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Figure 1: We introduce measurement-based, dynamics-aware coarsening (DAC) and the Boundary Balanced Impact (BBI) model - acceler-
ating the simulation of dynamic elastica to obtain predictive and efficient accuracy required for fabrication-design testing and validation. We
begin with initial models and real world fabricated materials (a). We then apply dynamics-aware, measurement-based coarsening (DAC) (b
and c). The DAC model with BBI then simulates a range of designs that match the real-world dynamic behaviors of corresponding 3D-printed
objects undergoing large-deformation loading, frictional contact and high-speed, transient dynamics with impact (e).

Abstract

The realistic simulation of highly-dynamic elastic objects is impor-
tant for a broad range of applications in computer graphics, en-
gineering and computational fabrication. However, whether sim-
ulating flipping toys, jumping robots, prosthetics or quickly mov-
ing creatures, performing such simulations in the presence of con-
tact, impact and friction is both time consuming and inaccurate. In
this paper we present Dynamics-Aware Coarsening (DAC) and the
Boundary Balanced Impact (BBI) model which allow for the accu-
rate simulation of dynamic, elastic objects undergoing both large
scale deformation and frictional contact, at rates up to 79 times
faster than state-of-the-art methods. DAC and BBI produce sim-
ulations that are accurate and fast enough to be used (for the first
time) for the computational design of 3D-printable compliant dy-
namic mechanisms. Thus we demonstrate the efficacy of DAC and
BBI by designing and fabricating mechanisms which flip, throw
and jump over and onto obstacles as requested.

1 Introduction

We present a pair of new methods to accurately simulate geomet-
ric and material nonlinearities subject to frictional contact, large
loads and high-speed collisions at rates significantly more than an
order-of-magnitude faster than previously available. Our methods
combine efficiency and accuracy to enable design-for-fabrication
optimization. They can be used for both fast, realistic animation
and engineering analysis.

Advances in computational design, physical modeling and rapid
manufacturing have enabled the fabrication of objects with cus-
tomized physical properties. In computer graphics these extend
from stable standing and spinning [Prévost et al. 2013; Bächer et al.
2014] to mechanism design [Coros et al. 2013; Thomaszewski et al.
2014] and deformable character manufacture [Bickel et al. 2012;
Skouras et al. 2013], to name just a few. Computational design in
the presence of high-speeds, large deformation, frictional contact
and impact, however, remains largely unaddressed.

Here we look towards a new generation of efficient mechanisms
for practical dynamic function [Lipson 2014; Rus and Tolley 2015;
Reis 2015; Reis et al. 2015]. In order to extend physics-driven

computational design to this domain, however, a bottleneck must
be overcome - the physical simulation itself. Simulations must ac-
curately replicate the behavior of elastic materials subject to high-
speed, transient dynamics. Modeling these systems combines many
of the remaining grand challenges in simulating elastica. Specifi-
cally we must accurately resolve nonlinear elasticity, large defor-
mations, stiff materials, high-speed dynamics, rapid loading and
unloading, frictional contact, internal friction, high-speed colli-
sions, and rebound.

State-of-the-art FEM systems currently able to accurately match
these effects are exceedingly expensive - runtimes on the order of
days are standard to perform a single simulation in many cases [Be-
lytschko et al. 2013]. Thus, while generating a single simulation
for visualization or animation is already time consuming, the many
simulations required during design optimization compound an al-
ready prohibitive computational burden

1.1 Efficiency with Accuracy

Let us explore four potential solutions for constructing fast and ac-
curate simulation algorithms: (1) higher-order elements, (2) adap-
tive meshes, (3) reduced models, and (4) numerical coarsening. Can
these methods provide the necessary efficiency to enable design-
optimization while obtaining the predictive accuracy required to
match fabricated results?

Higher-order elements offer us the opportunity to replace thin re-
gions of our models with elements that capture higher-order defor-
mation modes. While an attractive strategy, this poses two chal-
lenges. First, due to changing design parameters, we will need
to identify suitable regions on-the-fly in order to perform this re-
placement. Second, coupling swapped-in higher-order elements to
other element types introduces overhead. Consider, for example, re-
placing lower-order hexahedra with plate elements in these regions.
We must then ensure continuity of displacements between plate-
like portions of the design and thicker, volumetric portions. This,
in turn, requires introducing difficult coupling constraints [Bergou
et al. 2007; Martin et al. 2010]. Finally, even with such additional
efforts, these substitutions may not always improve computational
performance as high-order elements contain more DoFs than their
low-order counterparts [Belytschko et al. 2013].
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Launch-adapted mesh Landing-adapted mesh

Simulation mesh Remeshing time(s) Tetrahedra Nodes

Launch-adapted 1.550 150,192 222,109

Landing-adapted 0.338 31,261 51,999
DAC-coarsened none 5,488 7,898DAC-coarsened none 5,488 7,898

Figure 2: Comparing adaptivity and coarsening. A tetrahedral
model of a jumper is adaptively remeshed to capture input stress
fields from its launch and landing states. We compare the resulting
element and node counts to our DAC-coarsened model. We set the
minimum edge length for remeshing to one that was experimentally
found to yield convergent numerical results.

Adaptive meshing allows us to reduce element counts in material
regions where refinement is less critical. Let us ignore the diffi-
culty of implementing adaptive meshing and the per time step cost
to remesh. Even so, adaptive meshes are challenging in our set-
ting. We model objects that undergo rapidly changing boundary
conditions and globally varying stress fields due to contacts, load-
ing and impacts. Adaptive meshing in our setting must then, nec-
essarily, feature high numbers of elements to capture these details.
See Figure 2. Here, using our experimentally validated, accurate
element edge length as adaptive meshing threshold, our tetrahedral
mesh contains 6.5X to 28X more nodal DoFs than our correspond-
ing DAC-coarsened mesh. The DAC-coarsened mesh is likewise
simpler to implement and has no per time step computational cost.

Reduced models utilizing linear modes [James and Pai 2002;
Hauser et al. 2003] are widely applied to accelerate dynamic sim-
ulations. The key issue here is that linear modal models provide
only a linear approximation of the deformation space leading to
inaccurate linearization artifacts, such as swelling during rotation;
see Figure 3. Optimized quadrature approaches, in turn, can afford
efficient integration of non-linear forcing functions, but do not alle-
viate these artifacts [An et al. 2008] when relying on an underlying
modal deformation space. Finally, nonlinear modal models [Barbič
and James 2005] can alleviate some of these issues but so-far re-
main challenging to incorporate in the design process in compari-
son to their linear counterparts [Chinesta et al. 2013].

