popularity across applications of different
classes, from lightweight interactive services [73] to highly
data-parallel applications, such as machine learning and video
encoding [21,24,40,47,67]. Serverless offers a Function-as-a-
Service (FaaS) execution model, where applications instanti-
ate short-lived, fine-grained resources on-demand without the
overhead of provisioning and deployment typical cloud envi-
ronments incur. When requests are processed, the resources

are terminated, achieving a pay-as-you-go model. This both
avoids resource overprovisioning, which has been a long-
standing issue with cloud infrastructures [22, 28, 58] and re-
duces the end-to-end deployment cost [33, 46].

Serverless is based on lightweight virtualization/isolation
technologies [19] such as Docker, Google gVisor [3], Kata
containers [10], NEC’s LightVMs [53], and AWS Firecracker
microVMs [17]. These technologies implement sandboxes for
executing containerized applications with different levels of
isolation. For example, gVisor implements a lightweight user
space kernel capable of executing most of the system calls
within the sandbox. On the other hand, Firecracker is a full
lightweight virtualization technology, based on KVM, which
can boot standard Linux kernels in sub-second time [17]. Due
to the high isolation guarantees of microVMs, security, and
performance, Firecracker is widely used in serverless clouds.

Despite its advantages, serverless and microVMs introduce
a few critical overheads to performance. A major overhead is
cold starts (or cold boots) – the overhead of the initial boot
of container sandboxes upon a function invocation. Both in-
dustry and academia have proposed numerous techniques to
mitigate cold start overheads [31, 35, 64, 73], with one of the
most promising being VM snapshotting [31]. VM snapshots
capture the current state of the VM and its physical memory
and save them in a file. During the next boot, the guest sys-
tem is restored from the file instead of booting from scratch.
Several different techniques can be used to make snapshots,
depending on which parts of the guest’s physical memory
should be saved. For instance, Firecracker can snapshot the
full guest memory or only the dirty pages. Additionally, re-
cent studies have proposed using working sets of pages [71]
to make serverless VM snapshots smaller, faster to fetch, and
overall more efficient [20, 64] in reducing cold starts. How-
ever, independent of the underlying techniques used to create
snapshots, the overhead of storing and prefetching them is
non-negligible. Unfortunately, the latter is on the critical path
of VM restoration and therefore directly impacts cold starts.

Reducing the size of snapshots can make them signifi-
cantly more efficient, for example through lossless memory



compression. While memory compression has been used
in domains where the application performance is not crit-
ical (e.g., zswap [39], zram [38] in Android OS for mo-
bile devices), in serverless the restoration of a memory
snapshot is on the critical path, precluding the use of ex-
isting software-based (de)compression algorithms. At the
same time, there are numerous hardware implementations
of (de)compression [23, 41, 51, 52, 56], however, they had
not, until now, been implemented in mainstream datacenter
processors [43]. In particular, Intel recently released the In-
Memory Analytics Accelerator (IAA) [6] in their 4th Gen
Xeon Scalable CPUs, which enables efficient compression for
datacenter applications at scale.

We present Sabre, a hardware-accelerated general-purpose
memory prefetching system, which uses lossless compression
mechanisms, such as IAA, to compress and restore microVM
snapshots. This paper makes two major contributions. First,
we characterize, for the first time, the IAA accelerator on a set
of diverse benchmarks, and show its potential for compressing
memory pages. We show that IAA can compress pages by
2−4.5×, depending on the underlying page selection algo-
rithm. Moreover, we show that decompression can be done
up to 10× faster with hardware acceleration, and with careful
design, this time can be entirely hidden behind the disk I/O
and page fault handling. This results in near-free decompres-
sion in terms of the overall memory restoration latency, while
reducing the size and the loading time of snapshot pages.

Second, based on this characterization, we build Sabre
and integrate it with the Firecracker virtual machine mon-
itor (VMM) in a serverless environment with snapshotting
support. Sabre is agnostic to the underlying page snapshotting
policy, it operates entirely in the host’s user space, and inter-
acts with the IAA accelerator via the Shared Virtual Memory
(SVM) mechanism. The latter enables out-of-box and trans-
parent integration of Sabre with existing VMMs at scale.

We evaluate Sabre on its efficiency in restoring microVMs
from snapshots across a wide range of end-to-end serverless
applications using two methods of creating snapshots: dirty
page-based and working set-based. We show that Sabre com-
presses microVM snapshots up to 4.5× without introducing
any decompression overheads. Moreover, we show that Sabre
enables up to 55% faster memory restoration, which results
in an additional reduction of the end-to-end cold start time by
20% with respect to already optimized state-of-the-art snap-
shotting baselines.

Sabre is open-source software and it is available at the
following link [13].

2 Background

2.1 MicroVMs for Serverless
Serverless is gaining popularity across many application
domains by reducing the cloud provisioning overhead and

enabling higher elasticity for applications with high paral-
lelism and intermittent activity. Lightweight virtualization
technologies (or microVMs) became a popular choice for
cloud providers due to the isolation and fast instantiation they
provide [17, 69]. Fully virtualized VMs running over Type-
1 hypervisors, such as KVM [37] or Hyper-V [70], allow
isolating tenants down to hardware and provide the highest
security guarantees for applications running in the cloud. On
the other hand, microVMs are much faster to boot and have a
much smaller memory footprint than traditional Type-1 vir-
tual machines. This means that microVMs achieve the best
of both worlds between containers and Type-1 hypervisors.
MicroVMs are widely used in serverless, where applications
require both strong isolation guarantees and fast start-up.

Modern microVMs, such as AWS Firecracker [17], use
several optimizations to boot up in sub-seconds. However,
booting the VM itself is only part of the end-to-end applica-
tion execution latency [31, 64], with a significant component
corresponding to the initialization of the software dependen-
cies after the boot. For applications based on complex multi-
layer stacks, such as gRPC servers and JavaScript runtimes,
bringing up the dependencies might be as high as several
seconds [31]. Additionally, the applications themselves can
contain long-running initialization routines, which also con-
tribute to end-to-end latency. For example, machine learning
(ML) services need to load the models before serving infer-
ence queries. Altogether, this makes the end-to-end execu-
tion of the first batch of requests running on freshly booted
microVMs an order of magnitude slower than subsequent
requests. This is known as cold start, and all microVMs are
prone to it.

Mitigating cold starts is one of the most well-researched
aspects of microVMs [65]. Existing solutions range from
scheduling techniques optimized for specific applications to
runtime and infrastructure optimizations [54, 73]. One solu-
tion that is generally agnostic to applications is VM snapshot-
ting [31].

2.2 MicroVM Snapshotting and Prefetching

Snapshotting is a technology that allows storing the VM state
and guest OS physical memory in a file in the local or remote
filesystem. Snapshots are usually created after the VM and the
application logic with all its dependencies are fully initialized
and ready to serve requests. Upon the next invocation of the
VM the hypervisor restores the VM state and guest memory
from the snapshot, instead of booting the VM from scratch.
This dramatically reduces cold start overheads.

