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Abstract—We study the bias introduced in Differentially-Private
Stochastic Gradient Descent (DP-SGD) with clipped or nor-
malized per-sample gradient. As one of the most popular but
artificial operations to ensure bounded sensitivity, gradient
clipping enables composite privacy analysis of many iterative
optimization methods without additional assumptions on either
learning models or input data. Despite its wide applicability,
gradient clipping also presents theoretical challenges in sys-
tematically instructing improvement of privacy or utility. In
general, without an assumption on globally-bounded gradient,
classic convergence analyses do not apply to clipped gradient
descent. Further, given limited understanding of the utility
loss, many existing improvements to DP-SGD are heuristic,
especially in the applications of private deep learning.

In this paper, we provide meaningful theoretical analysis
validated by thorough empirical results of DP-SGD. We point
out that the bias caused by gradient clipping is underestimated
in previous works. For generic non-convex optimization via
DP-SGD, we show one key factor contributing to the bias
is the sampling noise of stochastic gradient to be clipped.
Accordingly, we use the developed theory to build a series
of improvements for sampling noise reduction from various
perspectives. From an optimization angle, we study variance
reduction techniques and propose inner-outer momentum. At the
learning model (neural network) level, we propose several tricks
to enhance network internal normalization and BatchClipping
to carefully clip the gradient of a batch of samples. For
data preprocessing, we provide theoretical justification of
recently proposed improvements via data normalization and
(self-)augmentation.

Putting these systematic improvements together, private
deep learning via DP-SGD can be significantly strengthened
in many tasks. For example, in computer vision applications,
with an (ϵ = 8, δ = 10−5) DP guarantee, we successfully train
ResNet20 on CIFAR10 and SVHN with test accuracy 76.0%

and 90.1%, respectively; for natural language processing, with
(ϵ = 4, δ = 10−5), we successfully train a recurrent neural
network on IMDb data with test accuracy 77.5%.

1. Introduction

Given access to representative data with proper preprocessing,
deep learning has witnessed remarkable success. In certain
image recognition tasks, well-trained neural networks can
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already achieve human-level performance [1], [2]. Mean-
while, the trend of scaling up machine learning systems is
accelerating. From 2018-2022, the size of notable models
for natural language processing increased by five orders
of magnitude [3]. Accompanied by emerging and practical
applications, privacy leakage from models trained over users’
data has also received increasing attention. Without proper
privacy preservation, many practical attacks are known to
efficiently identify or even recover the data used for training
[4], [5], [6], [7]. To formalize the privacy leakage when
releasing sensitive information, Differential Privacy (DP) [8]
provides a rigorous metric. However, as larger models are
employed, the gap between the boosted performance in the
non-private regime and that achievable with meaningful DP
guarantees is widening [9], [10]. It still largely remains open
whether such utility loss is fundamental to current private
learning frameworks. To answer this question, we first need to
understand the key challenges in DP privatization, especially
for high-dimensional statistical learning.

At a high level, DP sets out to ensure that, from the output
of a mechanism, one cannot distinguish the participation
of an arbitrary individual in the input dataset. Rooted in
cryptography, DP formalizes such distinguishing advantage
by measuring the worst-case difference between the output
distributions of two arbitrary adjacent datasets. Here, we call
two datasets adjacent if they only differ in one datapoint.
Based on different metrics, DP and its variants were widely
studied over last two decades. For example, the classic ϵ-DP
[8] applies maximal divergence as the measurement, while
(α, ϵ) Rényi-DP [11] is developed on Rényi divergence to
produce tighter composition bounds. To concretely control
DP security parameters, one key quantity that needs to
be determined is sensitivity. Roughly speaking, sensitivity
captures the maximal change to a function’s output after one
arbitrarily changes a single datapoint in the input set. Given
sensitivity, one popular privatization method is perturbation,
such as adding Laplace or Gaussian noise proportionally
[8], [12]. Unfortunately, the computation of sensitivity is
in general NP-hard [13]. Indeed, for many commonly-used
algorithms, a tight sensitivity bound remains open. Therefore,
an alternative decompose-then-compose framework is widely
applied in practice.

Though tight sensitivity is intractable in general, the
sensitivity of aggregation (or average) does enjoy a closed
form. In a sum of multiple terms, if each of them is
determined by an individual sample, the sensitivity is simply
the maximal norm of each item being aggregated. There-



fore, one natural idea is to (approximately) decompose
a complicated algorithm into multiple (possibly adaptive)
aggregations. To provide concrete privacy analysis, a more
powerful white-box adversary is assumed who can observe all
intermediate outputs of the algorithm rather than the final one
only. Thus, it suffices to privately release each aggregation,
and the total privacy leakage is then upper bounded using
composition. More complicated algorithms with more such
artificial decompositions usually result in looser composite
privacy analysis. To ensure bounded sensitivity of each step,
a popular approach is to truncate or clip each individual
item to be aggregated up to some threshold c in l2 or l1
norm. Accordingly, the aggregation outputs are perturbed
following Gaussian or Laplace mechanisms [8], [12]. For a
d-dimensional release, given constant l2/l1-norm sensitivity,
the scale of required perturbation is Θ(

√
d), known as the

curse of dimensionality [14].
DP Stochastic Gradient Descent (DP-SGD) [15], [16]

and many other variants of gradient methods such as the
private Frank–Wolfe algorithm [17] all follow the above-
described framework. As the most popular method for private
learning, DP-SGD enjoys wide applicability without any
additional assumptions on either the objective loss function
or training data. Essentially, DP-SGD can be viewed as an
iterative aggregation of gradients evaluated by subsampled
samples. The mechanism works by repeating the following
two operations. First, DP-SGD computes and clips each
subsampled per-sample gradient evaluated on the latest model
state. Then, clipped gradients are privately aggregated and
the model state is updated via a noisy gradient descent.
Following a compositional reasoning, to ensure an (ϵ, δ)-DP
guarantee for a DP-SGD with T iterations, one needs a
perturbation in a scale of Θ̃(

√
Td log δ/(nϵ)) [18] in each

iteration. This suggests that in the high-dimensional scenario,
for example, training an overparameterized (d≫ n) neural
network, DP noise could be much larger than the original
gradient given a limited number of samples.

