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Abstract— Seamless communication of desired motions and
goals is essential for enabling effective physical human-robot
collaboration. In such cases, muscle activity measured via
surface electromyography (EMG) can provide insight into a
person’s intentions while minimally distracting from the task.
The presented system uses two muscle signals to create a control
framework for team lifting tasks in which a human and robot
lift an object together. A continuous setpoint algorithm uses
biceps activity to estimate changes in the user’s hand height, and
also allows the user to explicitly adjust the robot by stiffening
or relaxing their arm. In addition to this pipeline, a neural
network trained only on previous users classifies biceps and
triceps activity to detect up or down gestures on a rolling
basis; this enables finer control over the robot and expands
the feasible workspace. The resulting system is evaluated by
10 untrained subjects performing a variety of team lifting and
assembly tasks with rigid and flexible objects.

I. INTRODUCTION

Robots have the potential to provide humans with valuable
assistance and greatly increase productivity, yet there is
often a communication barrier when trying to collaborate on
physical tasks. To facilitate natural interactions and efficient
teamwork, an interface is needed that allows the robot to
accurately interpret the person’s intentions or commands in
a way that minimally distracts from the ongoing task.

Since a person naturally generates muscle activity during
physical interactions, detecting these signals via surface elec-
tromyography (SEMG) could provide valuable information
about desired motion or stiffness. However, such signals are
typically dominated by noise and can be difficult to map
to limb motions due to the highly nonlinear relationships
between electrical neuron activity, muscle activation, joint
impedances or torques, and limb dynamics. In addition, pre-
dicting effective robot actions in response to known human
actions can be difficult and highly task-dependent.

An approach to address these challenges could be blend-
ing motion prediction from natural muscle activity with a
muscle-based control interface for explicitly commanding
adjustments. The method presented in this work creates such
a controller for team lifting tasks by using EMG signals
from the biceps and triceps as the only inputs, as depicted
in Figure 1. A coarse estimation of the person’s upward
or downward motion is calculated from biceps activity and
used to control the collaborating robot; the person can then
adjust their muscle activity to quickly increase or decrease
this setpoint. In addition, a plug-and-play neural network
classifier detects up or down gestures at any time to offer
finer control and facilitate more complex lifting scenarios
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Fig. 1: A human and robot lift an object together, using muscle activity
as the sole communication channel. Two pipelines process EMG signals
to estimate continuous height adjustments and detect up/down gestures.'

where the person may want the robot to hold its end of the
object at a significantly different height than their own.

This framework provides a human-robot communication

channel that is embedded within the motions of the task
itself. Muscle activity associated with the desired motions
is used to grant the person control over the robot and guide
it towards providing effective assistance according to their
intentions and physical intuition. The system can then be
applied to a variety of lifting tasks.

In particular, this work presents the following:

« an algorithm to continuously estimate a lifting setpoint
from biceps activity, roughly matching a person’s hand
height while also providing a closed-loop control inter-
face for quickly commanding coarse adjustments;

o a plug-and-play rolling classifier for detecting up or
down gestures from biceps and triceps activity, allowing
the user to explicitly command fine adjustments or move
the robot to targets farther from their own hand height;

« an end-to-end system integrating these pipelines to col-
laboratively lift objects with a robot using only muscle
activity associated with the task;

o experiments with 10 subjects to evaluate the setpoint
and classification pipelines and to demonstrate collabo-
rative assembly with rigid or flexible objects.

II. RELATED WORK

This paper builds upon research exploring biosignals for
robot control and frameworks for human-robot collaboration.

A. Human-Robot Interaction

There have been numerous approaches to understanding a
person’s intention and determining appropriate robot actions

! Videos are available at http://people.csail.mit.edu/delpreto/icra2019



based on models of task and team dynamics. Studies have
explored understanding the user’s perspective [1] and pre-
dicting human intention or plan adaptation [2], [3]. Effective
team dynamics and cross-training have also been investigated
[4], [5], [6], although the human-robot interface is often a
bottleneck for implementation [7].

Physical interaction tasks have also been achieved using
modalities such as vision, speech, force sensors, and gesture-
tracking datagloves [8], [9], [10], [11], [12]. These may be
difficult to generalize to complex tasks though, and may
be hindered by interactions with the environment [13] or
occlusions and ambient noise. Load-sharing policies have
also been developed for jointly manipulating objects within
simulation [14], and planning methods are explored for safety
and efficiency [15], [16] or formation control [17].