In the most basic case, snapshots contain the entire guest
physical memory. Some hypervisors, such as Firecracker, also
allow dirty-memory tracking, which only stores the dirty guest
pages as seen by the hypervisor. Snapshots can be organized
hierarchically following the software dependencies of appli-
cations [31]. However, recovering from snapshots is far from



free. In some cases, the size of the snapshots can be as high as
the whole guest memory, therefore precluding the possibility
of loading pages from snapshots in advance. For this reason,
existing commercial microVMs implement memory restora-
tion via on-demand paging. Unfortunately, on-demand paging
yields a lot of page faults on the critical path of the restoration
from snapshots, which slows down request execution.

A way to reduce the overhead of page faults is to enable
prefetching of pages from snapshots. This can be efficiently
done through, for example, working set (WS) estimation. This
approach has been used to create VM checkpoints [71], and
recently – for serverless microVMs [64]. Here, each snapshot
is accommodated in a WS file, storing pages that are likely
to be accessed during subsequent invocations. There are dif-
ferent ways of constructing WS files [20, 64, 71] according
to various working set estimation techniques. For example,
in Record-and-Replay (REAP) [64], the authors propose to
record all guest pages being accessed during the first invo-
cation of serverless functions and put them into the WS file.
Upon the next invocation, the WS file can be prefetched from
the disk, and the WS pages can be installed in the guest’s
memory to speed up the next cold invocations. REAP works
well for applications with a similar working set across dif-
ferent invocations of the same function. When this does not
hold, REAP can fail to deliver good performance; in this
case, prefetching some other subset of dirty pages (or even
all dirty pages) can be more beneficial. Snapshots generally
consume a lot of disk space and require cloud providers to
carefully provision their storage resources [2]. Even working-
set-based snapshots can sometimes be as large as a few hun-
dred megabytes [20]. This is non-negligible given that a single
server might host hundreds of microVMs.

Independently of the underlying technique to create mi-
croVM snapshots and/or WS files, the efficiency of prefetch-
ing depends on the memory size that needs to be restored
from the disk into the guest memory. A general rule to make
prefetching-based techniques more efficient is to reduce the
size of the snapshots/WS files. This also reduces the disk
space needed to store snapshots. This size reduction can be
achieved through memory compression. However, memory
restoration happens on the critical path of the VM boot-up,
and for compression algorithms with high deflate ratios, the
decompression might take a long time. Moreover, such al-
gorithms usually consume a lot of CPU time for compres-
sion and therefore VM snapshotting. This makes the use of
software memory compression for microVM snapshotting
undesirable.

2.3 Hardware-Accelerated (De)Compression

Software-based memory compression has been extensively
used in applications where performance is not critical. For
example, zram [38] is used in Android OS on mobile devices,
while zswap [39] can improve the efficiency of memory swap-

ping for non-performance critical applications. Unfortunately,
this does not apply to microVM memory restoration, where
decompression directly impacts the cold start overhead.

There have been many proposals for accelerating mem-
ory compression in hardware. For example, Pekhimenko et.
al. [56] propose base-delta compression for on-chip caches.
Hoyong et. al. [41] derive a novel compression algorithm
for GPU memory. Li et al. [52] introduced a hardware accel-
erator for the compression of genome sequences. All such
proposals are based on application-specific, special-purpose
compression accelerators and algorithms, and therefore have
never been implemented on commodity datacenter proces-
sors. Many (de)compression accelerators are based on FPGA
cards [25, 34, 50, 57] which are only available in a small set
of public clouds. However, the demand for general-purpose
(de)compression acceleration at scale is actively growing.

(De)Compression is known to be one of the major sources
of datacenter tax [36,42,61]. A recent study from Google [36]
showed that compression accounts for up to 30% of cycles for
large-scale database applications, such as BigTable and Big-
Query [32,62], and it is also extensively used in many other ap-
plications. This motivates cloud providers and chip vendors to
build efficient hardware accelerators [43] for general-purpose
lossless (de)compression. The primary use cases for such
accelerators are databases and query-processing engines. In
particular, Intel recently introduced the In-Memory Analytic
Accelerator (IAA), which is now part of commodity datacen-
ter processors, such as the Xeon 4th Generation CPUs, which
are already widely available. This accelerator can perform
DEFLATE compression, which is suitable for compressing
memory footprints. While other compression algorithms that
are optimized for performance (e.g., Snappy, zstd, LZ4) can
compress memory faster, they typically result in much lower
compression ratios, which is critical for microVM snapshot-
ting. Their software implementations increase the amount
of CPU resources required for making snapshots, especially
when configured for more aggressive compression [1]. At the
same time, hardware-accelerated DEFLATE yields high com-
pression ratios as well as high speed, while requiring no CPU
cycles for (de)compression. It should also be noted that hard-
ware accelerators for other compression algorithms are also
feasible [16, 26, 60] but not yet implemented in mainstream
datacenter processors at scale.

IAA and other similar accelerators are designed for cloud
environments. They are typically implemented as on-chip
near-memory PCIe components, which allows them to be
easily integrated with cloud services. For instance, IAA can
run entirely in user space, it operates transparently over the
application’s virtual memory and can be virtualized through
standard technologies, such as S-IOV [8]. All this makes IAA
attractive for microVM memory snapshotting and prefetching.
In this work, we explore this direction.

We first characterize the capabilities of IAA when it comes
to compressing memory pages. Based on this characterization,



we design Sabre, a memory prefetching system for microVMs
built using IAA. Finally, we show how our memory prefetch-
ing unit integrates with serverless microVMs and evaluate its
impact on end-to-end serverless benchmarks.

3 In-Memory Analytic Accelerator: Overview,
Characterization, Insights

We now present an overview and characterization of the Intel
In-Memory Analytic Accelerator (IAA) [6] using a set of
diverse benchmarks [15]. This work mainly focuses on the
compression/decompression capabilities of the accelerator.
However, given that other capabilities share the same IAA
frontend pipeline, interfaces, and software semantics, most
of our findings also apply to these other domains. To our
knowledge, this is the first publicly available characterization
of the IAA hardware. The insights from this characterization
are used to derive the design of Sabre, described in Section 4.

Note that given the diverse set of execution models, con-
figurations, workloads, and variations of IAA hardware in
different SKUs, it may be possible to achieve even higher
performance compared to what we showcase in our char-
acterization. Specifically, benchmarks designed specifically
to stress test the accelerator may be able to improve IAA’s
performance further. For the purpose of this paper, we only
benchmark the accelerator with a set of scenarios required to
give comprehensive insights into using in-memory compres-
sion techniques in serverlerss microVMs and to derive the
design of Sabre.