For convex optimization with a Lipschitz assumption,
where the l2 norm of gradient is globally bounded, DP-SGD
is known to produce the optimal privacy-utility tradeoff
asymptotically [18], [19]. The generalization of DP-SGD
in many other setups such as for heavy-tailed data [20],
[21] or distributed optimization [22] (with local DP) are
extensively studied. However, for generic non-convex opti-
mization without a Lipschitz assumption, the understanding
of practical implementation of DP-SGD is limited. The
empirical performance of DP-SGD has been reported in a vast
number of learning models and tasks, accompanied by heavy
utility loss. For example, the classification model trained for
Imagenet via DP-SGD from scratch can only achieve 47.9%
accuracy with (ϵ = 10, δ = 10−6) on ResNet18 [23], while
non-privately one can easily achieve above 75% on the same
model.

It was believed that such performance gap is mainly
because of massive composition 1 and large model dimension,

1. Though larger models could possibly generalize better, they also usually
require a longer convergence/training time.

which result in prohibitive noise injection [10], [24]. A
previous perception of DP-SGD is that DP noise required
in large models will offset the enhanced learning capacity.
For example, Tramer and Boneh in [9] argued that within
the current framework, for image datasets with less than
500K samples, simple linear models would outperform the
Convolutional Neural Network (CNN). To this end, for a
given dataset, many existing works are devoted to searching
for a small enough model that produces optimal tradeoff [10].
If the above is the case, to close the gap between private and
non-private learning, either there is some efficient shallow
learning mechanism with competitive performance, or we
need a completely different private optimization method
from DP-SGD. Unfortunately, both problems are extremely
challenging given state-of-the-art in machine learning and
DP privatization.

1.1. Our Contribution

In this paper, we try to understand the utility loss of DP-
SGD and develop a theoretical foundation for systematic
improvement. One key argument we want to make is that
both the applicable model dimension and the bias caused by
gradient clipping in DP-SGD are underestimated in previous
works. We show that given only second-moment-bounded
stochastic gradient, clipped/normalized gradient descent in
general does not converge and clipping bias widely occurs in
practical learning tasks. On the other hand, if we are given
access to less biased clipped gradient, even under current
conservative (white-box adversary) privacy analysis, practical
deep learning can indeed tolerate much larger noise than
expected.

The remaining paper is organized to answer the following
two questions in sequence: why DP-SGD or clipped-SGD
endures utility loss even without noise perturbation, and
what and how to clip to close the gap between non-private
and private learning with sensitivity restriction. We first
present generic theoretical convergence analysis of DP-SGD,
where we show the bias caused by gradient clipping is
upper bounded by the sampling noise of the stochastic
gradient to be clipped. Our theory supports the previous
empirical observation [9], [25] that the selection of small
clipping threshold with normalization produces good utility-
privacy tradeoff. More importantly, the developed theory
validated by extensive experiments shows that sampling
noise reduction of stochastic gradient is promising: we
transform the abstract improvement over DP-SGD to a more
concrete variance reduction problem for per-sample gradient.
Within the classic framework subject to per-sample gradient
clipping, we propose and study various reduction methods
from different angles, summarized as follows,
1) From the optimization angle, we propose inner-outer

momentum: per-sample gradients over past iterates are
first exponentially averaged (inner momentum) before
clipping, and afterwards, aggregate noisy clipped gradi-
ents over past iterates are averaged (outer momentum)
before gradient descent.
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2) From the perspective of the learning model, we propose
several useful tricks to optimize network architecture
subject to per-sample gradient computation. In most
existing works on deep learning via DP-SGD, to enable
per-sample gradient computation, network normalization
involving participation of multiple samples, such as
BatchNorm layer [26], is simply replaced by GroupNorm
layer [9], [27], [28]. However, we show such straightfor-
ward replacement may not perfectly adapt the original
network architecture and lead to sub-optimal perfor-
mance. Several tricks to enhance network normalization
are proposed, which provide significant sampling noise
reduction and accelerate convergence rate. Moreover,
with additional access to (a small amount of) public data,
we propose BatchClipping, a novel method to carefully
clip the gradient of a batch of samples while ensuring
the same sensitivity guarantee and good generalization,
simultaneously.

3) From the data preprocessing angle, we use our theory to
examine two recently-proposed improvements, namely,
data normalization through scattering network [9] and
self augmentation [28].

The rest of the paper is organized as follows. In Section 2.1,
we introduce the background and in Section 2.2 we include
the empirical measurements on the clipping effect in practical
deep learning. The generic convergence analysis of DP-SGD
with either gradient normalization or clipping is presented
in Section 3, and we study the implications of the theory in
Section 3.3. Concrete improvements from three perspectives,
optimization, network normalization and data preprocessing
are presented in Sections 4, 5 and 6, respectively. Additional
experiments combining all those improvements are included
in Section 7. Finally we conclude in Section 8.

1.2. Related Works

Theoretical (Clipped) DP-SGD Analysis: In most existing
theoretical studies on DP-SGD [15], [18], [19], the objective
loss function is assumed to be L-Lipschitz continuous. The L-
Lipschitz assumption implies that the l2 norm of the gradient
evaluated on any point is uniformly bounded by L. Thus, in
such a setup, DP-SGD is essentially the original SGD with
additional perturbation across iterations: gradient clipping is
not necessary or the clipping threshold is virtually set to be
L. With a Lipschitz assumption, for convex optimization
on a dataset of n samples, a training loss of DP-SGD
Θ̃(L

√
d log(1/δ)/(ϵn)) is known to be tight under an (ϵ, δ)

DP guarantee [18]. However, in practical learning problems,
a (tight) Lipschitz bound is intractable or may not even exist.
Gradient clipping is then introduced in [16] to artificially
ensure a bounded sensitivity.