B. Using Muscle Signals for Robot Control

While models to predict appropriate actions given a per-
ceived world state are powerful when they can be con-
structed, directly conveying a user’s physical intentions can
be useful for interactive tasks. Many EMG devices have
been developed for assistive robotics [18], including EMG-
based exoskeletons for the hand [19], [20] or the upper-limb.
Upper-limb exoskeletons have effectively used approaches
such as parameterized muscle models [21], fuzzy logic
controllers [22], or impedance controllers [23]. Models can
also provide insights into muscle dynamics to facilitate the
development of associated controllers [24], [25], [26], [27],
[28]. Remote control or supervision of non-collaborating
robots has also been explored via gesture-based control [29],
[30], [31] or continuous trajectory estimation [32], [33]. In
addition, muscle signals have been used to convey stiffness
information for dynamic physical collaboration tasks [34].

Such studies have shown that EMG can yield effective
human-robot interfaces, but also demonstrate associated chal-
lenges such as noise, variance between users, and complex
muscle dynamics. Examples of addressing such challenges
include redundant switching models [33] or leveraging the
human within an exoskeleton control loop [35].

III. EXPERIMENTAL SETUP AND SYSTEM DESIGN

An experimental setup and a closed-loop system were
designed to explore team lifting scenarios and evaluate
performance. The principal components and information flow
are illustrated in Figure 2.

A. Team Lifting Tasks

Two pillars of LEDs indicate target lifting heights or cue
training gestures. During lifting tasks, the user lifts an object
and controls the robot to achieve the desired height while the
LEDs are lit, then lowers the object and robot back to the
table when they turn off. A dumbbell weighing up to 101b
is used for non-collaborative trials, while a shared object is
used for trials with physical robot interaction.

In addition to these structured lifting tasks, collaborative
assembly tasks are performed in which the user and robot
install an object on a base structure. As seen in Figure 5,
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Fig. 2: The system consists of an experiment controller that coordinates

the paradigm, EMG acquisition, two pipelines for computing a robot

pose, the Baxter robot, and a human subject. Visual and/or physical
feedback closes the loop.

a variety of rigid and flexible objects are used. The user
can command the robot through any trajectory they deem
appropriate based on the task and the object’s properties.

B. Experiment Controller and Robot

A centralized control program coordinates the experimen-
tal paradigms. It controls event timing, decides target heights,
and controls the cue LEDs. It also relays commands from
the EMG subsystem to the robot and sends event triggers to
the EMG subsystem. A humanoid Rethink Robotics Baxter
robot was used for these experiments.

C. EMG Hardware and Data Acquisition

Muscle signals are acquired from the right Biceps Brachii
short head and the right Triceps Brachii long head using
differential pairs of adhesive 24 mm Covidien electrodes.
MyoWare Muscle Sensors provide amplified raw and filtered
signals, which are then sampled at 1 kHz by an NI USB-6216
data acquisition device and processed within Simulink 2017b.
The setpoint algorithm uses the biceps signal, while the
classification pipeline uses the biceps and triceps signals.

D. Subject Selection

A total of 10 subjects participated in the experiments (90%
male, 80% right-handed). No previous experience using
EMG interfaces was required, and subjects were not screened
based on EMG signals. All subjects provided written consent
for the study, which was approved by MIT’s Committee on
the Use of Humans as Experimental Subjects.

IV. CONTINUOUS SETPOINT ESTIMATION

The setpoint algorithm aims to estimate changes in the
person’s hand height while also creating a task-based control
interface. Rather than model the muscle and limb dynamics
to attempt an accurate prediction of pose and appropriate
robot response, it leverages the person’s ability to close
the loop based on visual and physical feedback. The robot
roughly lifts to the same height as the person using only their
natural muscle activity, then the user can consciously control
the robot by adjusting their muscle activity.



Algorithm 1 Setpoint Control Algorithm

SIGNAL PROCESSING
: raw < amplified biceps EMG signal from MyoWare board, sampled at 1 kHz
: filtered < band-pass filter 5-400 Hz
1 envelope <« rectify, low-pass filter 5 Hz, amplify by 1.5

B LN =

1 envelopeScaled < normalize using MVC-based G ,ormalization
UPDATE BUFFERS

W

: Circular baseline Buf fer and enabled Bu f fer + envelopeScaled
6: Non-circular changesBuf fer < envelopeScaled
DETERMINE ENABLE BIT
7: enabled + mean(enabledBuf fer) > Lenabie
8: if enabled then
ESTIMATE AND FILTER SETPOINT ADJUSTMENTS
9: if changesBuf fer is full then

10: rawChange < integrate [changes Buf fer —baselineBuf fer]

11: if [rawChange| < Lchange OF (> 75% of actionHistory # 0
and majority of those # sign(rawChange)) then

12: rawChange < 0

13: end if

14: setpointChange < rawChange X Gsetpoint

15: robotHeight < robotHeight + setpointChange

16: Circular action History <sign(rawChange)

17: end if

18: end if

Algorithm 1 outlines the pipeline, which processes a single
EMG channel from the biceps to produce two outputs: a
continuously adjusted robot height, and whether the person
is engaged in the lifting task. Figure 3 shows sample results.