3.1 Overview of the IAA
Intel’s IAA is a hardware accelerator first introduced in Intel’s
4th Gen Xeon Scalable Processors (code-named Sapphire
Rapids) [12] to speed up data processing across application
classes. It was designed with the primary use case being
databases and query processing systems [7]. The accelerator
physically resides in the uncore part of the processor’s SoC
near the memory controller and Last Level Cache. A single
CPU can accommodate multiple IAA devices on its SoC.

The IAA accelerators are logically integrated as PCIe de-
vices and exposed to the host as a single root complex inte-
grated endpoint. This is set up to enable transparent integra-
tion of the accelerators with software. IAA features scalabil-
ity, full virtualization support via PCIe S-IOV, Shared Virtual
Memory support (SVM or SVA as defined by Linux kernel
documentation) [11], and transparent user-space interaction
with applications via a new ISA extension, called ENQCMD.

Communication and job submission to the accelerator are
handled via Work Queues (WQs), similar to another emerg-
ing hardware – Data Streaming Accelerator (DSA) [48]. For
this, software needs to create descriptors and completions
allocated anywhere in the application virtual address space.
Descriptors contain information describing the jobs assigned

to the accelerator’s Processing Units (PEs), such as the lo-
cations of the source and destination buffers, opcodes, and
operational and memory policy flags. Descriptors are submit-
ted to the accelerator via the ENQCMD instruction directly
from user space, which writes them into the device’s memory-
mapped I/O (MMIO) registers. Upon receiving descriptors,
the PEs fetch data based on the pointers in the descriptors.
This is done through SVM which enables transparent sharing
of the application’s virtual memory with accelerators. When
a PE finishes processing, it writes the corresponding com-
pletion record with the status information. The software can
poll the completion records to identify the termination of
tasks and any error information. If some application memory
pages associated with data buffers are not available, the ac-
celerator can request them via either Page Request Service
(PRS) or through userspace page fault handling. In the latter
case, software applications can resolve the page faults in a
more suitable for a particular usage scenario way (e.g., by
requesting pages from, for example, the network) in the user
space.

IAA’s job submission mechanism enables
asynchronous/non-blocking and out-of-order process-
ing of descriptors. The current hardware permits a large
number of in-flight requests, which can be submitted from dif-
ferent threads and processes/tenants. The micro-architectural
pipeline of the IAA hardware contains multiple PEs that can
execute jobs concurrently. The DSA specification [4] and
in-depth characterization [48] contain more details since both
accelerators share the same specification for this part.

The IAA hardware contains PEs implementing different
processing capabilities. These include encryption, compres-
sion, CRC offload, data filtering, scanning, extraction, selec-
tion, and expansion [5] (Table 3-1). Due to the scope of this
work, we only focus on characterizing the (de)compression
capability of IAA. IAA performs DEFLATE [30] compres-
sion, as defined in RFC 1951. DEFLATE is based on LZ77
matching and Huffman encoding. LZ77 matching eliminates
redundancy by replacing repeated occurrences of substrings
with references to a single version of the substring. This is
a computationally intensive process making software imple-
mentations slow. The Huffman coder further deflates data by
re-encoding the most common symbols with fewer bits using
statistics of data distribution in the input stream. Internally,
the IAA compression unit operates in three modes.

In the first – Huffman-mode, IAA performs hardware-
accelerated LZ77 dictionary coding, using 4 KB windows,
and encodes the results with pre-defined static Huffman tables.
The second IAA mode – Statistics-mode is designed to sam-
ple input streams and construct the statistical data distribution
to optimize Huffman tables for a particular input. Compres-
sion with input-specific Huffman tables usually allows much
higher compression ratios. In Statistics-mode, IAA only con-
structs the histogram of the distribution of Huffman codes,
but it does not write the actual Huffman tables yet. The latter



Style Description
Fixed
Block

Standard static DEFLATE; based on Huffman-mode with standard Huffman tables; enables faster
compression, but under general Huffman tables, which usually results in low compression ratios.

Static
Block

Similar to Fixed Block, but using user-defined Huffman tables; can result in good compression ratios if the
application is able to provide Huffman tables fitting all inputs well.

Dynamic
Block

Standard dynamic DEFLATE; two-phase compression with Statistics-mode followed by Huffman-mode;
enables optimal Huffman tables per block and a better compression ratio, but requires more time to compress.

Canned Allows sharing the same Huffman tables between multiple blocks of compressed data; this is important when
compressing many small scattered chunks to avoid having to keep/access Huffman tables per block.

Table 1: End-to-end compression styles supported in Intel IAA.
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Figure 1: Comparison of software- and hardware-based DEFLATE compression for different datasets (sorted by uncompressed size) from
Silesia Corpus and serverless VM snapshots (last two); the numbers denote speed-up of the hardware execution; a single IAA device with a
single PE (engine) in blocking/synchronous mode is used; the software baseline runs on a single thread.

is done in the third mode – Huffman-Generation mode, which
is only supported in some IAA implementations.

Based on these modes, IAA defines four main styles of com-
pression (Table 1), and it is up to the control plane software to
implement them. To make end-to-end (de)compression easier
to implement, Intel has recently released the Query Processing
Library (QPL) [7], which abstracts away the IAA modes and
allows users to express compression in any of the supported
modes. We next show the results of microbenchmarking IAA
with different modes and implementations.

3.2 Characterizing Compression Using IAA

We characterize IAA (de)compression with a set of bench-
marks written using the Intel QPL library v1.3.1. As input
data, we use 11 datasets from the standard Silesia Corpus [29];
a common way to evaluate (de)compression. We also add
two more datasets specific to our use case representing the
dirty memory snapshots of microVMs. The snapshots were

obtained during request execution for two serverless applica-
tions from vSwarm [66] and FunctionBench [44,45]: a Python
gRPC server (pythongrpc) and the Pillow image processing
library (pillow). Both datasets only contain dirty pages of
guest memory. Table 2 shows the specification of our testbed.
At the time of writing, we had access to two Sapphire Rapids
systems (SKUs) with slightly different configurations. We use
the most recent production-grade SKU (Server #2 in Table 2)
in all experiments unless otherwise noted.