Compared to other private learning methods such as
objective perturbation [29] or Private Aggregation of Teacher
Ensembles (PATE) [30], [31], which either require strong
convexity or massive unlabelled public data, gradient clip-
ping enables DP-SGD to work for most learning problems
without any additional assumptions. However, classic results
[18], [19] assuming bounded gradients cannot be directly

generalized to clipped DP-SGD. Some existing works try
to narrow this gap with new analysis. For example, [32]
presents a convergence analysis of smooth optimization
but requires bounded sampling noise in stochastic gradient.
Moreover, a somewhat impractical assumption is made where
the clipping threshold c needs to be Ω(T ) where T is the total
number of iterations. [33] relaxed the requirement with an
assumption that the sampling noise is symmetric. [34] studied
the special case of generalized linear models. Recent papers
show more advanced and complicated analysis [25], [35].
However, [35] requires assumptions on adaptively bounded
sampling noise, while [25] characterizes the convergence rate
using an implicit envelope function without a closed form.
Though existing works have made many interesting advances
with the assistance of various additional assumptions, few
neat and intuitive theoretical results are known, which can
be later used to systematically instruct improvements. The
bottleneck of clipped DP-SGD is still not clear. Moreover, our
motivation and results are also very different from those prior
works. Instead of figuring out the theoretical and restrictive
conditions such as symmetry [33] or generalized smooth
assumption [35] that clipped or normalized SGD could
converge, in this paper we show that clipping bias exists both
in the worst case and in many practical learning tasks, and
in general cannot be averaged out across the optimization
iterations. Our focus is thus how to reduce such clipping
bias in practice.
Heuristic Empirical Improvement: DP-SGD is notorious
for its sensitivity to hyper-parameter selection including
the learning rate, iteration number and clipping threshold.
Recently, [25] proposes to apply normalized gradient to
avoid the overhead to optimize the clipping threshold. [23],
[28] report that given the same privacy budget, a larger
iteration number (composition) with a bigger batchsize
usually produces better performance 2. [37] proposes to
spend some privacy budget to adaptively adjust the clipping
threshold during optimization. Another line of works view
the model dimension as the main obstacle impeding DP-SGD,
and set out to optimize the tradeoff between model size and
utility loss [9], [10], and report that a carefully-selected small
model can outperform a large model for many medium-size
datasets. To overcome the curse of dimensionality, when
additional public data is available, another idea is to project
the private gradient into a low-rank/dimensional subspace
approximated by public samples [27], [38], [39], [40], or
implement transfer learning [9], [24], [41], where only a
small fraction of weights in the network need to be privately
fine-tuned.

To our knowledge, most existing works on DP-SGD
report the best performance via grid searching on those hyper-
parameters for specific datasets. Such adaptive searching
and selection incur privacy loss themselves though some
theoretical solutions for private parameter tuning [42], [43]

2. Similar phenomena are observed in our simulation and we are inclined
to believe this is because more iterations may help average out the DP noise,
and from the sampling amplification [14], a larger batchsize indeed produces
better signal-to-noise ratio. But, too big a batchsize causes efficiency issues
and influences the generalization of local minima found [36].
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are known. Therefore, a theory for generic instruction is in
demand. Besides, due to the lack of theory, most empirical
improvements are still devoted to forcing a known learning
algorithm to match the composite privacy analysis and
studying assumptions that enable less DP noise.

2. DP-SGD and Deep Learning

2.1. Preliminaries and Notations

Empirical Risk Minimization: To be self-contained, we
briefly introduce the background of statistical machine learn-
ing from an optimization perspective. In general, the model
to be trained is represented by a parameterized function
f(w, x) : (W,X ) → R, mapping feature x from input
domain X into an output (prediction/classification) domain.
In the following, we will always use d to represent the
dimension of the parameter w, i.e., w ∈ Rd. For example,
one may consider f(w, x) as a neural network with multiple
linear layers connected by (non-linear) activation layers
ϕ[1:L], and w[1:L] represent the weights to be learned. In
general, we can represent a neural network in the following
function,

f(w, x) = ϕL(...ϕ2(ϕ1(x · w1) · w2)...wL),

where wl is the weight at the l-th layer and ϕl represents
some (non-linear) activation layer.

To find a model with appropriate weight w to fit the data,
in supervised learning, the training process can be described
as solving an optimization problem. Given a set D of n
samples {(xi, yi), i = 1, 2, ..., n}, where x and y represent
the feature and label, respectively, we define the problem
of Empirical Risk Minimization (ERM) [44] for some loss
function l(·, ·) as follows,

min
w

F (w) = min
w

1

n
·

n∑
i=1

l(f(w, xi), yi). (1)

For convenience, we simply use f(w, xi, yi) to denote the
objective loss function l(f(w, xi), yi) in the rest of the paper.
Below, we formally introduce the definitions of Lipschitz
continuity and smoothness, which are commonly used in
optimization research.

Definition 2.1 (Lipschitz Continuity). A function f is L-
Lipschitz if for all w,w′ ∈ W , |f(w)−f(w′)| ≤ L∥w−w′∥2.

Definition 2.2 (Smoothness). A function f is β-smooth on
W if ∇f(w) is β-Lipchitz such that for all w,w′ ∈ W ,
∥∇f(w)−∇f(w′)∥2 ≤ β∥w′ − w∥2.