A. Signal Processing

The amplified raw biceps signal from the MyoWare pro-
cessing board is conditioned and processed in software to
extract a signal envelope. A bandpass filter preserves the
useful frequency content of the EMG signal [36] while
removing high-frequency noise and low-frequency offsets
or motion artifacts. The signal envelope is then detected
to indicate muscle activation levels. Example filtered and
envelope-detected signals are shown in Figure 3.

B. Parameterized Setpoint Algorithm

The central principle of the setpoint algorithm is to focus
on short-timescale changes in muscle activation around a
long-timescale baseline level of activation. By incrementally
updating the setpoint based on relative changes in muscle
activity instead of mapping muscle activations to poses, the
algorithm is more robust to EMG variation across users
and time. In addition, changes in activation are intuitively
informative for lifting tasks since moving a weight between
two poses requires a spike in torque.

There are 8 main parameters, which will be introduced
throughout this section then optimized in the next section.

The algorithm first applies a normalization gain
Grormalization based on maximum voluntary contraction
(MVCO) to the detected EMG envelope. This signal then
populates a circular buffer of duration Dpggerine and a
shorter noncircular buffer of duration Dintegration. The
mean of the long buffer represents a baseline level of
activation, which is subtracted from the shorter buffer
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Fig. 3: These sample traces were recorded while the human-robot team
lifted an object to 7 target heights. The pipeline filters, amplifies, and
envelope-detects the EMG signal (top), computes a rolling baseline to
determine whether the controller should be enabled (middle), and uses
variations around the baseline to adjust the robot setpoint (bottom). The
targets (magenta) were achieved.

TABLE I: Setpoint Algorithm Parameters

Parameter Tuning Optimization Values Used
Type Bounds Result | (mean =+ SD)

Dyaseline One-time [0.25, 5.00] s 2.38s 240s

Dintegration One-time [0.05, 0.20] s 0.10s 0.10s

Dchanges One-time [0.20, 2.00] s 1.90s 1.90s

1D sinaiie One-time [0.38, 2.25] s 2.00s 1.00s

Lehange One-time - - 0.01

Lenabie Per-Subject [0.01, 0.15] 0.15 0.28 +0.27

Grormalization | Per-Subject - - 11.50 +£10.48

Cloctmoins Per-Subject | [0.20, 20.00] 0.75 0.38+£0.20

to yield changes around the baseline. These changes are
integrated when the short buffer fills. If the result is above a
threshold level Lcpange, it is amplified by a gain Getpoint
to adjust the robot’s setpoint.

Before applying this change to the robot, however, the
computed adjustments are slightly filtered. A rolling history
is stored spanning D pqnges seconds of whether the com-
puted setpoint adjustments were positive, negative, or zero.
A new setpoint adjustment is only applied if its sign agrees
with the majority of the stored history (ignoring zeros) or if at
least three-quarters of the history is zero. This filtering helps
smooth the robot motion, which can be especially desirable
when the user moves rapidly or when muscle signals become
erratic due to fatigue.

To determine whether the controller should be enabled, a
rolling buffer of the normalized envelope spanning D¢ qpie
seconds is compared to a threshold L., qpc. If this indicates
the user is not lifting, the robot waits in a neutral position.

C. Parameter Optimization

A summary of the parameters required by the model is
shown in Table I. Most of the parameters are held constant
for all users, and were optimized based on initial open-loop
experiments where a user was cued to lift a dumbbell to
each of 7 target heights. A genetic algorithm was used for
all parameters except Grormalization and Lepange, Which
were set based on MVC and manual preference, respectively.
Using the Matlab 2017b Global Optimization Toolbox, the
algorithm was run for 66 generations with a uniform creation
function, rank scaling, scattered crossover fraction 0.8, elite



ratio 0.05, and stochastic uniform selection. The objective
function simulated the setpoint algorithm with new parame-
ters, then extracted the root mean square (RMS) error of the
computed setpoints at the end of each trial.