We begin by observing that numerical coarsening offers an excit-
ing alternative for efficient yet predictive FE modeling. Coarsening
methods effectively apply coarse resolution FE meshes as reduced
DoF models and then seek material models that reproduce the be-
havior of a high-resolution FE counterpart. Analytical solutions for
coarsening have been developed for linear material models (models
where the stress varies linearly with strain) [Kharevych et al. 2009;
Nesme et al. 2009; Torres et al. 2016]. Due to this linear assump-
tion, and similarly to the linear modal models discussed above, we
find them difficult to apply for the accurate modeling of the nonlin-
ear materials required for 3D-printed objects. Even more recently,
data-driven coarsening strategies [Chen et al. 2015] have been pro-
posed to overcome the linear limitation of prior work. Unfortu-
nately, while coarsening offers promise, prior work, to our knowl-
edge, does not account dynamic effects, inertial properties, nor ma-
terial damping characteristics. As we see in Figure 5, this causes

(a) Modal model with increasing deformation

Large deformationLarge deformationRest Small deformation

15%

0%

(b) Modal model accuracy with respect to nonlinear FE

Figure 3: Linear modal models suffer from distortion as defor-
mations grow. In (a) we illustrate increasing deformations, left to
right, with corresponding inflation errors. Even for smaller defor-
mations, (a) middle, the linear modal model still introduces signif-
icant distortions leading to modeling inaccuracies. In (b), left, we
overlay simulations of small deformation performed respectively
with the linear modal model (red) and the coarsened nonlinear FE
model (grey); and, on the right, evaluate accuracy of the modal
model. During simulation, even these smaller deformations intro-
duce inaccuracies in the modal model due to element inflation; here
up to 13.7%.

even the most recent, nonlinear, data-driven coarsening approaches
to produce highly inaccurate dynamic simulations.

Building on the promise of coarsening techniques and inspired by
recent developments in frequency matching for plausible computer
animation [Li et al. 2014; Wang et al. 2015], we develop a new,
dynamics-aware coarsening (DAC) method that, in contrast to prior
approaches, provides well-over an order-of-magnitude performance
enhancement, while maintaining fabrication-level accuracy when
modeling highly dynamic motions subject to frictional contact. Our
method does so without complex substructuring, does not require
adaptive remeshing, accounts for dynamic effects including damp-
ing, and does not introduce prohibitive linear modeling artifacts and
so is applicable to a wide selection of nonlinear constitutive models
for 3D-printed materials.

1.2 Impact Response for Elastic Materials

Even with a suitably accurate FE solution to model material dy-
namics, accurate impact response for elastic materials on collision
remains highly challenging. To capture the bounces and rebounds
of elastic mechanisms coming into contact with the ground - con-
sider for example the heel strike of a sneaker - we need to get this
right. State-of-the-art, implicit time-stepping methods for FEM
with contact solve variational forms of time-steppers, e.g., varia-
tional Implicit Newmark, subject to additional, fully implicit con-
tact and friction forces [Kane et al. 1999; Pandolfi et al. 2002].
These form so-called nonsmooth or complementarity integrators.

However, these complementarity integrators have two well-known
flaws [Deuflhard et al. 2008]: (1) these methods can yield spurious
oscillations on the contact boundaries and (2) the effective impact
response of these methods is too energetic. Effectively the normal
velocity on impact along the elastic boundary should be dissipated
completely. Instead, complementarity methods with Newmark will
generate an entirely incorrect elastic restitution; see Figure 4. To
address these problems Deuflhard and colleagues [2008] introduced
the now-standard DKE contact-stabilization step to filter contact
response with projection. In the limit, DKE makes the impact-
response model consistent, while in FE codes it is applied as an
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after collision 
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Top height reached after collision per method
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Figure 4: Comparison of complementarity Newmark integration,
DKE Stabilization and our BBI model for the impact resolution of
an elastic, 3D-printed block. BBI closely matches the maximum
rebound height achieved by the experimental result while both the
Complementarity and DKE methods overestimate the rebound sig-
nificantly.

effective strategy to recover from the well-known limitations of im-
plicit integration with impact. However, it remains widely acknowl-
edged that the right-way to accurately model high-speed collision
response with implicit FE remains an open question at this time -
not only in graphics - but more broadly in scientific computing as
well. As an example consider Figure 4 where we see that both the
complementarity model and the DKE filter produce different but
equally incorrect predictions of the response of a stiff elastic block
dropped on the floor. Here we offer a new, Boundary-Balancing
Impact (BBI) model for FE that gains us accurate prediction of im-
pact response for the stiff 3D-printed materials we focus on here;
see Figure 4.

Start Finish

High-resolution FEM Data-driven, numerically coarsened FEM 

Figure 5: Dynamics-oblivious coarsening is significantly inaccu-
rate for dynamic simulation. Left: two twisted elastic bars, initial-
ized to the same configuration, are time-stepped in a dynamic sim-
ulation with an energy based, data-driven coarsening (DDFEM)
model (blue) and a high-resolution FEM mesh (green). Right:
small localized errors in the material model of the DDFEM simula-
tion aggregate across the mesh over time to quickly produce large
global errors when compared to the high resolution solution.

1.3 Summary

High-fidelity simulation methods for elastodynamics are too slow
for use in fabrication design tasks while existing strategies to re-
duce the simulation cost of elastica (including adaptive, reduced
and coarsened models) are too inaccurate and/or too expensive to
employ. Finally, existing FE models for simulating elastic collision
and rebound miss critical compliance coupling in the filter stage.

1.4 Contributions

We have exposed and analyzed the limitations of simulation meth-
ods for the predictive modeling of elastodynamics at rates suffi-
cient for fabrication design optimization. Next, we develop our
Dynamics-Aware Coarsening (DAC) method to address this need
(§3). DAC jointly identifies and predictively simulates fabricated
materials. To address current limitations in FE collision-response
filtering we then introduce our Boundary Balancing Impact (BBI)
model (§4). We then validate these contributions by comparing
simulated results generated by DAC and BBI with real-world re-
sults experimentally obtained from a range of compliant 3D-printed
jumping and throwing mechanisms that flip, throw projectiles, jump
onto obstacles and jump over walls (§5).