In the following, we will simply use ∥ · ∥ to denote the l2
norm unless specified otherwise.
Differential Privacy (DP): We first formally define (ϵ, δ)-DP
and (α, ϵ)-Rényi DP as follows.

Definition 2.3 (Differential Privacy [45]). Given a data
universe X ∗, we say that two datasets D,D′ ⊆ X ∗ are
adjacent, denoted as D ∼ D′, if D = D′ ∪ s or D′ = D ∪ s
for some additional datapoint s. A randomized algorithm A
is said to be (ϵ, δ)-differentially-private (DP) if for any pair

of adjacent datasets D,D′ and any event S in the output
space of A, it holds that

P(A(D) ∈ S) ≤ eϵ · P(A(D′) ∈ S) + δ.

Definition 2.4 (Rényi Differential Privacy [11]). A random-
ized algorithm A satisfies (α, ϵ)-Rényi Differential Privacy
(RDP), α > 1, if for any pair of adjacent datasets D ∼ D′,

ϵ ≥ Dα(PM(D)∥PM(D′)).

Here, PM(D) and PM(D′) represents the distributions of
M(D) and M(D′), respectively, and

Dα(P∥Q) =
1

α− 1
log

∫
q(o)(

p(o)

q(o)
)α do, (2)

represents α-Rényi Divergence between two distributions P
and Q whose density functions are p and q, respectively.

In Definition 2.3 and 2.4, if two adjacent datasets D
and D′ are defined in a form that D can be obtained by
arbitrarily replacing an datapoint in D′, then they become the
definitions of bounded DP [8], [12] and RDP, respectivaly.
In this paper, we adopt the unbounded DP version to match
existing DP deep learning works [9], [16], [27] for a fair
comparison.

In practice, to ensure meaningful privacy guarantees, ϵ
is usually selected as some small one-digit constant and the
failure probability δ is o(1/|D|) = o(1/n). To randomize an
algorithm, the most common approaches in DP are Gaussian
or Laplace Mechanisms [14], where a Gaussian or Laplace
noise proportional to the sensitivity is added to perturb the
algorithm’s output. In many applications, for example, using
the decompose-then-compose privatization framework that
includes DP-SGD, we need to quantify the cumulative privacy
loss across sequential queries of some differentially-private
mechanism on one dataset. The following theorems provide
an upper bound on the overall privacy leakage.

Theorem 2.1 (Advanced Composition [46]). For any ϵ >
0 and δ ∈ (0, 1), the class of (ϵ, δ)-differentially-private
mechanisms satisfies (ϵ̃, T δ + δ̃)-differential privacy under
T -fold adaptive composition for any ϵ̃ and δ̃ such that

ϵ̃ =

√
2T log(1/δ̃) · ϵ+ Tϵ(eϵ − 1).

Theorem 2.2 (Advanced Composition via RDP [11]). For
any α > 1 and ϵ > 0, the class of (α, ϵ)-RDP mechanisms
satisfies (ϵ̃, δ̃)-differential privacy under T -fold adaptive
composition for any ϵ̃ and δ̃ such that

ϵ̃ = Tϵ− log(δ̃)/(α− 1).

Theorem 2.1 shows a good characterization on how the
privacy loss accumulates with composition. For small (ϵ, δ),
asymptotically we have an Õ(

√
Tϵ, Tδ) DP guarantee after a

T composition. In practice using RDP, Theorem 2.2 usually
produces tighter constants in the privacy bound.
DP-SGD: (Stochastic) Gradient Descent ((S)GD) is a very
popular optimization approach. Consider an ERM problem to
minimize some function F (w) = 1

n

∑n
i=1 f(w, xi, yi). SGD

can be described as the following iterative mechanism. In
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the k-th iteration, a Poisson sampling is implemented where
each datapoint is i.i.d. sampled by a constant rate q 3 , and
a minibatch of Bk samples is produced from the dataset D,
denoted as Sk. In the following, we assume q ≥ 1/n. We
calculate the stochastic gradient as

Gk ←
∑

(xi,yi)∈Sk

∇f(wk−1, xi, yi). (3)

Then, a gradient descent update is

wk = wk−1 − η ·Gk, (4)

for some stepsize η. Without subsampling (or q = 1) but
applying the full batch of samples, (4) becomes GD. In
the following, we formally define the sampling noise of
stochastic gradient evaluated at some point w as follows.

Definition 2.5 (Sampling Noise of Stochastic Gradient). For
the given dataset D = {(x1, y1), ..., (xn, yn)} and the loss
function F (w) = 1

n ·
∑n

i=1 f(w, xi, yi), let (x, y) be a sample
randomly selected from D, then the sampling noise of the
stochastic gradient at w is defined as

E(x,y)∼D[∥∇F (w)−∇f(w, x, y)∥2].

The modification from GD/SGD to the corresponding
DP version is straightforward. When the loss function f is
assumed to be L-Lipschitz [15], [18], i.e., ∥∇f(w, xi, yi)∥ ≤
L for any w, the worst-case sensitivity in Equation (4) is
bounded by ηL in each iteration. Thus, SGD can be privatized
via iterative perturbation by replacing Equation (4) with the
following:

wk = wk−1 − η · (Gk +∆k), (5)

where ∆k is the noise for the k-th iteration. For example, if
we want to use the Gaussian Mechanism to ensure (ϵ, δ)-DP
when running T iterations, then ∆k can be selected to be
i.i.d. generated from

∆k ← N (0, O(
L2T log(1/δ)

ϵ2
) · Id),

where Id represents the d× d identity matrix.
However, when we do not have the Lipschitz assumption,

an alternative is to force a bounded sensitivity through
gradient clipping, or normalization as a special clipping.
Following the same notations as before, we describe per-
sample gradient clipping [16] as follows,

Gk ←
∑

(xi,yi)∈Sk

CP
(
∇f(wk−1, xi, yi), c

)
. (6)

Here, CP(·, c) represents a clipping function of threshold c,

CP(∇f(w, x, y), c) = ∇f(w, x, y)·min{1, c

∥∇f(w, x, y)∥
}.