Table I presents the results along with the values ultimately
used during online experiments. The computed durations are
reasonable given the cadence of a typical lifting task; the
baseline buffer spans a few seconds, the history of changes
allows a reversal of lifting direction approximately once per
second, and the integration buffer is short yet long enough
to smooth spurious EMG fluctuations. Note that thresholds
and gains act on normalized signals.

The three subject-specific parameters are based on brief
calibration routines. The subject is cued to repeatedly tense
and relax their arm, then to lift a dumbbell to 7 target
heights without robot feedback. G.,ormatization a0d Lepable
are computed by comparing relaxation and contraction seg-
ments, then Gsetpoint 1S computed by simulating the setpoint
algorithm and minimizing its error at each target.

D. Human-in-the-Loop Control

Although the model is optimized by minimizing position
error between the user and robot, the system is not designed
to track the human’s position accurately in online trials; the
user may not want the robot to mirror their own position. In-
stead, the algorithm provides a coarse height estimation and
creates a framework with which the user can communicate
desired motions. Biceps are naturally used to lift an object,
then further tensing or relaxing the muscle will further raise
or lower the robot. By using the task’s primary muscle in
a way that is consistent with the task, the system aims to
reduce necessary training and behavioral modification.

Conceptually, the algorithm achieves this by leveraging
the independence between joint position and stiffness. A
person can lift an object using mainly their biceps, but
then significantly change their muscle activation without
moving the object by co-activating their antagonistic triceps.
The controller effectively repurposes this stiffness degree of
freedom as a communication channel to the robot.

V. ROLLING GESTURE CLASSIFICATION

While the setpoint algorithm estimates changes in the
user’s hand height and enables active control over the robot,
it can be difficult to achieve fine-grained or persistent height
adjustments. In addition, commanding robot positions that
are significantly higher than the user’s hand may be tiring.

To address these cases, a classification pipeline was imple-
mented that operates in parallel with the setpoint algorithm.
It continuously classifies EMG envelopes from the biceps
and triceps to detect up and down gestures; the robot then
briefly moves slowly in the desired direction. This pipeline is
also plug-and-play, only trained on data from prior subjects,
so new users can immediately control the robot via gestures.

A. Training Gestures and Feature Extraction

Training data was collected by cueing up or down gestures
during specified time windows using the LED pillars. As
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Fig. 4: EMG signals are segmented and processed into gesture training
data by normalizing, centering, shifting down to 0, and downsampling.
The center columns represent 286 trials from 6 subjects, with mean
traces in bold and one standard deviation shaded on each side. Synthetic
augmentation examples are not included.

illustrated in Figure 1, an up gesture consists of two brief
upward hand motions while a down gesture consists of a
single brief downward hand motion. As users become more
experienced with the system, they can learn to produce the
required muscle activations while minimizing object motion.
Subjects were instructed to match their gesture duration to
the LEDs, which remained lit for 1s. Figure 4 visualizes
collected EMG signals and extracted training data, demon-
strating some common characteristics but also significant
variability between gesture examples and across subjects.

1) Segmentation and Signal Processing: Envelopes of
biceps and triceps muscle activity are acquired from the
MyoWare processing boards then normalized based on MVC.
From each trial, one labeled gesture segment and one base-
line segment are extracted according to the cue LEDs.

The segmented muscle signals are smoothed by a moving
mean with duration 75 ms, and downsampled to 50 Hz. They
are then independently shifted so their minimum values are at
0 to reduce the impact of signal drift, inter-subject variations,
and the weight or height of the object.

2) Data Augmentation: To achieve reliable predictions on
a rolling basis despite training on time-locked examples, a
data augmentation approach can be employed [29]. Each
extracted training segment is first centered; up gestures are
centered to the average location of two prominent biceps
peaks, while down gestures are centered to a single promi-
nent triceps peak. Four positively labeled copies of each
gesture are then synthesized by randomly shifting left and
right between 0 and 100 ms. Four negatively labeled copies
are also synthesized by shifting farther left and right between
150 and 450 ms. Together, these encourage the network to
prefer gestures centered in its classification window within
a certain tolerance. For each original baseline segment, two
randomly shifted copies are also synthesized.

In addition to augmenting via time shifts, synthetic exam-
ples were generated based on magnitude. While the signals
are normalized via MVC, there can still be variation across
subjects, object weights, or gesture speeds. After synthesiz-
ing time-shifted examples, every example in the corpus is
copied and scaled by a random factor between 0.6 and 1.4.