3.2.1 Benchmarking IAA: Core Compute

We start with the characterization of the in-memory core com-
puting capability of IAA. We assume that data is always avail-
able in memory, both for the source and destination buffers.
We ensure that memories are initialized and touched to avoid
page faults. This is important as page fault handling affects
the accelerator’s performance, and therefore we evaluate it
separately. For all experiments in this section, we use a single



CPU
(Server #1)

Intel 4th Gen Xeon Scalable Processor;
2 NUMA nodes, 56 cores/112 threads;
Core/Uncore frequency (GHz): 1.7/ 1.8;
LLC capacity (MB): 110
IAA devices: 8 (4 per NUMA node)

CPU
(Server #2)

Intel(R) Xeon(R) Gold 6438Y+;
2 NUMA nodes, 32 cores/64 threads;
Core/Uncore frequency (GHz): 2.3/ 1.8;
LLC capacity (MB): 60
IAA devices: 2 (1 per NUMA node)

IAA

available PEs per device: 8
capabilities (as per GENCAP register):
- Huffman generation mode: disabled;
- Page Request Service (PRS): enabled;
- Block-on-Fault: enabled;
WQ configuration: shared, 8 per device, size: 32

Memory Type: DDR5; Capacity (GB): 250

Disk Intel SSDSC2KG960G8
Sequential O_DIRECT read bandwidth (MB/s): 550

Host OS
Ubuntu 22.04;
Kernel: 5.15, patched with [9] to enable ENQCMD;
Kernel boot arguments: intel_iommu = on,sm_on

Guest OS
(Section 5)

Rootfs: Debian GNU/Linux 12 (bookworm)
Kernel: 4.14.174

IAA stack Driver: idxd
Middleware: Intel QPL v1.3.1

Table 2: Testbed hardware and software configuration.

IAA device configured with a single PE (engine); we sub-
mit the jobs to the accelerator from a single CPU thread in
the blocking/synchronous mode and wait till completion by
polling associated completion records. The software baseline
runs on a single CPU core.

We first compare the performance and compression ratios
of IAA-enabled compression and its software implementation
in QPL. Since the IAA hardware does not allow explicitly
selecting compression levels (compression levels are
subjective and vary across implementations), we set the
default compression level-1, as defined by QPL, for the corre-
sponding software implementation. Since our version of IAA
does not offload Huffman table generation, the hardware im-
plementation of dynamic DEFLATE compression is actually
hybrid: statistics collection, LZ77 encoding, and compressed
stream generation run in hardware, while Huffman table
generation runs in software. The hybrid operations run on
a single CPU core. Figure 1 shows the compression results.

The hardware implementation always overperforms soft-
ware in compression time. The difference reaches 6.1× and
13.5× for dynamic and fixed compression, respectively. In our
datasets of dirty memory snapshots, the speedup reaches 9×.
The achieved compression ratios for software and hardware
executions are similar. Figure 2 shows the performance of
decompression. We only show the decompression of dynamic
streams, as in these datasets, decompression performance
does not depend on the compression mode. In all cases, IAA
decompresses an order of magnitude faster than software.

Note that in this paper, our experiments only compare IAA
to the software implementation of the same DEFLATE al-
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Figure 2: Comparison of software- and hardware-based DEFLATE
decompression on the same datasets and setup as in Figure 1
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Figure 3: (De)compression of scattered 4kB pages across modes.

gorithm. To compare against many other software compres-
sion algorithms (e.g., Snappy, zstd, LZ4, etc.), please refer to
the publicly available in-memory benchmarks based on the
Silesia Corpus (for example, lzbench [1]). The synchronous
throughput of IAA’s (de)compression can be obtained from
Figures 1 and 2 based on the size of the datasets. For example,
the fixed-DEFLATE compression on the nci dataset reaches
1800 MB/s, and its decompression - 4600 MB/s on a single
engine. These numbers are expected to be lower than the asyn-
chronous streaming (de)compression (using the non-blocking
mode of IAA) which we do not characterize in this paper.

We then profile (Figure 3) IAA’s (de)compression for
many small 4 KB sized chunks for the same datasets. As
previously mentioned, the Canned—which is essentially a
Static Block—mode allows sharing Huffman tables between
data chunks, therefore reducing both the space and processing
time when data is scattered over many small blocks. This
is very useful when compressing individual memory pages.
In Figure 3, the first group of bars shows the baseline
compression using Dynamic Block over a continuous region.
We then break it into 4 KB chunks and compress them naïvely,
with the Dynamic Block, independently for each chunk.
As a result, compression time explodes due to processing
tables separately; the decompression time also suffers, as
the Huffman tables need to be parsed. The Canned operation
reduces the overhead of scattered compression. Most
interestingly, it enables fast decompression of scattered data,
which is only marginally higher than the continuous baseline.
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Figure 4: Latency of single-thread synchronous (de)compression
with parallel hardware execution on 4 IAA devices with 8 engines
each; only two benchmarks are shown for brevity.

3.2.2 Benchmarking IAA: System Integration

We now characterize the IAA hardware together with system-
level aspects. We use the same datasets and setup as before.

We first evaluate how job parallelization within the IAA
PEs may further speed up (de)compression. Given that our
earlier SKU has more IAA engines/PEs (refer to Table 2),
we use Server #1 in this experiment. Note that at the time
of writing, the QPL library did not allow crossing NUMA
boundaries between the data and IAA devices. Therefore,
only 4 IAA devices (32 PEs/engines in total) are utilized at
most for this experiment.

There are two main ways to leverage parallelism within
the IAA: with synchronous and asynchronous job submission.
In the first case, a large chunk of data can be split into mul-
tiple smaller blocks, and these blocks are then submitted to
multiple available PEs. The software then blocks and waits
until all PEs finish processing. This allows us to reduce the
time/latency of a single (de)compression job. In the asyn-
chronous case, a stream of multiple blocks from potentially
different dataflows/threads is supplied into the accelerator
without waiting for the completion of the previous blocks,
therefore utilizing the hardware at maximum capacity. This
yields the highest IAA utilization and throughput. For fast mi-
croVM restoration, the only performance metric that matters
is how fast the system can decompress a single snapshot from
a single CPU thread into the microVM guest memory. We
therefore only benchmark the synchronous job parallelization
in this paper.

We implement parallel synchronous processing via the
non-blocking synchronous descriptor submission. Here multi-
ple descriptors are submitted at the same time from a single
CPU thread without waiting for immediate completion of in-
dividual descriptors. Figure 4 shows that for a hardware con-
currency of up to 8 compression jobs, the latency reduction
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Figure 5: Impact of page faults and translation fetch on IAA perfor-
mance via PRS with block-on-fault enabled

.

reaches 4−7× with respect to sequential execution. Dynamic
Block compression scales worse due to the software overhead
of Huffman table creation. Decompression scales up to 26
jobs, reaching 17× latency reduction for the pillow dataset.
These results demonstrate how multiple IAA engines can be
used to achieve even lower (de)compression latency.

Until now, we have only tested the behavior of IAA when
processing in-memory data, which was the majority of initial
use cases for the accelerator. In-memory operation is achieved
when source and destination buffers are present both in the
memory and page table of the calling process. This holds
when, e.g., streaming over the same buffers. However, in cer-
tain cases, data is not entirely present in memory, e.g., when
processing inputs from a file or into newly allocated memory.
In these cases, the accelerator must resolve page faults.