With clipping, the l2 norm of each per-sample gradient is
bounded by c. As a special case of clipping to ensure bounded

3. We adopt i.i.d. sampling mainly for privacy analysis purposes, since
its privacy amplification is easier to analyze through RDP [45].

sensitivity, one can also apply per-sample gradient normal-
ization [25] (the gradient norm is scaled to 1) described as
follows,

Gk ←
∑

(xi,yi)∈Sk

∇f(wk−1, xi, yi)

∥∇f(wk−1, xi, yi)∥
. (7)

Thus, the clipping threshold c (or normalization to 1) virtually
plays the role of the Lipschitz constant L in clipped SGD
for privacy analysis. However, as we show below, from
the utility perspective, we cannot simply use clipping or
normalization to force the objective function to be virtually
Lipschitz continuous without compromise.

2.2. Observation from Practical Deep Learning
Before we present the formal theoretical analysis, we want
to provide some high-level pictures on the effects of clipping
in practice. In Fig. 1, we consider training a standard
ResNet20 network [47] by only replacing the BatchNorm
layer [48] with GroupNorm layer [28] as many prior works
did to enable per-sample gradient calculation on CIFAR10, a
canonical image set of 50,000 training samples in 10 classes.
In each iteration, we apply i.i.d. (Poisson) sampling with
q = 2000/50000 to generate a batch of samples, where
the expected batch size is 2, 000. In Fig. 1a, we include
the statistics of the norm of per-sample gradients when we
implement standard SGD without clipping or perturbation.
To be specific, we include the sampling noise (see Definition
2.5), the 25% and 75% quantile of the per-sample gradient’s
norm, and the norm of the averaged gradient across the
batch in each iteration. In Fig. 1d, we keep track of the
training and test accuracy. To compare, in Fig. (1b,1e) and
(1c, 1f), we implement clipped SGD (without perturbation)
with clipping thresholds c = 10 and c = 1, respectively.
Note that similar statistical measurements shown in Fig.
(1b, 1c) are with respect to the original per-sample gradient
before the clipping operation. Especially, in Fig. (1e, 1f),
we include the performance of clipped SGD with various
learning rates. Moreover, in Fig. 2, we further include the
test/training accuracy of training ResNet32, a larger model,
on CIFAR100, a more challenging classification task, with
carefully-selected decaying learning rates across 1000 epochs.
We have the following observations when comparing the
various cases.
1) Bias: The clipping thresholds c = 10 and c = 1 selected

are mostly smaller than the 25% quantile, i.e., most per-
sample gradients get clipped during optimization. From
both the training and test accuracy, clipping does cause
bias in gradient estimation. Such bias in general cannot
be averaged out as iteration count increases and there
is an obvious gap between the performance of standard
SGD and clipped SGD. This is more obvious from Fig.
2, where regular SGD achieves 100% training accuracy
within 250 epochs, while clipped SGD (c = 1) can only
achieve 76.2% even after 1000 epochs. However, for
those small clipping thresholds where most per-sample
gradients get clipped, there is no big difference between
the performance of the ultimate models trained out. In
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(a) Gradient Statistics, Regular SGD
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(b) Gradient Statistics, Clipped SGD (c = 10)
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(c) Gradient Statistics, Clipped SGD (c = 1)
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(e) Accuracy, Clipped SGD (c = 10)
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Figure 1: Measurements on per-sample gradient’s norm statistics (a, b, c) and model’s accuracy (d, e, f). For the first row,
the vertical axis is the l2-norm and measurements are taken at each iteration. We down-sampled (with ratio 1/20) the data
points along the (iteration axis) horizontal axis to have clearer presentation. We choose batchsize = 2000 for all cases; For
regular SGD, we report the best performance among learning rate η choices {0.005, 0.01, 0.02, 0.04}; For clipped SGD, we
report all performance curves for each learning rate we tested.

other words, the effect of clipping bias is almost the
same when c is small. Thus, intuitively such clipping
bias cannot be characterized by the clipping threshold c
only and there should be a more involved relationship
with the gradient distribution.

2) Sampling Noise and Polarization: Compared to the
standard SGD, per-sample gradient clipping enlarges
the sampling noise of stochastic gradient. Besides, as
iteration count increases, the norm of per-sample gradi-
ents is distributed in a polarized fashion. The gradients
of a part of samples become very small (close to 0),
which implies that they already fit current model state.
Meanwhile, there are other parts of samples’ gradients
that remain large, which form the main component
of gradient used for descent. In general, we do not
want a stark polarization to avoid either overfitting or
unstable convergence due to extremely large gradients.
Comparing the quantile lines in Fig. 1a, 1b and 1c we
observe that clipping intensifies such polarization (25%
and 75% quantile lines diverge in the clipped SGD
case) compared to standard SGD, and extremely large
gradients constantly appear during the training process.
This coincides with the unstable performance of DP-
SGD reported in previous works. But still similarly to
1), for different clipping thresholds, the statistics of the
resultant per-sample gradients are similar.

As a summary, for small clipping threshold c which is
empirically necessary to ensure meaningful privacy-utility
tradeoff, we cannot simply view clipped SGD as standard
SGD on some loss function with an artificial Lipschitz
constant. Even without any noise perturbation, gradient
clipping brings utility loss that cannot be ignored. The
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test acc., regular SGD
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Figure 2: Performance comparison between training
ResNet32 with regular SGD and clipped SGD (c = 1) on
CIFAR100.

distribution of stochastic gradient also dramatically changes,
where the norm of per-sample gradient increases on average
and polarization intensifies after clipping. On the other
hand, comparing different clipping thresholds c with similar
performance, the utility loss should be more fundamentally
characterized by some other quantities, where smaller c does
not necessarily imply heavier compromise on the convergence
rate.