2 Simulation Preliminaries

Accurate time-varying tracking of energy dissipation is key to ac-
curate dynamic simulation [Marsden and West 2001] and so we
rely on implicit Newmark time integration, a discrete variational
integrator [Kane et al. 2000] with consistent high-quality energy
tracking. We experimented with other integrators, including lin-
early implicit Newmark, Implicit Euler, and BDF2, but found them
to be wanting in either stability or energetic behavior; see our Sup-
plemental for details.

2.1 Discrete Model

We begin with a standard FEA material model for 3D printed ma-
terials, see e.g., Skouras et al. [2013]. To capture stiff elastic re-
sponse of 3D-printed materials we use the neo-Hookean material
model, augmented with Rayleigh damping to capture transient dis-
sipation of vibrations, and discretize with second order, hexahedral
finite elements. We start with a second-order, implicit Newmark
time discretization

Mδt+1 = bt + h2

4
F(qt+1)− h2

4
D(qt+1)vt+1, (1)

qt+1 = qt + δt+1,

vt+1 = 2
h
δt+1 − vt,

(2)

where

bt = hMvt + h2

4
F(qt)− h2

4
D(qt)vt, (3)

h is the timestep size, F(·) is the internal force vector, D(·) =
aM + bK(·), with a, b ∈ IR+ is the Rayleigh damping matrix,
M is the stiffness-consistent mass-matrix [Belytschko et al. 2013],
K(·) = −∇F(·) is the tangent stiffness matrix, and q, v ∈ IR3n are
respectively the nodal position and velocity vectors. In the absence
of dissipative forces this method is symplectic and momentum pre-
serving [Kane et al. 2000]. With dissipation we find that integration
gives us accurate bookkeeping of system energy at comparable cost
to implicit Euler.

2.2 Material Parameters

No matter how good our energy bookkeeping, the overall fidelity
of our method is critically determined by the accuracy of the mate-
rial parameters we select. While many material parameters are re-
ported in the literature, there remains large and significant variation
in these values across 3D-print batches, printing orientations and
curings; see §5. For predictive simulation we need to identify these
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Loading Launch Flight Landing

Figure 6: Bottom: the dynamic behavior of a 3D-printed, elastic jumping mechanism in experiment. Top: our DAC-coarsening combined
with our BBI impact model generate a simulation that predictively captures this experimental behavior at rates 79X faster than state-of-the-art
FEM.

values. In addition, we must model dissipation requiring us to deter-
mine unreported damping properties; e.g., a and b in the Rayleigh
model. Finally, as discussed below and complicating matters even
further, these material parameters are discretization dependent at
non-convergent spatial resolutions. In the next section we will de-
tail our DAC model to capture dynamic deformation, stiffness and
damping at coarsened spatial resolutions.

2.3 Contact and Friction

For contact we need to model nonpenetration constraints and fric-
tional contact forces that resist sliding along interfaces. Contacts
are between object parts or between a part and a fixed boundary
such as the ground. At each time step we apply continuous col-
lision detection to the predicted trajectory to gather contact con-
straints into a contact set C.

To simplify the following, for each such contact k ∈ C, the relative
acceleration between material points xi and xj (at contact k) can
be expressed via the map Γk : q̇ → ẋi − ẋj . See our Supplement
for details on construction of Γk. If y ∈ IR3 is a force applied
to point xi, and an equal but opposite force is applied to point xj ,
then ΓTk y is the resulting generalized force applied to the contacting
system.

In turn, points in contact apply an equal and opposite force along
their shared, unit-length normal nk ∈ IR3. In global coordinates
this is equivalent to applying a force of magnitude ᾱk ∈ IR+ along
a generalized normal

nk = ΓTknk ∈ IR3n, (4)

to the system. The subspace of generalized normal directions

N = (n1...n|C|) (5)

then forms a basis for contact forces. Concatenating the corre-
sponding force magnitudes in α = (ᾱ1, ..., ᾱ|C|)

T , the total contact
force applied in the system is then Nα.

Friction forces lie in the tangent plane orthogonal to the contact
normal. At each contact k we sample an orthogonal pair of unit
length vectors from the tangent plane. The 3× 2 matrix composed

column-wise of these samples is given by T k so that a friction
force, fk ∈ IR3, applied at a contact k, lies in the span of T k with
fk = T kβ̄k, where each β̄k ∈ IR2 gives the frictional response
coefficients at contact k.

The total friction force applied to the system at each contact k must
be equal and opposite and is fk = ΓTk T kβ̄k. The generalized basis
for a friction force at contact k is then

Tk = ΓTk T k ∈ IR3n×2. (6)

We build the corresponding subspace of generalized tangent direc-
tions,

T = (T1...T|C|) (7)

and form the corresponding vector of frictional force coefficients as
β = (β̄T1 , ..., β̄

T
|C|)

T . The total friction force on the system is then
Tβ.

Contact and friction forces can be inexpensively modeled explic-
itly [Belytschko et al. 2013] but this introduces instabilities and
nonphysical oscillations on boundaries even at small time step for
stiffer materials [Deuflhard et al. 2008]. Thus FEM state-of-the-
art generally turns to implicit time-integration for efficient contact
force modeling.

Kane et al. [1999] proposed the now standard nonsmooth-Newmark
method for contact modeling. This is a fully implicit time-stepping
model that couples frictional contact with internal energies and
forcing in each solve.

Mδt+1 = bt + h2

4
F(qt+1)− h2

4
D(qt+1)vt+1 + h2

2
Nα+ h2

2
Tβ.

(8)

Note that here, unlike internal forces, contact forces are evaluated
solely at the time step endpoint to ensure dissipation. Next, to fully
define the time stepper, consistency conditions are required for con-
tact and friction forces.

Enforcing the complementarity model for contact requires contact
forces to balance along boundaries

0 ≤ α ⊥ NT δt+1 ≥ 0, (9)
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Figure 7: Dynamics-aware coarsening (DAC) coarsens meshes
to capture deformation with calibrated stiffness. We observe FE
meshes capture accurate deformation modes up to a quite coarse
resolution. However, these same coarse meshes suffer from numer-
ical stiffening (see Figure 8). We design coarse mesh FE models
by matching both significant deformation modes (above) and their
captured material response (see Figures 11 and 21) to obtain effi-
cient and predictive coarse-mesh FEM simulations of dynamics.

