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1 Predictive Simulation for Design

Accurate physical modeling of transient dynamics with contact is
validated by experiment and generally requires simulation at close
to convergent spatial and temporal grid sizes. This makes even a
single forward dynamic simulation run in 3D prohibitively expen-
sive. On the other end of the spectrum physically based animation
methods seek efficiency by pushing simulations towards maximally
stable time-step sizes and coarsest possible spatial meshes to ob-
tain visually appealing but generally highly inaccurate dynamics.
Here we detail our experiments and investigations towards design-
ing predictive and efficient simulation of high-speed dynamics un-
der frictional contact, impact, loading and free-flight suitable for
fabrication design.

Sources of Error Errors between simulated and real-world fab-
ricated results can be attributed to three primary sources:

1. inaccuracies in simulation modeling,

2. inaccuracies in material modeling, and

3. fabrication tolerances.

We focus on how to efficiently target and address these sources of
error in simulation. If all physical quantities must be accurately
captured in simulation in order to design for dynamics, then our as-
sessment is that high-performance FEM is currently unable to solve
transient dynamics at speeds practical for even a single simulation,
much less the many simulations required for design optimization
iterations. If, on the other hand, there is a subset of critical quan-
tities whose accuracy matters most in predictive design, then we
are doing too much and likely the wrong kinds of work in applying
traditional FEM simulation models that attempt to optimize away
all errors. In identifying what properties matter there is then hope
that a frugal and targeted simulation algorithm can be constructed
to enable a tractable design optimization.

With desktop and numerical experiments we first identify critical
physical properties in transient dynamics for which error has a large
effect on design behavior. With analysis and simulation tests we
then construct a discrete physical model and simulation framework
that predictively resolves these properties. We begin by detailing
our model problem below.

We observe that highly dynamic motion trajectories for fabricated
mechanisms are generally decomposable into stages of

1. Loading, where we store energy via deformation—energy is
loaded into the system by an applied external force;

2. Launch, where we transfer internal energy to kinetic energy
while remaining in contact;

3. Flight, where an object loses contact with its environment and
is carried into contact-free motion by its inertia; and

4. Landing, following flight, where an object regains contact—
kinetic energy is transferred back into internal energy via col-
lision induced deformation, after which an object may main-
tain contact while in dynamic motion or in rest.

See our main paper for an illustration of these stages.

Model problem We begin by examining a simple 3D-printed
jumping model, the forward flipper, that captures the full range of
dynamic stages from loading to launch to flight to landing. We load
the jumping model by pressing down and then releasing. The de-
sign task for this flipper is to find a shape that, upon release, jumps
forward into the air, flips once and then lands stably on its feet, see
our main paper for illustrations of the flipper.

2 Critical Physical Properties

After numerous desktop and numerical experiments with a wide
collection of 3D-printed jumping models we observe that the fol-
lowing properties are each critical to predicting the success or fail-
ure of a design in a subset of the above dynamic phases:

Deformation: to accurately resolve loading, launching and land-
ing, deformation shape must be well-captured. Deformation
state initiating flight is critical to determining trajectory. How-
ever, during the later prolonged flight stages, energy stored in
deformation modes damps rapidly and we observe that these
modes are generally unimportant in determining the overall
flight path.

Energy: the predictive modeling of loading energy, launching
time and landing stability all require accurate bookkeeping of
the energy loaded into the system, its release into motion, its
damping over time, and its absorption upon collision.

Contact in space-time: the dynamics of loading, launching and
landing are highly sensitive to localizing the locations and
times where surfaces separate and collide. Small changes in
contact state often result in large changes to later trajectory.
Finite friction models, consistency between surface tractions
and boundary contacts, and proper impact modeling are key
to getting this right.

Orientation: in flight, ballistic motions often involve extremely
rapid rotations while small variations in orientation and angu-
lar momentum in launch will often give very different flight
trajectories. To predictively avoid collisions with obstacles
and correctly orient landing poses, rotational state and angu-
lar momentum need to be tightly tracked.

3 Simulation Algorithm Analysis

We begin with a standard FEA framework for 3D printed materials,
see our main paper. To capture stiff elastic response of 3D-printed
materials we use the neo-Hookean material model, augmented with
a Rayleigh damping model to capture transient dissipation of vibra-
tions, and discretize with second order, hexahedral finite elements.

As a baseline, we first attempt to simulate our model test problem,
the forward flipper, with validated, nonlinear FEM. Validated, ac-
curate simulation matching experimental loading, release, launch,
flight, and landing behaviors in our experiments requires an aver-
age of 791 seconds of computation per timestep, with a step size of
h = 10−5, on an Amazon EC2 compute-optimized instance with 4
CPU threads (Intel Xeon E5-2666 v3, 2.9Ghz).

Consistent with our observations in the last section, we find that
simply decreasing our overall discretization resolution in both space



and time introduces unacceptable inaccuracies that make optimiza-
tion unworkable. Specifically, as we proceeded to larger mesh and
time step sizes we obtain inaccuracies in loading shapes and ener-
gies, launch break-away times and configurations, flight trajecto-
ries, landing times and configurations, as well as spurious instabili-
ties, especially upon launch and impact.

With this confirmation that traditional FEM will not be practical,
we next analyze and detail how we resolve our identified physi-
cal properties for the predictive optimization of our dynamic design
task while avoiding the high cost of out-of-the-box high-resolution
FEM simulation. We begin by re-visiting each property before de-
scribing the detailed construction in the following section.