3. Theoretical Analysis on Bias in DP-SGD

In this section, generic theoretical analyses of DP-SGD with
either a clipping or normalization operation are presented
for smooth non-convex optimization. We make minimal
assumptions on the stochastic gradient distribution and only
assume its second moment is bounded, which is formally
stated below.
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Assumption 3.1 (Bounded Second Moment of Stochastic
Gradient). For the given dataset D = {(x1, y1), ..., (xn, yn)}
and the loss function F (w) = 1

n ·
∑n

i=1 f(w, xi, yi), for a
randomly selected sample (x, y) from D and any w, the
sampling noise is bounded by τ2, i.e.,

E(x,y)∼D[∥∇F (w)−∇f(w, x, y)∥2] ≤ τ2.

3.1. Normalized DP-SGD

We first consider the per-sample-gradient normalized DP-
SGD (Autoclipping [25]), which can be viewed as a special
case of clipping described as follows. In the k-th iteration,
we i.i.d. sample a minibatch Sk of Bk many samples of rate
q, and calculate the gradient in the following way,

Gk ←
∑

(xi,yi)∈Sk

∇f(wk−1, xi, yi)

∥∇f(wk−1, xi, yi)∥
, (8)

where wk−1 is the intermediate update from the prior iteration
and the norm of each subsampled per-sample gradient is
normalized to 1. We then do gradient descent as

wk = wk−1 − η(Gk +∆k).

Here, ∆k is the zero-mean noise added in the k-th iteration.
For simplicity, we uniformly set E[∥∆k

nq ∥
2] = σ2d for any

k. The following theorem captures normalized DP-SGD’s
utility loss for generic smooth non-convex optimization.

Theorem 3.1. Under Assumption 3.1, if function F (·) is
β-smooth, then for η = O

(
1

nq
√
T (1+σ

√
d)

)
, normalized DP-

SGD ensures that for k = 1, 2, ..., T ,

E[min
k
∥∇F (wk−1)∥] ≤

√
32βF (w0)(2 + σ2d)

T
+15τ. (9)

Proof. See Appendix A.

Our analysis is inspired by the study on normalized
momentum [49]. Theorem 3.1 has the following important
implications. Provided normalized per-sample gradients, DP-
SGD enjoys an O( 1+σ

√
d√

T
+ τ) convergence rate. The bias is

controlled by the sampling noise τ and cannot be cancelled
out via a larger iteration number T . This matches our previous
observation in Fig. 1. Indeed, such bias characterization is
tight, where in general there is no guarantee that normalized
per-sample-gradient DP-SGD can exactly converge to the
optimum. We may consider the following simple example to
optimize the square loss function F (w) = (w−1)2+(w+3)2

of two samples s1 = 1 and s2 = −3, where the global
minimum is at w = −1. Suppose we start with w = 0,
where the per-sample gradients are −2 and 6, respectively.
After normalization, even without any noise perturbation,
Gk calculated via (8) is 0, i.e., no update will be performed
towards the optimum.

3.2. Clipped DP-SGD

We then proceed to consider the more generic clipped DP-
SGD, in which, different from normalizing the per-sample
gradients, per-sample gradients are clipped up to some
threshold c. Similarly, in the k-th iteration, via i.i.d. sampling
of rate q, we get a minibatch Sk of Bk samples and calculate
the gradient as

Gk ←
∑

(xi,yi)∈Sk

CP
(
∇f(wk−1, xi, yi), c

)
=

∑
(xi,yi)∈Sk

∇f(wk−1, xi, yi) ·min{1, c

∥f(wk−1, xi, yi)∥
}.

(10)
Then, with the same notations, we update wk =
wk−1 − η(Gk + ∆k). In the following, we use Pk =
Pr(x,y)(∥∇f(wk−1, x, y)∥ < c) to denote the probability
that for a randomly selected sample (x, y) from D, the norm
of its gradient at wk−1 is smaller than the threshold c at the
k-th iteration. As the sensitivity is scaled by c, we assume
E[∥∆k

nq ∥
2] = (cσ)2d in the clipped case.

Theorem 3.2. Under Assumption 3.1, if function F (·) is
β-smooth, for η = O

(
1

nq
√
T (1+cσ

√
d)

)
, clipped DP-SGD

ensures that for k = 1, 2, ..., T ,

E
[
min
k

(
Pk∥∇F (wk−1)∥2

+
(
c
(1− Pk)

4
−
√

1− Pkτ
)
· ∥∇F (wk−1)∥

)]
<

√
2βc2(2 + σ2d)F (w0)

T
+

15cτ
∑T

k=1 E[
√

(1− Pk)]

4T
.

(11)

Proof. See Appendix B.

The utility loss of clipped DP-SGD described in (11)
has a very similar form compared to that in Theorem 3.1.
In practice for small c = O(1) selected where the chance to
get clipped (1−Pk) = Θ(1), the bias is dominated by O(τ),
which still cannot be cancelled out as T increases. On the
other hand, as c increases, it is noted that Pk → 1 and the left
hand side of (11) approaches mink E[∥∇F (wk−1)∥], while
the right hand side (utility loss) scales up with c. This matches
the previous work [9] where via grid searching the optimal
privacy-utility tradeoff results in the selection of small c. In
the non-private case when σ = 0 and c is sufficiently large,
the clipping bias approaches 0 as (1 − Pk) → 0 and (11)
matches the O(1/

√
T ) convergence rate of standard SGD.

In the following, we will provide a series of experiments
to validate the theory, where the bias characterization via τ
is tight, not only asymptotically, but also in practice.