Friction in turn is modeled with the Maximal Dissipation Principle,
requiring friction to maximize the rate of negative work done at
each contact, −fT

k ẋ. The total dissipation performed by friction is
then

∑
k∈C

(
−fT

k ẋk

)
= −

[∑
k∈C

fT
k Γk

]
q̇ = −βTTT q̇. (10)

Then, maximizing the Coulomb-constrained dissipation simultane-
ously at all contact points, with the implicit Newmark discretiza-
tion [Pandolfi et al. 2002], gives us the final condition for our nu-
merical integration

min
β

{βTTT ( 2
h
δt+1 − vt) : µkᾱk ≥ ‖β̄k‖, ∀k ∈ C}, (11)

where µk is the local friction coefficient at contact k.

Taken together stepping this implicit complementarity Newmark in-
tegrator with (3), (8), (9), (11) and (2) provides predictive simula-
tion at slower speeds of contact. For higher speed contacts and
impacts, the remaining challenge lies in stabilizing contact stresses,
velocities and displacements [Deuflhard et al. 2008] to ensure that
simulated objects’ bounces and rebounds consistently match with
their real-world counterparts. In Section 4 we will address this is-
sue with a new impact model for FE simulation. First, however, we
address our fundamental scaling problem: how can we gain accu-
rate dynamic simulation without being bottlenecked by systems too
large to solve quickly per time step?

3 Dynamics-Aware Coarsening

We couple numerical coarsening with parameter acquisition. Our
DAC method computes numerical stiffness parameters for the non-
linearly elastic, Neohookean material model, and damping param-
eters for the Rayleigh damping model so that, when applied to
the coarsened simulation mesh, the dynamic behavior of a high-
resolution simulation is preserved.

High Resolution Mesh Naive CoarseningStiffness Matching

Figure 8: Static Deformation Test. We apply an identical load to
three meshes with the same model geometry. With the same material
parameters, a high-resolution mesh (left) is effectively 2.5x softer
than the corresponding coarse mesh (right). Applying our captured
numerical Young’s modulus to the coarse mesh (middle) regains
the correct deformation of the original, high-resolution mesh on
the left.

Because the goal of DAC is to replicate the dynamic behavior of
a high-resolution simulation, we focus on creating a coarse mesh
which captures both the large-scale deformation modes, and the
corresponding natural frequencies of the high-resolution mesh. We
do this in two stages. First, we produce a coarse hexahedral
mesh that can replicate the large scale deformation modes of our
high-resolution mesh. Second, we compute material and damping
parameters that yield matching fundamental frequencies for each
mode shape on this coarse mesh.

3.1 Geometric Coarsening

DAC uses an iterative procedure to create the coarse mesh while
maintaining mode shapes. We initialize our mesh to a coarse hex-
ahedral discretization of the starting geometry, q0, and then subdi-
vide recursively until we reach a convergent mesh resolution. We
then solve the generalized mass-PCA system

K(q0)q = λMq (12)

for the dominant shape modes of the convergent system and then
coarsen via bisection with mass-PCA until we reach a maximally
coarse mesh that matches the dominant four shape modes to tol-
erance. We use a relative geometric difference of 5% (Hausdorff
distance) as our tolerance threshold. Typically this is a short valida-
tion step as even the coarsest meshes generally satisfy this criteria
(Figure 7).

3.2 Material Parameter Fitting

Our geometric coarsening ensures that our DAC mesh captures sig-
nificant deformation modes of our design accurately. However,
when simulated, these same coarse meshes suffer from numerical
stiffening – an increase in effective stiffness and damping as a con-
sequence of decreased mesh resolution; see Figure 8. This leads
to unacceptably inaccurate simulated trajectories no matter how we
simulate this system. Regaining predictive stiffness and damping
by refining the discretization would take us back to intractable mesh
sizes; see Figure 2. Rather than refine, we keep our coarse mesh (as
we have already ensured that our geometry is resolved there) and
instead calibrate its frequency spectrum to directly match experi-
ment.

To do this, we rescale our coarse model stiffness so that its funda-
mental frequency matches an observed frequency. As we will see
below, this simple analysis sufficiently recovers effective stiffness
and damping to regain a predictive nonlinear simulation with our
coarse mesh.

From the geometric coarsening step above, we retain the numeri-
cal eigenvalues, λ0

i , of our coarse mesh with corresponding defor-
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Figure 9: Top: tracking the oscillations of a 3D-printed calibra-
tion rig allows us to measure mesh-dependent stiffness and damp-
ing parameters. Bottom: the resulting DAC-simulated frames at
corresponding times for visual comparison to the captured motion.

mation modes mi approximated linearly by the damped harmonic
oscillator [Shabana 2012]

m̈i = −(a+ bλi)ṁi − λimi, (13)

or equivalently

mi(t) =Ai exp(−dit) sin(2πfit+ θi),

fi =
1

2π

√
λi − (

a+ bλi

2
)2,

di =
1

2
(a+ bλi),

(14)

where a and b are Rayleigh Damping parameters and λi is the ith

eigenvalue associated with the ith deformation mode.

We then 3D-print calibration rigs with tracker markings, see e.g.,
Figure 9, and capture high-speed video (240 fps) of the rigs vibrat-
ing. We extract a tracked trajectory mt of the marker motion from
the video capture and solve the inverse harmonics problem [Man-
delshtam and Taylor 1997] to find the printed beam’s frequency, ft,
and damping, dt, parameters. Setting the tracked ft and dt in (14)
and a = 0, based on our observation of minimal effective mass-
damping, simultaneously retrieves the captured target eigenvalue
λt and the unknown and unreported stiffness damping parameter b
required for dynamic simulation.

With our tracked λt in hand, our final step is to map the initial
material Young’s modulus, Em, that we use to compute λ0

i (we set
Em = 1 throughout) to a new, numerical modulus value, En. We
seek an En that will match the numerical stiffness response of the
simulated coarse FE mesh to the captured material response. We
do this with a simple argument of fixed proportionality between the
principle eigenvalues and the moduli by setting

En ← λt

λ0
1

Em. (15)

As validation we confirm that our coarsened FE simulations, initial-
ized to the starting calibration pose, with Young’s modulus set to
En, and stiffness damping set to the measured damping parameter,
match both high-resolution simulation and the tracked calibration
rig, up to viscosity—which we so far find unnecessary to model;
see Figure 21.