The fundamental source of page faults in systems such as
IAA and DSA is the fact that they operate directly on the
application’s virtual address spaces via SVM [11]. As a result,
similarly to CPU processing, when a page requested by the
accelerator is not found in the page table, a major or minor
page fault occurs. The result of the page fault handling (e.g.,
the translation) is then cached in the accelerator’s Address
Translation Service (ATS). When the translation is available
in the CPU/kernel, the page fault does not happen, but the ATS
must fetch the translation from the host via a translation fetch
request. We now benchmark IAA in the case of page faults
and translation fetch requests. We use standard 4 KB pages
and an SSD disk with 550 MB/s of provisioned sequential
read bandwidth. For compression, we use a single-pass Fixed
Block to avoid the side effects of hybrid two-phase operations.

IAA supports two modes to handle page faults: via
hardware-initiated on-demand paging via PRS or in user
space with custom application-defined page fault handlers.
The mode is controlled via the work queue configuration or
through the PCIe device configuration if the former is not
available. When PRS is enabled, the hardware can request up
to N (specified in PRSREQCAP register) pages from the host
concurrently. The actual page fault handling is done by the
kernel through IOMMU interrupts. Figure 5 shows the time
required to process descriptors in case of different hardware-
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enabled.

initiated page faults. We benchmark the worst-case scenario
when the entire dataset causes page faults (12492 pages for
mozila and 44672 pages for pillow). As expected, major page
faults have a severe impact on the accelerator’s performance.
The impact of minor page faults is lower, but still ≈ 2× for
decompression. The ATS translation fetch has the smallest
impact of ≈ 20 us across all pages. In general, decompres-
sion is more sensitive to page faults than compression; this is
because the former is less compute-bounded.

Finally, we characterize the achieved decompression band-
width when reading input data from an SSD (Figure 6), which
is critical for our memory restoration use case. The dashed
black and gray lines show achieved sequential disk read band-
width with and without direct I/O (O_DIRECT). Direct I/O
allows bypassing the page cache when reading files from the
disk. In certain cases, this helps to reach the highest bandwidth
of I/O operations. The solid black line shows the achievable
bandwidth of a single-job synchronous decompression over
data in memory, and the red line when reading input from the
disk via hardware on-demand paging (i.e., via PRS). The latter
is achieved through shared mapping of the input file into the
IAA buffers and enforcing sequential I/O using posix_fadvise.

IAA decompression is a streaming operation, and it al-
ways accesses input buffers sequentially. In an ideal system,
the decompression phase will completely overlap with the
operation fetching data from the disk. Hence, the achieved
end-to-end throughput will be decided by the slower opera-
tion - be it decompression or disk I/O. As Figure 6 shows,
with default hardware on-demand paging, the achieved end-
to-end bandwidth is the same as disk read without direct I/O.
This demonstrates that IAA streaming processing can entirely
overlap with disk I/O. It is 10−15% lower, however, than the
achievable bandwidth of reads with direct I/O, because IAA
communicates with the disk via the OS page cache when run-
ning over PRS. A way to further improve IAA over data from
disk is to replace PRS with application-specific page fault han-
dling. However, in that case, the end-to-end behavior depends
on whether IAA is configured with enabled block-on-fault, a
feature that allows the accelerator to block and wait until data
becomes available. Without block-on-fault, IAA terminates

with partial completion and cannot continue decompression
from the place where it stopped; as a result, the job needs to
restart from scratch. Given the streaming nature of IAA, it is
possible to entirely close the gap between direct disk I/O and
decompression by using block-on-fault in combination with
O_DIRECT reads in a custom page service handler, either in
a driver or user space. We leave this to future work.

4 Sabre Design

4.1 Memory Prefetching Accelerator
We use the insights from the characterization study of Sec-
tion 3 to design Sabre. Sabre is a hardware-accelerated mem-
ory snapshotting and restoration system for microVMs that
is agnostic to the underlying algorithm used to identify dirty
pages and create VM snapshots.

Sabre is designed to efficiently compress the guest VM
physical pages to create snapshots, such that they can be
decompressed (and mapped) quickly when restoring the snap-
shot upon a function invocation resulting in a cold start. As
an input, Sabre accepts a vector of addresses for each of the
guest physical memory pages which need to be placed in the
snapshot, according to the underlying dirty page selection
mechanism. It then compresses pages using IAA and writes
them in a file. During the VM restoration process, Sabre
uses fast IAA decompression in combination with efficient
sequential disk I/O to quickly fetch the pages from the snap-
shot, decompress, and install them in the target VM’s physical
memory. The main goal of Sabre is to hide the decompression
latency as much as possible behind the disk I/O and page
fault handling (when mapping pages) such that the overhead
of decompression is minimized. This is possible to achieve
given the streaming nature of IAA decompression.

Sabre shows that irrespective of the method used to identify
dirty pages and create VM snapshots, hardware-accelerated
compression, and restoration can have a significant impact
on performance. In the simplest case, dirty pages can be
identified by the page tracking mechanism in the VMM (e.g.,
Firecracker’s Diff snapshots); in more complicated cases,
custom algorithms can be used (e.g., different working set
estimation techniques [64, 72]).

Figure 7-A shows an overview of Sabre’s snapshot creation
pipeline along with two designs for memory prefetching, both
of which are used by Sabre under different scenarios.
Snapshot creation: We first describe our snapshot creation
process, which is based on two observations. First, creating a
snapshot is outside of the VM restoration’s critical path, so the
objective is selecting the compression algorithm that achieves
the highest compression ratio, which as we showed in Sec-
tion 3 is dynamic DEFLATE. Second, since the VM dirty
pages are distributed in a non-contiguous manner across the
guest’s physical memory space, the (de)compressor should
operate over separate (often small) chunks of memory. As
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Figure 3 shows, the “Canned” style compression works best
in this case: it enables implementing static DEFLATE with
pre-computed Huffman tables, which closely resembles the
efficiency of Dynamic DEFLATE. Sabre’s snapshot creation
process first runs IAA in Statistics mode to sample the statisti-
cal distribution of data in all dirty pages and create appropriate
Huffman tables. It then compresses the scattered regions of
dirty pages with these Huffman tables. The resulting com-
pression stream alongside the Huffman tables is written into
the snapshot file. For experimentation reasons, we also en-
able using Dynamic DEFLATE as well. In addition to the
snapshot file itself, Sabre also writes the partition file con-
taining the “schema” of the dirty pages, i.e., the offsets and
original/compressed sizes of each partition.
Memory prefetching: The memory prefetching process is
more complicated to engineer as it is on the critical path of
VM restoration, and therefore needs to be carefully optimized.
The main trade-off Sabre must navigate is balancing the desire
to handle all partitions of dirty pages as a single contiguous
memory region and the cost that comes with that.