As a result of this augmentation, each gesture segment
yields 10 positive and 8 negative examples while each
baseline segment yields 6 negative examples. The center 1.5 s
of each example is then extracted, and the two EMG channels
are concatenated to yield a 150-element feature vector.
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Fig. 5: Various team lifting and assembly tasks were performed. Column
(a) uses the setpoint algorithm with cued target heights in open-loop,
separated closed-loop, and interactive closed-loop scenarios. Column (b)
performs assembly with rigid and flexible objects. Column (c) extends
the system to use stiffness and additional degrees of freedom.

B. Neural Network Training and Online Classification

These labeled vectors are used to train a feed-forward
neural network using the Pattern Recognition functionality
of Matlab’s Neural Network Toolbox (2017b). The network
has a single hidden layer of size 50 using a hyperbolic
tangent sigmoid activation function, and an output layer of
size 3 using a softmax activation function. The three outputs
are used to indicate whether the segment was classified as
baseline, a down gesture, or an up gesture.

For each online experiment, a new classifier was trained
using data from previous subjects. Streaming EMG envelopes
are then normalized, smoothed, downsampled, and used
to populate two 1.5s rolling buffers in Simulink (2017b).
With each new sample, the buffers are shifted down to O,
concatenated, and classified. Network outputs are slightly
filtered to reduce spurious predictions; a rolling buffer of
40 classifications (800 ms) is maintained, and a final gesture
prediction is declared if its mode occurs at least 4 times and
is on average within 40 ms of the buffer’s center.

If an up or down gesture is detected, the robot moves in
that direction at 3 cm/s. It stops when the opposite gesture is
detected, 5s have elapsed without another gesture detected,
or the robot’s height limits are reached.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

Experiments were conducted with 10 subjects to evaluate
the algorithms and system efficacy.'

A. Setpoint Algorithm

To evaluate the setpoint algorithm, users lifted an object to
a sequence of 7 increasing heights while the system estimated
an appropriate robot position. This was done in an open-
loop scenario without robot motion, then in two closed-loop
scenarios: one where the robot moved but did not interact
with the user, and one where the human and robot jointly
lifted a rigid object. Figure 5a shows the task setups. Targets
were equally spaced between 10.0cm and 50.0 cm above a
76.5 cm table. All 10 subjects participated in these scenarios,
totalling 20 open-loop sequences (excluding 1 per subject
used for calibration), 22 separated closed-loop sequences,
and 39 collaborative sequences.

Figure 6a illustrates the results. Across all targets, the
mean and standard deviation of the RMS setpoint error
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Fig. 6: For each target lifting height (green), the achieved robot setpoints
are aggregated across all users. All trials used the setpoint algorithm,
but only those in (b) used gestures. There is significantly less error
with closed-loop feedback, and using gestures further increases accuracy
while reaching higher targets.
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during the last 1.0s of each trial for the open-loop, sepa-
rated closed-loop, and collaborative closed-loop cases were
14.1£152cm, 10.0x11.1cm, and 9.0+ 16.0cm, respec-
tively. Users visually compared the object or the robot’s
fingers to the LED targets, so some variability is expected.
Each closed-loop case was significantly more accurate than
the open-loop case (p < 0.01 for each one), with little
difference between the two closed-loop cases (p < 0.49).
This suggests that including closed-loop feedback, either
visual or physical, allows the human to significantly improve
performance by adjusting muscle activity to control the robot.

The object was also level during the final 1.0s of collab-
orative trials, with a pitch of -1.4° +5.4°. Together with the
increased accuracy between open-loop and closed-loop cases,
this indicates that users successfully leveraged arm stiffness
to control the robot without affecting their own pose.

1) Assembly Tasks: Two assembly tasks illustrated in
Figure 5b were also performed. The human and robot jointly
lifted an object, waited while the human manipulated a base
structure with their free hand, then lowered the object onto
the structure. This was done with a rigid object (8 subjects,
41 trials) and a flexible rubber sheet (4 subjects, 20 trials).
The rigid-object assembly lasted 16.4 £+ 8.1's, during which
the object pitch averaged -0.3° +5.3°. The flexible-object
assembly averaged 8.8 +-3.8s. Assembly was successful in
both cases, demonstrating applicability of the system to basic
team lifting tasks with a variety of object material properties.