Note that, in our experiments, increasing the number of mode
shapes which must fall below our error threshold of 5% Hausdorff
distance does not improve simulation accuracy. Figure 11 shows
a comparison of DAC meshes created using 4 and 10 modes for
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Figure 10: Measured and simulated vibrations of the 3D-printed
plant (digital material) and 3D-printed flamingo (Rigur RGD450)
models (magnify the plots for details of fits).

the error threshold. The resulting simulations are indistinguish-
able from each other and both match measured experimental data
equally well.

In practice we observe that DAC captures object motions containing
large contributions from a number of modes. To understand why we
see that DAC scaling corrects frequencies of modes well beyond the
first, so that, for example, for our plant and walker models, DAC re-
duces average frequency error across the first 10 modes from 27.1%
to 2.4%.

Figure 10 shows an example of DAC coarsening applied to plant
and flamingo models. With DAC we accelerate the simulation of
the time varying deformation of our plant object by 25X while
achieving good approximation to the high-resolution simulation
mesh; see Figure 12. Here Figure 12 distinguishes between con-
vergent FEM discretizations and accurate FEM discretizations for
meshes used in our examples. Convergent discretizations are ones
for which the spatial resolution is high enough so that the modal fre-
quencies of the mesh have converged to their final values (changing
by less than 1% with respect to previous subdivision). Accurate
discretizations are ones for which the resolution of the FE mesh is
such that the modal frequencies are within 5% of convergent val-
ues. In this paper all results are with respect to the coarser, accurate
FE meshes. Even compared to these we achieve speedups of up to
79X. We also note that, if measurement data is not available, DAC
calibration can be carried out using high-resolution simulation data.

4 Boundary Balancing Impact Model

With our DAC discretization in place, we will now derive a new,
Boundary-Balancing Impact (BBI) model for FE that gains us ac-
curate prediction of impact-response for the 3D-printed elastic ma-
terials we focus on in this work.

4.1 Complementarity Integration Revisited

The nonsmooth Newmark complementarity integrator we reviewed
in Section 2 has several well-known flaws [Deuflhard et al. 2008]
that we illustrate next. In Figure 14 right, we drop a 3D-printed
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Figure 11: DAC coarsening comparison for increasing the number
of fitted modes. Our default setting requires less than 5% relative
Hausdorff distance up to the 4th mode and gives a coarsened FE
mesh with dx = 0.6mm. If we increase the number of modes
for our DAC fit to less than 5% relative Hausdorff for up to the
10th mode shape, we instead obtain a mesh with dx = 0.3mm.
Note that the resultant simulations for these two DAC meshes are
indistinguishable (magnify the plot for detail of fit).

block from height of 3 cm onto a flat surface. As it is both stiff and
highly damped it lands without perceptible rebound. Yet, when we
simulate the same drop of the block with the Newmark complemen-
tarity integrator the block rebounds up to a height of 0.89 cm; see
Figure 14 left. Errors on this scale are unacceptable in a fabrication
design process where they can make the difference between success
and failure - see Figure 13.

What is going wrong in these examples? The Newmark discrete
velocity update step in (2) gives rise to an arbitrary, undesirable
(and for elastic materials) generally incorrect choice of restitution.
Consider the impact of our material at contact with a normal n.
Here the complementarity constraints ensure that the new displace-
ment δt+1 along this normal are zero so that nT δt+1 = 0. How-
ever, although this nicely satisfies position constraints, upon sub-
stitution we see that nT vt+1 = −nT vt so that Newmark gives an
incorrect, fully elastic (coefficient of restitution = 1) effective im-
pact response. Yet the impact response for elastica along an im-
pact boundary should instead be inelastic with the normal velocity
on impact along the elastic boundary dissipated completely [Doyen
et al. 2011]. In turn this results in much too large rebounds upon
impact as we observe in Figures 13 and 14. A related error for
complementarity integrators manifests in commonly observed spu-
rious oscillations in positions and tractions along contact bound-
aries. These oscillations are the combined result of instabilities
in contact stresses, velocities and displacements. Notably, both of
these issues arise with arbitrary impact geometries, not just in the
planar example discussed here.

4.2 DKE Contact Stabilization

To address these widely reported problems Deuflhard and col-
leagues [2008] introduced a contact stabilization step to filter con-
tact response with projection. They observe that contact forces act-
ing on the material boundary should be balanced and so proposed
a now-standard FEM contact-stabilization filter (DKE) that applies
an L2-projection that zeroes out normal displacements along the
boundary of materials at contact interfaces.

This projection on displacement is performed at the end of each
time step, after the position update (8) has been solved. This en-
sures a correct inelastic response at the contact boundary and is

Simulation Model dx(mm) Timing
avg/step(s)

Memory 
(G)

Elements

FEM Plant 0.100 1876.3 48.5 1,004.6K
FEM Plant 0.150 226.8 11.9 297.9K
DAC Plant 0.600 9.2 0.4 16.1K
FEM Jumper 0.150 — 379.7 5,450.0K
FEM Jumper 0.375 791.0 18.0 346.3K
DAC Jumper 1.500 10.4 0.3 5.4K

DAC Plant 0.600 9.2 0.4 16.1K

DAC Jumper 1.500 10.4 0.3 5.4K

FEM Plant Mesh 
dx = 0.150 mm

DAC Plant Mesh 
dx = 0.600 mm

FEM Jumper Mesh 
dx = 0.375 mm

DAC Jumper Mesh 
dx = 1.500 mm

Figure 12: Statistics for our DAC simulations compared with two
choices of accurate FE: a convergent FE model, and a validated
accurate FE model (validated as matching experimental behavior
and modal frequencies are within 5% of convergent values). For
each simulation we report the model used (plant and jumper mod-
els), the mesh element size, the average wall-clock time spent per
dynamic time step, memory usage, and the number of elements in
the simulated mesh. Timings were recorded on an Intel Xeon E5-
2666 v3, 2.9Ghz with 4 CPU threads.