Handling all partitions of dirty pages as a single continuous
memory region is better for the accelerator, as continuous
DMA is more efficient than scattered DMA, and it is also bet-
ter for the PRS and disk I/O, as the underlying PRS-initiated
page faults are sequential. The latter works well with sequen-
tial disk reads, therefore yielding the best utilization in terms
of disk bandwidth. However, continuous decompressed par-
titions need to be placed by the same addresses in the guest
VM physical memory as in the original VM when the snap-
shot was taken. Sabre implements it using userfaultfd, which
comes at the cost of memory copy.

We implement this approach in Sabre’s single-chunk mem-
ory prefetching shown in Figure 7-B. To reduce the overhead
of allocating the decompression buffers, Sabre can optionally
use a pre-allocated memory pool for the buffer for the time
of decompression. The size of the pool is bounded by the

sum of the sizes of dirty pages of the VMs currently restored
simultaneously. This space is reusable across different restora-
tion processes and therefore does not consume much memory.
However, users of Sabre can always disable the memory pool
(at ≈ 10% cost of memory restoration) if the pool’s impact on
the memory density is an important concern. Sabre’s memory
prefetching relies heavily on the PRS hardware mechanism
to bring snapshots from the disk. This is achieved by running
IAA against a shared not pre-faulted (i.e. the actual file I/O
gets initiated by PRS) mapping of the snapshot file. As Fig-
ure 6 shows, default PRS is near-optimal at handling IAA
inputs from the disk, and it allows hiding the decompression
time by overlapping it with the disk I/O. In most cases, the
difference with sequential disk read bandwidth is marginal.
We confirm that running IAA over pre-faulted or pre-fetched
(via read) snapshot files is much slower than via PRS.

To address the high cost of partition placement when
treating the entire memory region as contiguous, Sabre also
implements memory prefetching based on scattered IAA
decompression (Figure 7-C). Here, Sabre directly DMAs
decompressed partitions into the right locations in the guest’s
physical memory, while still handling inputs from disk via
PRS. This allows the system to bypass page installation,
however, it makes the IAA hardware less efficient due to the
large number of scattered DMAs and the bookkeeping of
the corresponding descriptors (the current implementation
of IAA does not allow chaining and batching of descriptors,
so each one must be submitted separately by software). In
addition, splitting the decompression stream into multiple
jobs hurts the efficiency of PRS at reading data from the disk,
which further slows down memory prefetching. The latter
can be addressed by implementing a custom user-space page
fault handler, as discussed in Section 3.

In both designs for memory prefetching, IAA decompres-
sion can be done using a single IAA job/engine or parallelized
across all available engines. This is implemented via non-



blocking job submission with a rotating pool of descriptors.
In this mode, Sabre attempts to submit N decompression jobs
at the same time, where N is the desired concurrency degree
or the number of available free engines (whichever is smaller).
Upon asynchronous out-of-order completion, the correspond-
ing descriptors are returned to the pool for later reuse. This en-
ables a streaming operation for Sabre’s decompression when
multiple engines are used. Note that a single IAA engine
in blocking synchronous mode is capable of achieving ≈
1.2 GB/s at decompressing our snapshot datasets. Since this
is higher than our disk read bandwidth, we always use a single
IAA job in all remaining experiments, unless otherwise noted.

The exact operation of the memory prefetching unit, such
as the choice of the restoration design (between single-chunk
and scattered), the compression style (dynamic or static DE-
FLATE) for snapshot creation, the number of concurrent de-
compression jobs, etc. are configured by Sabre during run-
time. The desired configuration can be selected differently
for each microVM’s snapshotting/restoration call. Next, we
microbenchmark our memory prefetching unit under different
configurations and types of snapshots.

4.2 Microbenchmarking Memory Restoration

We now analyze the two design options for memory prefetch-
ing shown in Figure 7 using a dataset of microVM dirty mem-
ory snapshots with different sparsities. We create synthetic
datasets from the pillow snapshot (Section 3) that range from
most scattered, when each page is separated, to a case with
few large contiguous regions of dirty pages. In practice, the
pattern depends on the underlying mechanism used to identify
snapshot pages and the applications running in the VMs.

Figure 8 shows the restoration time with each of the two
restoration mechanisms when the restoration is done in hard-
ware and software. The x-axis shows the sparsity of the
dataset. In all cases, the total size of the dataset is 174.5 MB.
The sparsity index denotes the number of pages in contin-
uous regions; each region is separated by its neighbor via
an empty page, which is not included in the snapshot. For
instance, in sparsity 1, each individual page is separated. We
use a single IAA engine in all experiments. As the top figure
shows, the scattered memory prefetching design outperforms
single-chunk prefetching for sparsities of more than 4 pages.
This is because this design avoids additional page copying
during the installation phase via userfaultfd. However, when
memory partitions become as sparse as every page or two
pages, the overhead of scattered DMA and suboptimal PRS
handling make scattered prefetching slower than single-chunk.
Given this, Sabre uses different memory prefetching strategies
depending on the sparsity of the underlying snapshots.

The dashed line in Figure 8 (Top) denotes the time required
to restore memory from uncompressed snapshots. We op-
timize this path similarly to REAP [64], where the whole
snapshot is fetched as a single continuous disk read via
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Figure 8: Single-chunk and scattered prefetching across different
page sparsities; passthrough denotes the time to read uncompressed
snapshots; the system runs at 2.3 GHz with a single IAA engine.

O_DIRECT file I/O and installed via user f ault f d. Sabre’s
memory restoration overperforms prefetching of uncom-
pressed snapshots by up to 1.9×. Note that the achieved
compression ratio on this dataset is 2.2×, meaning that the
theoretical upper bound of memory restoration speed-up with
respect to uncompressed baselines is also 2.2×. Sabre’s mem-
ory prefetching is very close to this because it hides decom-
pression behind disk I/Os. For faster disks, these results would
still hold.

Figure 8 (bottom) shows the same results when running
Sabre with software-based DEFLATE decompression. Across
all different memory sparsities, the overhead of software de-
compression kills the speed-up of fetching deflated snapshots.
This demonstrates that hardware acceleration is required to
make snapshot compression practical.

For the sake of completeness, we additionally integrate
other software compression algorithms optimized for per-
formance in Sabre: Snappy, Zstandard (zstd), and LZ4. We
run them on a dedicated CPU core under the highest possi-
ble turbo boost frequency of 4 GHz and repeat the snapshot-
ting microbenchmark experiment. As Figure 9 shows, across
all sparsities, the memory restoration with IAA outperforms
these algorithms. The restoration times under Zstd level-3,10,
and 20 are very close to IAA results and are much lower than
prefetching uncompressed snapshots. However, as Figure 9
(Bottom) shows, they require a significant amount of CPU
resources at the snapshot creation stage (up to several sec-
onds at the highest frequency), and they do not demonstrate
performance as high as IAA when running at lower CPU fre-
quencies. We do not show results for LZ4 as its compression
ratios are low.
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Figure 9: Sabre with different fast software (de)compression al-
gorithms running on dedicated CPU cores under the turbo boost
frequency of 4 GHz; the bottom plots show CPU resources (in sec-
onds) consumed to make the snapshots (averaged over sparsities).