3.3. Implications and p-Averaged Gradient Clipping

In this subsection, we set out to validate our theory and
elaborate on its implications to private learning. To improve
the sampling noise τ , arguably the most straightforward
solution is to clip the averaged gradient of a small group of
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Figure 3: Experiments on SGD with Clipped p-Averaged Gradient.

p (p > 1) samples rather than a single one. So far, we only
considered per-sample-gradient clipping. If we randomly
sample a group S of p samples out of the dataset D and take
the group’s empirical gradient mean as a stochastic gradient
estimation, the sampling noise decreases as p increases. This
idea has also been studied in [50] (Microbatch SGD) with
different motivations. To be specific, under Assumption 3.1,
we have

ES [∥∇F (w)− 1

p

∑
(xi,yi)∈S

∇f(w, xi, yi)∥2] ≤ τ2/p,

where the gradient variance is scaled by O(1/p). To this
end, if we consider a DP-SGD which clips the averaged
gradient of p samples, Theorems 3.1 and 3.2 also apply. The
only difference is that in (9) and (11), τ will become τ/

√
p,

where theoretically less bias is incurred as sampling noise
decreases.

However, we must stress that from a privacy perspective,
such trivial aggregation before clipping does not produce a
meaningful tradeoff at least in an asymptotic view. Though
the clipping bias bounded by τ is improved by a factor of
1/
√
p, meanwhile the sensitivity bound (or sampling rate)

virtually increases by a larger factor 2p, since each aggregate
gradient to be clipped is computed by p different samples.
As a consequence, the scale of DP noise σ needs to also
increase by a factor Θ(p) to compensate for the larger privacy
leakage.

Though the trivial p-averaged gradient clipping may not
be useful in producing a sharpened utility-privacy tradeoff,
we will use this method to validate our theory and show
several important implications. In the following, we conduct
a series of similar experiments to those in Fig. 1. We still
do not take privacy into account. With the same ResNet20
network and image classification task on CIFAR10, we turn
to test the clipped SGD which clips the averaged gradient of
a group p of samples. In Fig. 3, we consider the selection of
p = 4 and p = 10, respectively, with fixed clipping threshold
c = 1. In Appendix E Fig. 7, we further include the cosine
similarity between the true gradient and p-averaged clipped
gradient. We summarize the observations with comparison
to Fig. 1 as follows.
1) Bias: A larger p brings more significant improvement

with a faster convergence rate. Indeed, when p = 4, the
performance gap compared to standard SGD (Fig. 1d)
is almost closed.

2) Sampling Noise and Polarization: When p increases,
the sampling noise decreases as expected. Besides, it is
worthwhile to note that the improvement rate of sampling
noise is even larger than 1/

√
p. This is because as shown

in Fig. 1, compared to the original non-clipping SGD,
clipping also enlarges the per-sample gradient’s norm
on average and amplifies the norm polarization. Thus,
the sampling noise upper bound τ in Assumption 3.1
also decreases in practical deep learning with a larger p.

In the following, we proceed to show more fundamental
implications of the above results, where the bias caused
by clipping is underestimated in previous DP-SGD works.
As mentioned before, under standard l2-norm clipping, DP
noise scales as Θ(

√
d) and a previous perception is that for

small/medium datasets, one cannot enjoy the power of a
deep neural network where the huge magnitude of noise
will offset the strong learning capacity of deep learning.
Though the curse of dimensionality does theoretically still
exist, we argue that the tipping point of the model size could
be underestimated. The key reason behind this is that the
clipping bias could dominate the utility loss even under the
current conservative noise bound.

In Fig. 4, we continue the experiments of p-averaged
gradient clipping but from a DP-SGD angle. We consider
increasing the network size and inject a standard Gaussian
noise from N (0, σ2 · Id) in each iteration, where dimension
d is the number of parameters of the model selected. We
train CIFAR10 over ResNet 20, 32, 44 of d = 270K, d =
463K, d = 657K, respectively, and resultant performance
is included in Fig. 4a. A small clipping threshold c = 1
and p = 10 is selected and fixed in all experiments. The
above setup implies that when model size d increases, there
is a larger perturbation in a scale of Θ(σ

√
d) with high

probability across the iterations, but the norm (power) of
gradient maintains as a same constant captured by c = 1.
Somewhat surprisingly, the performance keeps improving
with larger noise in deeper neural networks. However, we
have to stress that in such a noise setup, given group number
p = 10, we do not produce the same DP guarantee compared
to standard DP-SGD, as the sensitivity also increases by a
factor of 20. The point of this experiment is to show given
the same amount of noise per coordinate, with less biased
clipped gradient, we can exploit much larger networks.

In Fig. 4b, we show the performance of different cases
with varying p but assigning a scaled DP noise matching the
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selection of p to ensure an identical DP guarantee (ϵ = 4, δ =
10−5). As analyzed in the beginning of this subsection, from
a privacy perspective, simple aggregation does not produce
an improved utility tradeoff.
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(a) Accuracy, (Fake) DP-SGD with 10-Averaged Gradient
Clipping, ResNet20, 32, 44
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Figure 4: Experiments on DP-SGD with Clipped p-Averaged
Gradient

To summarize, the implication from the above set of
experiments is twofold:

1) In contrast to the previous perception of DP-SGD, the
magnitude of DP noise, scaling with model dimension,
may not be the main bottleneck in private learning once
we have access to less biased gradient. Note that in the
above experiments, the norm ratio between the gradient
and the noise is fixed to O(1/

√
d). This suggests a

promising and fundamental way to improve private
deep learning with DP-SGD once the sampling noise in
stochastic gradient to be clipped can be reduced.

2) As an expected negative result, simple aggregation to
average out sampling noise cannot produce a sharpened
utility-privacy tradeoff under current trivial sensitivity
bound scaling with p. We will propose a more careful
aggregation and clipping method, called BatchClipping,
in Section 5.2 to address this challenge.