BBIExperiment DKE

Figure 13: Impact model testing with a 3D-printed jumper dropped
onto the ground. We show overlaid frames captured, left to right,
from an experiment (left) and two corresponding simulations (at
h = 10−4s) that respectively apply DKE (middle) and BBI (right)
impact models. In experiment the fabricated jumper lands, bounces
up and then rests upright on its feet (left). However, simulation
with the DKE model (middle) rebounds too high, flips over and so
incorrectly predicts that the jumper will fail by landing on its back
after collision (middle). With our BBI model (right), our simula-
tion qualitatively predicts the experimentally determined landing
behavior for this design.

effective in producing desirably stabilized contact tractions [Deu-
flhard et al. 2008; Krause and Walloth 2012]. Nevertheless, when
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we compare DKE against experiment (Figures 13, 14, and 16), we
see that the DKE projection likewise introduces unacceptably large
rebound errors when compared with real-world results.
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Figure 14: Impact validation test. A 3D-printed, stiff elastic block
is dropped face-first on the ground. Left-to-right we compare the
simulated results of three FE impact models - complementarity,
DKE and our BBI model - with experimental results. We show
configuration, at start, impact, and post impact maximum rebound
height with details on stress distribution at impact, apex height
reached, and (inset) the velocity profile for each simulation. As
the effective restitution of elastica varies with angle of impact, see
below in Figure 15 for a comparable oblique drop experiment.
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Figure 15: Comparison of our BBI model to experiment for a 3D-
printed cube dropped from an oblique initial orientation.

4.3 Boundary Balancing Impact

To better understand why DKE projection does such a poor job of
resolving impacts in our elastic materials, let us consider again our
simple dropped block example in Figure 14. We observe that by
projecting out just the normal component of displacement along the
boundary the DKE method artificially concentrates high stresses
along the elements just inside the boundary. This can be seen in the
impact row of Figure 14. These concentrated stresses effectively
load the near-boundary layers which then spring back, introducing
a much too large response as seen in the final row of Figure 14. The

problem here is that the L2-projection applied is material-oblivious
and yet material properties clearly mediate impact response. Com-
pliance distributes contact stresses quickly through an elastic mate-
rial while, in damped materials, internal friction rapidly attenuates
the response.

With these observations in mind we define a new Boundary Bal-
ancing Impact (BBI) model that can effectively impose boundary
force-balance in a material-aware fashion. Starting with our base
time integrator we define a compliant, discretization- and material-
aware metric for projection below. The resulting stabilizing impact
model better duplicates results in our design applications and exper-
iments. Upon completing each time step from t− 1 to t we replace
the Newmark update in (2) with a compliant boundary projection
update

c = 2δt+1 − hvt,

A = M+
h2

4
K(qt+1) +

h

2
D(qt+1),

d∗ = argmin
d

{1
2
‖d− c‖2A : NT d ≥ 0

}
,

vt+1 =
1

h
d∗,

qt+1 = qt + δt+1.

(16)

This new impact model projects the explicit predicted velocity dis-
placement, c, to the nearest set satisfying force balance on the
boundary with respect to the local approximation of both material
stiffness and damping. We find that this effectively distributes the
contact-stabilized displacement across the material from the bound-
ary layers. The effect of impact is communicated to the material in-
terior while still ensuring that impacts are correctly inelastic along
the active contact boundary. This leads to accurate predictions of
real-world bouncing and rebounds. In our simple drop test we see
in the impact row of Figure 14 that, at impact, response for this
damped material has been correctly dissipated and the resulting nor-
mal displacement closely matches real world results in the apex row
of Figure 14.

As we consider a range of impact angles, as well as impact with
more complex geometries, multi-material 3D-prints and self con-
tact we see that BBI still consistently and more accurately captures
impact-response behavior. See Figures 13-17. These examples
demonstrate the range and complexity of responses obtained by
BBI coupling impact to stiff elastic materials with large deforma-
tions as well as objects composed of multiple materials undergoing
both self-contact and stiction.

5 Evaluation

To test our proposed algorithms we compare simulated results gen-
erated by DAC and BBI with real-world results experimentally ob-
tained from a range of compliant 3D-printed jumping and throw-
ing mechanisms. For each mechanism we begin with a dynamic,
time-varying goal, e.g., for our jump-over goal: “when pressed and
released, jump over a given wall and land upright on the far side”
(see Figure 25).

Simulations suitable for fabrication design must accurately predict
both when a design fails and when it succeeds, thus we require real
world examples of each. Below we outline our approach to creat-
ing these mechanism examples for testing, discuss our identification
results, and review our implementation. We then detail our exper-
iments comparing DAC and BBI’s simulated predictions for each
design task below in §5.4 and validate outcomes of the simulations
against repeated user trials in a study discussed in §5.5.
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Figure 16: A drop test of the 3D-printed plant model (digital ma-
terial). We compare simulated results from Complementarity, DKE
and our BBI model with experiment. BBI solely reproduces the ob-
served impact behavior.
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Figure 17: Drop tests of a multi-material 3D-printed flamingo
model (Rigur and TangoBlackPlus) from a variety of orientations.
While effective restitution of elastica varies with angle of impact, in
all cases our BBI simulations agree with experiment.

5.1 Creating Mechanism Examples

We focus our tests here on jumping-related mechanisms. The
analysis and design of jumping mechanisms is an increasingly ac-
tive [Churaman et al. 2011; Bergbreiter and Pister 2007; Bingham
et al. 2014; Bergbreiter 2008; Jung et al. 2014; Koh et al. 2013;
Koh et al. 2015; Vella 2015; Li et al. 2015], challenging and practi-
cal domain that incorporates high-speed transient dynamics of stiff
elastic materials undergoing impact and so is an ideal test case for
DAC and BBI. Research in jumping mechanisms has focused on ef-
ficient energy transfer into jump height, see e.g., Noh et al. [2012]
with aligned research on a range of approaches for controlled jump-
ing [Loepfe et al. 2015; Bartlett et al. 2015; Li et al. 2015]. In
all cases, to our knowledge, mechanisms have been developed via
costly, manual iterations of hands-on experiment, re-design, fab-
rication and one-off simulations [Cho et al. 2009; Bartlett et al.
2015], while even the stable landing of dynamic jumps has re-
mained highly challenging [Jung et al. 2015].

For each of our jumping and throwing goals (see §5.4 below) we
first attempted to manually create successful designs. We obtained
designs that came close to ideal, but, consistent with the above cited
literature, we were unable to hand tune these mechanisms to fully
satisfy design goals. E.g., for the jump-over goal we found a design
that often cleared the wall but did not land upright; see Figure 25,
left. These mechanisms are our initial designs.

Presuming our initial designs are potentially close to successful de-
signs, we perform local optimization over a pair of key design pa-
rameters, here generally length and height (see Figure 19), to seek
a nearby solution. For each mechanism we pose its design goal as
an objective and a set of constraints; these functions are detailed in
Figure 18. To evaluate these objectives and constraints we apply
DAC and BBI simulation at each design sample queried by the op-
timizer. Statistics for the numbers of simulation samples, iterations
and timings for performing these local optimizations are summa-
rized in Figure 18.