4.3 Full System Implementation
We now discuss how we integrate Sabre’s memory prefetch-
ing unit in an end-to-end serverless framework. We choose
Firecracker microVMs [17] as the target serverless sandbox.
Firecracker is the current industry-leading VMM, and it al-
ready provides good VM snapshotting capabilities. Most re-
cent work in this space, such as REAP [64], is also based
on Firecracker. To build the end-to-end serverless pipeline,
we partially reuse the infrastructure of vHive – an academic
framework for serverless used to showcase the effective-
ness of REAP working sets. vHive allows running serverless
Docker images inside Firecracker microVMs via firecracker-
containerd. vHive also extends the native Firecracker Go SDK
to support snapshotting and implements a simple orchestrator
to simplify managing the serverless environment.

We write Sabre’s snapshotting unit in ≈ 3500 LoC in
C++17 excluding unit tests and benchmarks, using Intel’s
QPL library v1.3.1 and build it as a dynamic library. We then
integrate it with Firecracker VMM v1.5.0 in only 50 LoC in
Rust via FFI. Sabre runs in the default Firecracker’s snap-
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Figure 10: Sabre’s integration in end-to-end serverless frameworks.

shotting/restoration thread, and does not require additional
CPU resources. To expose Sabre’s snapshotting to the higher
layers of serverless frameworks, we additionally extend the
Firecracker’s Go SDK 1.0.0 with several new APIs. Figure 10
shows the simplified overview of the full system design. Sim-
ilarly to vHive [64], our infrastructure enables running end-
to-end serverless applications in Firecracker microVMs with
standard Docker environments.

5 End-to-End Evaluation

Methodology: We evaluate Sabre on a large set of end-
to-end serverless benchmarks from vSwarm [66], Function-
Bench [44, 45], and SeBS [27]. We modify the benchmarks
to run grpc servers and support server reflection so that we
can invoke functions using grpcurl. The set includes only
one synthetic benchmark – python-list implementing travers-
ing a large sparse Python list; we include it to showcase
the upper-bound of compression achievable with Sabre. We
slightly modify the dna-visualisation benchmark from SeBS
to make it use different DNA sequence datasets across dif-
ferent invocations (the default benchmark is always based on
the same dataset; dna-visualisation-1). Similarly, we modify
the datasets for the model training benchmark to use smaller
2 MB and larger 10 MB images. All other benchmarks are
taken from the aforementioned suites. In all experiments, we
use a single IAA engine for memory prefetching.

Sabre’s memory prefetching unit is agnostic to the under-
lying mechanism of creating a snapshot. It can be used with
dirty page-based snapshots, with working sets, and even when
snapshotting the whole guest’s VM memory. Since the latter
is not practical for realistic serverless workloads, and there-
fore rarely used in practice, we only evaluate Sabre on the first
two options. In all experiments, we use our testbed with the
configuration shown in Table 2. We focus our evaluation on
two metrics: (1) how well Sabre is able to compress snapshots
of different types, and (2) what is the impact of decompression
on the end-to-end cold start time.
End-to-end performance impact: Figure 11 shows the re-
sult of running the default dirty page-based snapshots of Fire-
cracker (Diff snapshots [2]) with Sabre. Diff snapshotting is
enabled via dirty page tracking in the hypervisor. We find
Diff snapshots to be relatively large (a few hundred MB)



py
th

on
-li

st

im
ag

e-
pr

oc
es

sin
g-

hd vi
de

o-
pr

oc
es

sin
g

cn
n-

im
ag

e-
cla

ss
ifi

ca
tio

n

dn
a-

vi
su

al
iza

tio
n

dn
a-

vi
su

al
iza

tio
n-

1

m
od

el
-tr

ai
ni

ng
-

2M
B

m
od

el
-tr

ai
ni

ng
-

10
M

B

0

2000

4000

6000

8000

10000

En
d-

to
-e

nd
 c

ol
d 

st
ar

t t
im

e 
(m

s)

53.7% 13.4%
7.9% 64.0%

21.1%
33.2%

22.5%

18.9%
Baseline VM load with on-demand paging
Baseline function invocation
Sabre VM load with prefetching
Sabre function invocation

fib
on

ac
ci

im
ag

e-
pr

oc
es

sin
g-

lo
w

m
at

m
ul

l

ch
am

el
eo

n

rn
n-

se
rv

in
g

m
l-s

er
vi

ng bf
s

pa
ge

ra
nk

0

200

400

600

800

1000

22.8%

18.5%

20.1%
25.8%

15.0% 38.5%

19.8%

20.7%

Figure 11: End-to-end evaluation of serverless cold starts with Sabre on Firecracker’s default Diff snapshots with prefetching; annotated
numbers show speedup of Sabre over the baseline.

and coarse-grained for all applications, which means that the
scattered prefetching (Figure 7-C) works best in this case.

Figure 11 compares the end-to-end cold start latency when
serving requests from a VM restored with on-demand paging
(default mechanism in Firecracker) and via prefetching with
Sabre. We find that in all cases, Sabre is able to compress
Diff snapshots by up to 4×, and 2.5× on average. This is a
significant reduction in storage requirements, given the large
original size of Diff snapshots, ranging from hundreds of
megabytes to several gigabytes. This is even more significant
given that in serverless deployments, a physical node can host
hundreds or thousands of snapshotted VMs [17].

Most importantly, in all cases, the hardware-accelerated
decompression in Sabre allows restoring a compressed snap-
shot without any negative impact on the end-to-end latency.
Moreover, in some applications, we observe up to 60% lower
cold start overhead, enabled by the fast memory prefetching.
The speed-up and compression effect are particularly evi-
dent for our synthetic python-list benchmark, where the dirty
memory, i.e., the Python runtime heap storing the list, is well
compressible. The same holds for dna-visualization as well.

Optimizing the VM snapshotting strategy: While Diff snap-
shots and dirty page tracking currently represent the industry
standard in microVM snapshotting, they are not the most
efficient way to restore memory via prefetching. More ef-
ficient mechanisms are enabled via working set estimation.
We implement working sets in Sabre which are used with
our memory prefetching unit for evaluation purposes. Our
implementation is based on the record-and-replay technique.
Similarly to the original paper [64], Sabre records working
sets during the first invocation of serverless functions after the
standard restoration from vanilla Firecracker snapshots. We in-
tercept in user-space the guest memory page faults and record
all accessed addresses in a vector. The recorder then groups
the accessed pages to form continuous chunks, whenever pos-
sible, and saves them in a WS file. The REAP restoration uses

the passthrough functionality of Sabre’s memory prefetching
unit, which resembles the original REAP specification [64],
i.e., direct I/O disk reads combined with page installation in
the guest physical memory via userfaultfd. After prefetching,
the hypervisor continues serving the rest of the pages outside
of the working set via standard on-demand paging.