Deformation To enable efficient simulation we want the coarsest
possible spatial discretization of our material. Coarse-resolution
discretizations suffer from numerical stiffness, where the numeri-
cally simulated material is stiffer than the modeled material. How-
ever, we observe that for a large regime of these coarsenings these
same meshes are not kinematically locked—this range of coarse
models captures deformation, just not stiffness. This is the starting
observation for our Dynamics Aware Coarsening (DAC) method.
DAC first determines and applies the coarsest discretization that
captures deformation as given by primary mass-PCA deformation
modes matched to the convergent FEM model. We then match
the numerical stiffness of our coarsened model to a calibrated 3D-
printed rig model. See our our main paper for details on DAC.

While deformation is critical to loading, launch, and landing, dur-
ing prolonged flight phases we observe that the potential energy
stored in the deformation modes of an object rapidly damp to have
negligible effect in determining the next point of collision that initi-
ates a landing phase. Thus we track the time-varying elastic poten-
tial energy stored in our simulated model. When damping causes
this internal potential to fall to zero, during free-flight, we project
our full DAC discretization to a rigid body model with SE(3) vari-
ables. We integrate our rigid model forward until the next collision
is reached, at which point we map rigid-body state back to the DAC
model to capture the new deformation dynamics at impact. See
our Implementation Supplemental for details of the projection pro-
cess. Figure 1 shows trajectories of a jumper computed using high-
resolution finite element simulation with the hybrid DAC-SE(3)
simulation where we note that the hybrid yields a trajectory that
tightly tracks the gold-standard FE simulated result.

Energy Even if we employ quite small time-step sizes and high-
resolution spatial meshes, numerical dissipation from implicit Euler
still incorrectly models the transfer of energy to the material during
loading, and likewise the transfer of the load energy to kinetic en-
ergy during launching. We similarly noted corresponding issues
with higher-order BDF2. This leads to widely differing trajecto-
ries and the issue is only exacerbated if we seek to maximize time
step sizes for efficiency. If not fixed we particularly notice incor-
rect breakaway times and locations as contact surfaces peel from
the boundary, as well as large disparities in the linear and angular
velocities as objects leave the ground during launch.

For predictive energy bookkeeping at larger time steps we choose
an implicit, geometric time integrator—implicit Newmark [Kane
et al. 2000]. Before adopting implicit Newmark we first exper-
imented with less computationally expensive geometric integra-
tors: Verlet and linearly implicit Newmark [Tao and Owhadi 2016].
When integrating our deformable models we observe that fully ex-
plicit, second-order Verlet is highly unstable in our setting even at
remarkably small timesteps. Linearly implicit Newmark provides
improved stability and is computationally affordable, with only a
single linear solve per time step, but still becomes unstable once we

add our contact and impact resolution to the simulation. Implicit
Newmark provides the predictive energy tracking we seek, even as
we scale to larger time steps we eventually employ.

Contact in space-time With our coarse discretization model in
place, simulation becomes bottlenecked in our dynamic FEM sim-
ulation of loading. However, we note that the loading process is
effectively quasistatic, and so, if we are careful, we should be able
to replace the time stepped solves of loading with a single static
solve. To do this, however, we next observe that we need to predic-
tively capture the final loaded equilibrium pose subject to frictional
contact. During loading portions of contacting surfaces peel away
due to breaking contact with the unilateral boundary constraint.

To capture this breaking contact effect we need to efficiently model
frictional contact in our static solve in order to correctly capture the
loading pose and potential energy that determine initial launch con-
ditions. Many static solvers treat boundary conditions with bilateral
constraints and so would be unable to model breaking contact. In
our Implementation Supplemental we detail a static loading solver
using projected contact and an infinite-friction model that we val-
idate against the full dynamic FEM frictional-contact solution for
loading.

While geometric time integration with implicit Newmark gives us
better energy bookkeeping for dynamic FE simulation, we still need
to capture frictional contact and impact behavior during mode shifts
from launching to flight and from flight to next collision accurately.
We initially looked at inexpensive, explicit contact models and con-
tact projection methods but confirmed that they are much too inac-
curate in localizing contact times and locations. Fully implicit con-
tact modeling is, as expected, much better but still fails to correctly
model the breakaway and restitution behaviors that are critical to
capturing launching and landing. In our main paper we detail our
BBI method for impact modeling that allows us to match observed
experimental behavior.

Orientation Accurate flight with large rotations and high angu-
lar speeds, such as those we deal with here, are not satisfied by
standard SE(3) time integrators, e.g. exponential Euler. Instead we
apply Discrete Moser-Veselov (DMV) [Moser and Veselov 1991] a
second-order, energy–momentum preserving time integrator. DMV
is inexpensive, and by tightly tracking angular momentum and rota-
tional state allows us to efficiently and predictively track trajectory
at larger time steps, while giving us an accurate accounting of ki-
netic energy to map back to our FE model upon collision. This
enables us to predictively model if and when undesirable collisions
occur during sample trajectories and likewise inexpensively set ac-
curate collision orientations prior to modeling landings.

Finally, to correctly capture the angular momentum initiating flight
we require good tracking of momenta during launch as well. While
the implicit-Newmark model we employ is momentum-preserving,
we additionally require a stiffness-consistent mass-matrix to accu-
rately model the correct momenta quantity.
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Figure 1: Comparison between the hybrid simulation with projected rigid body simulation in free-flight and the trajectory obtained by
full FEM simulation for our jumping over example. On the left, we compare center of mass trajectories. In the middle plot, we compare
rotations around Z-axis throughout the jump trajectory. Finally, on the right, we zoom in to the initial trajectory up to 0.05 seconds. Here
the oscillations of the FEM model quickly damp out, and throughout, the overall rotation matches the rigid body rotation with a maximal
difference of 0.02 radians.
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