For all these examples we found that a relatively small number of
iterations were needed to find successful designs; this suggests that
our initial, hand-tuned designs are close to solutions in a basin.
However, practical design optimization would demand a global op-
timization strategy to resolve non-convexity. In such general cases
initial designs can be expected to start far from optima while the
search space is often large - local optimization would be insuffi-
cient.

The mechanisms found by this process are our final designs. We
compare the trajectories and outcomes predicted by BBI and DAC
against the real world initial and final mechanisms: validation re-
sults are detailed for each example below in §5.4, while our user
study results are presented in §5.5. The uncut video footage of all
experiments are available online [Chen et al. 2017].

5.2 Implementation

All results are computed on an Amazon EC2 compute-optimized in-
stance with 4 CPU threads (Intel Xeon E5-2666 v3, 2.9Ghz), while
all mechanisms were printed on a Objet500.

While DAC and BBI give us orders of magnitude speedups for pre-
dictive simulation of deforming dynamics, our experiments (see
Supplemental) show that dynamic FE simulation is unnecessary
when modeling initial loading as well as during some portions of
free-flight. With careful book-keeping and mapping of state simpler
and more efficient models can be employed during these phases to
gain further speedup.
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Design Task Objectives Constraints Iterations Simulations Time(m)

Flipper 𝜃c2 — 5 44 242

Catapult ||xc - xtarget|| — 5 39 350

Jump Onto 𝜃c2
xwall-xc≤0,   
ywall-yc≤0 5 47 376

Jump Over 𝜃c2
xwall-xc≤0,  

ywall-yhighest≤0 7 56 415

Figure 18: Design optimization statistics. For each dynamic design
optimization we report the design task objectives and constraints
applied, the number of optimization iterations performed, the total
number of simulations performed for each design and finally the
total wall-clock time (minutes) spent in design optimization. Sam-
pled frames for each simulated and corresponding fabricated mech-
anism designs are given in Figures 22–26 and design parameters
optimized over are summarized in Figure 19. Here θc and xc repre-
sent jumper angle of rotation and catapult projectile center-of-mass
position at landing while xtarget is the desired projectile target.

length

height

length

height

Flipper Jumper Catapult

length

height

Figure 19: Design geometries and parameters.

When initially loading mechanisms, e.g., when pressing down a
jumper in Figure 6, we observe that the process is effectively qua-
sistatic and so simulate with an efficient quasistatic solver detailed
in our Supplemental. Upon completion of the initial loading we
map state to our full dynamic solver with DAC and BBI.

We also track the time-varying elastic potential energy stored in
simulated compliant objects. When damping causes this internal
potential to fall to zero, e.g., during portions of free-flight, we
switch from our full DAC discretization to a rigid body discretiza-
tion. We use DMV [Moser and Veselov 1991], an efficient energy–
momentum preserving rigid-body integrator, to then time step the
system in SE(3) coordinates until the next collision is reached, at
which point we map rigid-body state back to the DAC model to
capture the new deformation dynamics at impact. See our Supple-
mental for details on this process.

5.3 Identification

Material (model) Reported Identified Numerical Damping

Rigur, vertical (jumper) 1.9 ± 0.2 1.66 0.65 1.64E-04

Rigur, horizontal (jumper) 1.9 ± 0.2 2.06 0.81 1.40E-04

DM4825, horizontal (plant) 1.2 ± 0.3 1.57 0.72 2.55E-04

TangoBlackPlus (jumper) (2±1)E-04 6.32E-04 4.625E-04 9.10E-02

Young’s Modulus (GPa)

Figure 20: Material parameters identified by our fine and coarse
matching against calibration. Left to right we list previously re-
ported Young’s moduli for vertically and horizontally oriented
prints compared with our identified moduli. We then report the
matched numerical moduli we use for each for our DAC models and
finally, list previously unreported damping parameters we identify
and use in our simulations.

We compute each DAC model’s coarse mesh resolution and mate-
rial parameters using the measurement procedure described above
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Figure 21: Measured and simulated vibrations of a 3D-printed
jumper (Rigur) model (magnify the plot for details of fit).

in §3; see also Figure 21. We model heterogeneous materials by
computing numerical Young’s moduli for soft (TangoBlackPlus)
and rigid (Rigur RGD450) materials and coarsening as much as
possible while retaining a single material per element. A major
benefit of our coarsening scheme is that it identifies both actual and
numerical moduli and damping parameters of real-world materials.
Figure 20 details these parameters. The damping parameters we
present here have not, to our knowledge, been previously identified
in the literature. On the other hand, in our experiments and simu-
lations we find that the previously identified Poisson’s ratio for our
printed materials [Major et al. 2011], at 0.45, is effective, and keep
it fixed at this value for all examples reported here.

5.4 Experiments

In this section we detail the individual design examples. We vi-
sually compare the trajectory behavior of both the real world fab-
ricated initial and final mechanisms with corresponding DAC and
BBI simulation results at the same parameters. In the following
section we then discuss the results of the user study we perform to
evaluate the results of initial and final fabricated mechanisms over
repeated user trials comparing against DAC and BBI predicted sim-
ulation outcomes.

Initial Final

Figure 22: A comparison of experimental (bottom) and DAC/BBI
simulated (top) results for initial (left) and final (right) designs of a
flipping mechanism.

Flipper Our first design example is a simple forward flipping
jumper. We begin with the geometry in Figure 22 left, load the
jumping model by pressing down and then releasing. The design
goal is a shape that, upon release, jumps forward into the air, flips
and then lands stably on its feet, see e.g., Figure 6. See Figure 22
comparing simulated and experimental trajectories for both initial
and final design samples.

Catapult Our next design example is a catapult mechanism. By
adding a firing basket to the above flipper geometry, fixing the
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Initial Final

Figure 23: A comparison of experimental (bottom) and DAC/BBI
simulated (top) results for initial (left) and final (right) designs of
the catapult mechanism.

mechanism base to the ground, and then adding a projectile cube
in the basket to the design model we obtain a catapult for throwing
metal cubes at targets. This system requires modeling the sliding
contact and impact between the cube and basket. The design goal
here is to find a catapult geometry that, under loading produces the
correct combination of launch position and release velocity for the
catapult arm and block so that the block hits a predetermined target.
See Figure 23 comparing simulated and experimental trajectories
for both initial and final design samples.