REAP working set files tend to be much more scattered than
Firecracker’s Diff snapshots. We make a similar observation
in our applications as well. Therefore, memory restoration
through single-chunk prefetching works best in this case, and
we configure Sabre accordingly for REAP snapshots. Table 3
shows the achieved compression ratios of REAP working set
files and the corresponding prefetching speedup when using
Sabre. Figure 12 shows the end-to-end cold start latencies
across the same set of serverless benchmarks as before.

Table 3 shows that working set files are better compressible
than dirty pages. The compression ratio reaches up to 4.7×;
3.2× on average. The prefetching time itself with Sabre is
accelerated by 25−55%. On the synthetic application python-
list, the speedup reaches 70%. As expected, there is an ob-
vious correlation between the achieved compression ratio
and prefetching speedup. End-to-end, working set prefetch-
ing speedup translates in up to 20% of improvement in the
application’s cold start latency. For several of the examined
applications, the speedup is diminished due to the working set
size being small or their compute time being high. In the latter
case, the impact of accelerated restoration gets hidden behind
computing. In general, compression of snapshots/working set
files is more impactful on applications with larger working
sets, especially if they are memory-bounded (as in the case
of the python-list benchmark). Even when Sabre does not
accelerate cold start time significantly, it still greatly reduces
the size of the working set files without a negative impact on
prefetching latency and/or CPU cycles for restoration.
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Figure 12: End-to-end evaluation of serverless cold starts with Sabre on REAP snapshots; annotated numbers show the speedup over REAP.

Table 3: Compression ratios and page prefetching speedup of Sabre
over REAP working sets.

Application Size of REAP
WS (MB)

Compression
ratio

Sabre’s prefetching
speedup

fibonacci 12.93 2.64× 29.02%
python list 405.23 14.82× 70.81%
image-processing-low 27.67 3.74× 45.17%
image-processing-hd 120.66 2.73× 35.27%
matmull 13.02 2.62× 32.65%
chameleon 18.45 2.90× 36.05%
video-processing 44.91 3.21× 43.30%
rnn-serving 17.64 2.50× 26.59%
ml-serving 22.10 2.67× 35.00%
cnn-image-classification 136.36 3.10× 38.73%
bfs 44.22 4.29× 49.39%
dna-visualization 16.04 2.76× 28.73%
dna-visualization-1 720.95 4.70× 55.01%
pagerank 62.23 2.94× 34.60%
model-training-2MB 171.28 3.60× 43.48%
model-training-10MB 111.71 3.57× 45.54%

6 Discussion and Future Work

6.1 Prefetching on Faster Disks and Networks

While the performance impact of memory prefetching be-
comes less critical as the speed of disks and NVMe/persistent
memory devices increases, Sabre benefits when it comes to
storage space reduction remain. This is even more critical,
given the higher cost per Byte of new memory technologies.
CPU-free memory decompression, especially at zero negative
impact on end-to-end latency will always be beneficial, inde-
pendent of the underlying storage technology. In future work,
we plan to evaluate Sabre on CXL-enabled memory devices
and explore the potential of serving compressed snapshots
from them. The byte-addressable organization of CXL and
other similar memory disaggregation devices will make the in-
tegration with near-memory accelerators, such as IAA, much
more efficient than when using commodity disks, essentially
eliminating all overheads of PRS discussed in Section 3.

Additionally, the streaming nature of hardware accelerators,
such as IAA, allows combining Sabre with any streaming I/O,

including networking. This makes Sabre attractive for remote
snapshotting – another technology in serverless microVMs
where snapshots and/or working set files are served from
centralized storage or a remote server. Fast streaming decom-
pression can have a dramatic reduction of network bandwidth
consumed for snapshotting, which is critical for highly multi-
tenant and geographically distributed datacenters.

6.2 Further Optimizing Sabre

The biggest limitation in our current design of Sabre is its
integration with the disk via the standard IAA’s PRS mech-
anism. This disallows bypassing the OS page cache when
feeding an input to IAA, and results in lower effective band-
width utilization than direct I/O. This can be optimized by
redesigning the default PRS in one of two ways.

First, PRS can be replaced with user-space page fault han-
dling for input buffers. Disk I/O can be initiated separately
in user space using the read system call combined with
O_DIRECT file opening. In this case, the IAA page fault
handler only needs to wait until the disk DMA catches up
with the sequential data transfer. This requires enabling the
block-on-fault feature of IAA, otherwise, the input stream
would need to be resubmitted from the beginning every time
IAA reaches pages that have not been fetched yet. Alterna-
tively, one can directly connect the disk’s and IAA’s DMA
engines, and allow streaming of compressed inputs directly
into the accelerator through a small FIFO buffer. However,
this can only be done in the host kernel in custom IAA drivers
and is challenging to implement in a scalable way.

A second limitation in the current design’s single-
chunk prefetching (Figure 7-B) is using the COPY-based
userfaultfd mechanism. The original REAP snapshots [64]
suffer from the same inefficiency. Starting with Linux kernel
5.13, userfaultfd can be handled via minor page faults and
UFFDIO_CONTINUE page installation. Instead of copying
pages from the continuous buffers, one can install them from
the page cache via the underlying page table modification



with zero-copy. This will, however, complicate managing the
decompression/prefetching buffers to ensure they are never
reclaimed, while the corresponding microVM is running.

6.3 Beyond MicroVM Snapshotting
VM memory compression and fast restoration go well beyond
microVM snapshotting and serverless. For example, VM live
migration [18,59] can benefit from hardware-accelerated com-
pression and on-the-fly decompression of memory pages. The
recent work [14] is exploring this opportunity for KVM. This
can dramatically accelerate applications heavily relying on
VM migration, including VM bin-packing for cloud man-
agement [55], low-latency cloud-native applications such as
vRAN [49, 68], and fast fault-tolerance solutions [63]. We
plan to extend Sabre to benefit these applications as well.

7 Conclusion
MicroVM snapshotting and restoration via page prefetching
is the most effective technique for reducing the cold start
overhead in serverless. Memory compression is a promising
technique to reduce the size of VM snapshots and speed up
prefetching during memory restoration, but it is only efficient
if decompression is fast. We showed that emerging hardware
accelerators for general-purpose compression are suitable for
microVM memory restoration as well. We first characterized
the Intel IAA accelerator and then designed Sabre, a system
for fast prefetching of VM memory from compressed snap-
shots. We showed that Sabre compresses snapshots of real
serverless applications up to 4.5×, and speeds up prefetching
by up to 55% compared to uncompressed baselines. This re-
sults in up to 20% of end-to-end performance improvement
for cold function invocations over the most optimized snap-
shotting technologies.
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