B. Gesture Classification

To evaluate whether the gesture classification pipeline
facilitates finer control and higher targets, users were cued to
gesture the robot towards 3 targets from 62.5cm to 82.5cm
above the table while keeping their elbow at approximately
90°. This was designed to mimic lifting a flexible carbon
fiber sheet to a specific angle before pressing it against a
vertical mold. Figure 6b visualizes the results. Across all 3
targets, spanning 38 trials from 5 subjects, the mean RMS
error during the final 1.0s of each trial was 6.8 =7.6cm.
Users achieved lower error than in the separated closed-loop
case without gestures (p < 0.05). And while the setpoint



Gesture Classification Performance During Open-Loop Trials
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Fig. 7: An EMG classifier trained on previous subjects operated con-
tinuously during open-loop session of cued up or down gestures. The
results indicate the breakdown of trials during which the robot would
have moved in the direction indicated by the users’ gestures.

algorithm’s error generally increased with increasing height,
the gesture control framework enabled a larger workspace.
1) Classification Performance: The classification pipeline
operated during the open-loop gesture training sessions as
well as the closed-loop gesture task. Each experiment used
a classifier trained on the open-loop sessions of previous
subjects. 6 subjects participated in these sessions, 5 of
whom also participated in the closed-loop sessions. The first
classifier was trained on 160 gestures from a separate subject.
Figure 7 summarizes the performance during open-loop
trials by determining whether the robot would have moved
in the gestured direction. Although the networks were trained
on relatively small collections of time-locked examples, they
were able to classify gestures on a rolling basis for new
users that had neither feedback from the system nor direct
knowledge about how prior subjects performed the gestures.
The same networks were used for the closed-loop control
task described above, when users could make either gesture
at any time. Ground truth for the gestures was obtained
by post-processing videos to estimate robot motion in re-
sponse to user gestures. Figure 8 depicts per-experiment
and overall confusion matrices. Across all subjects, the
classifier operated at 50 Hz for over 51 min and the robot
responded appropriately to 68.8% of gestures. Note that if
the robot ignored a gesture, the person could simply repeat it.
Comparing open-loop and closed-loop results also suggests
that users can subtly adjust their gestures based on feedback.
Together with the accuracy shown in Figure 6b, these results
indicate a successful plug-and-play gesture control interface.

C. Extended Assembly Tasks

Two assembly tasks with increased complexity were also
performed to demonstrate extensibility of the system. Each
scenario was completed at least 10 times by a single subject.

In the top task of Figure 5c, the human and robot lift
a flexible canvas and press it against a base structure; this
mimics pressing carbon fiber resin against a mock fuselage.
The system was augmented with thresholded EMG activity
from the forearm to detect when the user pushes the cloth
forward. The robot then moves horizontally and holds its
position while the user completes the dexterous task of
shaping the cloth against the structure.

In the second task of Figure 5c, the human and robot
install a flexible sheet onto an overhead structure; this
mimics installing a fire blanket on a fuselage. The system is
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Fig. 8: Online gesture classification performance during closed-loop
tasks is summarized by confusion matrices for each experiment (a)
and across all subjects (b). Percents are based on the counts of actual
gestures, and numbers on each bar count associated instances.

augmented to detect the user’s arm stiffness by multiplying
the biceps and triceps envelopes. If it is below a threshold,
the robot remains compliant around its setpoint so the user
can position the sheet. Otherwise, the robot stiffens so the
user can pull the sheet taught and install it.

D. Workload and Usability

All 10 subjects also completed a survey including the
NASA-TLX workload assessment [37]. The raw TLX score
averaged 44.7 +16.16 out of 100, with lower numbers in-
dicating reduced workload. When asked to also rate system
learnability and intuitiveness, responses averaged 38.6 +27.3
and 37.7 +26.9 out of 100 with lower scores indicating faster
learning and increased intuitiveness. While a larger sample
size would be needed to generalize these results, they suggest
that the system required a reasonable amount of workload
and can be intuitive to use after brief learning sessions.

VII. CONCLUSION

Working effectively with a robot on physical tasks requires
a natural and unobtrusive communication channel to convey
desired motions. The presented system moves towards this
goal by providing a real-time interface for team lifting tasks
that can use only two channels of upper-arm muscle activity
to continuously estimate changes in a person’s hand height,
create a control interface, and detect up or down gestures.
The gesture classification pipeline is also plug-and-play, not
requiring retraining for each new user. The system allows the
human’s understanding of the task and environment to guide
behavior, so the robot can provide effective assistance in a
variety of team lifting scenarios. With such steps, the vision
of humans working seamlessly with robots to increase safety
and productivity moves ever closer towards reality.
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