Initial Final

Figure 24: A comparison of experimental (bottom) and DAC/BBI
simulated (top) results for initial (left) and final (right) designs for
a jumper mechanism to jump onto a platform and land upright.

Jumping onto obstacles Here we consider a design example
where the goal is to find a geometry for a 3D-printed jumper mech-
anism that, upon release, jumps forward and upwards into the air,
flips (possibly multiple times) and then lands stably upon its feet on
top of a flat obstacle, see e.g., Figure 24. See Figure 24 compar-
ing simulated and experimental trajectories for both initial and final
design samples.

Jumping over obstacles In this example, the goal is to find a
geometry for a 3D-printed mechanism that, upon release, jumps
forward and upwards high enough into the air to clear a wall, flip
(possibly multiple times) over it and then land stably on the other
side. See Figure 25 comparing simulated and experimental trajec-
tories for both initial and final design samples.

Flipper variations We additionally evaluate six further design
example comparisons between fabricated mechanisms and DAC

Initial Final

Figure 25: A comparison of experimental (bottom) and DAC/BBI
simulated (top) results for initial (left) and final (right) designs for
a jumper mechanism to jump over a wall of specified height and
land upright.

Figure 26: A comparison of experimental (bottom) and DAC/BBI
simulated (top) results for six more design samples: initial (left)
and final (right) designs of variations on the flipping mechanism
(“Normal”).

and BBI simulated trajectories over a range of flipper mechanism
variations. In Figure 26 we compare initial and final designs cre-
ated by three variations away form the base initial (“normal”) flip-
per mechanism design.

5.5 User Study Results

Here we present the results of a user study evaluating the goal out-
comes of initial and final fabricated mechanisms over repeated user
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trials as compared against outcomes predicted by DAC and BBI.
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Figure 27: Statistics summarizing our user study comparing results
from trials with our initial and final catapult mechanisms. We report
the distance to target per trial. The final catapult design dramat-
ically outperforms its initial counterpart, consistently, across all
users, coming close to matching DAC/BBI predicted outcomes.

We asked five users to perform twenty attempts each with both the
initial and final versions of each of the above mechanisms; the flip-
per, catapult, jump onto and jump over. For the flipper, jump onto
and jump over mechanisms we count the number of successful at-
tempts for each user; see Figure 28. Here we define goal success
as satisfying the objectives and constraints posed by each design as
described above; e.g. flipping, clearing all obstacles, and landing
feet down on the desired area (Figures 22, 24 and 25). In Figure 28
we summarize the total number of successes for each user per opti-
mized and unoptimized design as well as the aggregate totals. For
the optimized and unoptimized catapult designs we report the mean
distance to the target in millimeters and the standard deviation for
each user (Figure 27).

In order to consistently apply the loading force to each mechanism,
users are instructed to fully load each mechanisms by pressing the
top until it makes contact with the bottom. We ask users to ap-
ply the loading force with a 3D printed bar at a designated loading
point marked on each mechanism with permanent marker. The user
then deformed the mechanism to the loaded state and released the
load with a sliding motion, similar to the launching motion in Tid-
dlywinks. This ensures that contact break between the stick and
the mechanism is close-to instantaneous and consistent. The same
criteria are used in simulation to obtain comparable loading. The
Objet500 we employ in all our fabrication examples works at 85
microns precision while our design parameter changes are on the
order of millimeters and are thus be reliably manufactured. Addi-
tionally to further minimize variability in experimental conditions
we use the same printer for all examples and always print in the top
left area of the build tray. We orient models consistently and per-
form experiments within two weeks of printing to avoid long-term
material degradation - an interesting topic for future modeling and
design research.

Throughout the study, mechanism goal outcomes consistently
matched those predicted by their corresponding DAC/BBI simu-
lations. Final, optimized, mechanisms were much more reliable
than their initial counterparts - under simulation these were suc-
cessful. In terms of jumping (flipping, over, onto) tasks final de-
signs completed more than 85% of their attempts for every task
- close to matching DAC/BBI predicted success. while the initial
designs successfully completed the simplest flipping task in 3% of
all attempts (Figure 28) and had zero successes for the jump-onto
and jump-over tasks - matching DAC/BBI predicted failure. This
large difference validates that designed mechanism successes are
quite reliably modeled by DAC/BBI. For instance, our catapult de-
sign achieves a 10× reduction in mean error with respect to tar-
get distance for all users. Note that here there is a small increase
in standard deviation due to the fact that our optimized design of
the catapult necessarily throws the cube much further, amplifying

any variation errors in initial targeting (Figure 27). For support-
ing evidence of each mechanism’s experimental behavior please see
our supplemental materials which include uncut videos [Chen et al.
2017] of all user studies.

6 Discussion and Conclusions

Beyond the direct application to fast and accurate dynamic simu-
lation in contact-rich environments (see e.g., Figure 29), we see
this work as a first step towards making the design optimization of
functional dynamics broadly possible for real-world applications.
What we show is that a principled approach to numerical coarsen-
ing, which accounts not just for quantities such as potential energy,
but also mode shapes and damping, can allow for highly accurate
dynamics simulations to be carried out with exceedingly low res-
olution meshes, leading to large gains in performance. However,
while our method is the first to perform dynamics-aware coarsening
for nonlinear viscoelastic materials, we are limited to material mod-
els parameterized by Young’s Modulus. Extending this technique
to more general polynomial models would broaden its applicability.

Figure 29: A simulated deformable passive walking mechanism.
In this preliminary work we take parameters captured from silicon
to create “minion” walkers. We use six design parameters: three
for length, height and depth of body; and three for length, height
and depth of legs. We start with the closer walker as an initial,
hand-tuned design. We then locally optimize from this design for
a faster walking speed. The final design is farther from the viewer
and obtains an emergent gallop to accelerate at the beginning of
the motion and so, on the right, quickly pulls ahead of our initial
design; see our supplemental video.

We note that prior to our introduction of DAC, design optimization
of real-world transient dynamics was computationally intractable.
DAC and BBI in the fabrication-centric dynamic simulation frame-
work presented here begin to open exciting areas of future work:
from the design of prosthetics and robotics, to the creation of highly
dynamic toys, animatronic characters and beyond. As a next criti-
cal step on this path we look forward to the integration of DAC and
BBI within a design optimization tool for fabrication.
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