With the above understanding, in the following we proceed
to present a series of sampling noise reduction methods
subject to per-sample-gradient clipping. We want to stress
that all proposed improvements do not require new privacy
analyses but only require the classic iterative sub-sampling
aggregation of standard DP-SGD [45].

4. Optimization Perspective: Inner-Outer Mo-
mentum

Though per-sample-gradient clipping is a purely artificial
operation for privacy preservation, and, to our knowledge,
we have pointed out the relation between its caused bias
and sampling noise of stochastic gradient for the first time,
variance reduction techniques are widely studied in many
other applications with different motivations. In particular
for gradients, one of the most popular methods is momentum.
Roughly speaking, momentum captures a moving average of
past evaluated gradients. We refer interested readers to [49]
for more details. The key challenge here is how to adapt
momentum into DP-SGD without additional privacy issues
and reduce per-sample-gradients’ sampling noise.

In Algorithm 1, we present a strawman solution to apply
momentum in per-sample-gradient clipping or normalization.
For simplicity, we only adopt the normalization method but
all the following analysis and algorithms can be generalized
to the clipping operation without fundamental difference.
Compared to standard DP-SGD, Algorithm 1 is in a DP-GD
form, where we keep track of all individual momentum,
expressed as an exponential average of gradients of a single
sample over past iterates. Instead of clipping per-sample-
gradients at the current state, we propose to clip the individual
momentum, where our hope is that the sampling noise across
different iterations can be averaged out.

Before we state the results, we introduce an additional
term ξ

(i)
k = ∇f(wk−1, xi, yi)−∇F (wk−1), which measures

the estimation error from the i-th sample’s gradient at the
k-th iteration.

Definition 4.1 (Exponential Average of sampling noise). For
the i-th sample (xi, yi) in D, let EA(i)

k be the exponential
average of sampling noise in its stochastic gradients across
the first k iterations, defined as

EA
(i)
k = E

[
∥

k∑
l=1

(1− γ)k−lξ
(i)
l ∥

]
,

where ξ
(i)
l =

(
∇F (wl−1) − ∇f(wl−1, xi, yi)

)
represents

the sampling noise in the stochastic gradient from the i-th
sample in the l-th iteration.

Given Assumption 3.1, we have a simple upper bound
on

∑n
i=1 EA

(i)
k ≤ nτ

γ , since for any w,
∑n

i=1 ∥∇F (w) −
∇f(w, xi, yi)∥ ≤ nτ. On the other hand, suppose the sam-
pling noise in evaluating the stochastic gradients of different
wl and wl′ , l ̸= l′, are independent, i.e., E

[
(ξ

(i)
l )T ξ

(i)
l′

]
= 0,

then the upper bound of
∑n

i=1 EA
(i)
k can be sharpened to

nτ√
1−(1−γ)2

< nτ√
γ for γ ∈ (0, 1), since

EA
(i)
k ≤

√√√√E
[ k∑
l=1

(1− γ)2(k−l)∥ξ(i)l ∥2
]
.

Theorem 4.1. Under Assumption 3.1, if the loss function
f(w, x, y) is β-smooth with respect to w for any (x, y), and

9



let η = O(T−3/4/n) and γ = O(T−1/2), then Algorithm 1
ensures that for k = 1, 2, ..., T ,

E[min
k
∥∇F (wk−1)∥]

= O
(F (w0) + σ

T 1/4
+

τ√
T

+

∑n
i=1

∑T
k=1 EA

(i)
k

nT 3/2

)
.

(12)

Proof. See Appendix C.

Algorithm 1 DP-GD with Momentum

1: Input: Private dataset D = {(x[1;n], y[1:n])}, loss function
F (w) = 1

n

∑n
i=1 f(w, xi, yi), step size η, momentum param-

eter γ, iteration number T , and noise sequence {∆[1:T ]} with
initialization w0.

2: Initialize m
(i)
0 = ∇f(w0, xi, yi), for i = 1, 2, ..., n.

3: for k = 1, 2, ..., T do

4: Compute Gk =
∑n

i=1

m
(i)
k−1

∥m(i)
k−1

∥
.

5: Update wk ← wk−1 − η(Gk +∆k).
6: for i = 1, 2, ..., n do
7: m

(i)
k ← γ∇f(wk, xi, yi) + (1− γ)m

(i)
k−1.

8: end for
9: end for

10: Output: wT .

From Theorem 4.1, in the ideal case when the sam-
pling noise ξ

(i)
[1:T ] are independent,

∑n
i=1

∑T
k=1 EA

(i)
k =

O(nT 5/4). Thus, the bias produced by clipping is reduced
to O(τ/T 1/4), which could be cancelled out as T increases.
However, in the worst case when ξ

(i)
[1:T ] are highly correlated

and identical in different iterations, we then only have
the trivial upper bound

∑n
i=1

∑T
k=1 EA

(i)
k = O(nT 3/2).

In this case, momentum clipping cannot provide us better
convergence rate since the bias is still O(τ).

In Fig. 5a, we again take CIFAR10 as an example and
measure the correlation amongst the sampling noise ξ

(i)
l for

adjacent iterations. To be specific, we put a sliding window
of length K0 on the sequence ξ

(i)
[1:T ] and report the average of

∥ 1
K0
·
∑k+K0−1

l=k ξ
(i)
l ∥ over i = 1, 2, ..., n. From Fig. 5a, we

see that as K0 increases, the average of per-sample sampling
noise gets smaller. Though ξ

(i)
[1:T ] are not fully independent,

parts of the sampling noises can be cancelled out in the
individual momentum computation.

The above observation provides preliminary verification
to apply per-sample gradient momentum to reduce clip-
ping/normalization bias. However, Algorithm 1 is computa-
tionally intensive since it is essentially a full-batch gradient
descent and we need O(n) memory to store all per-sample
momentum. To this end, we present an efficient version of
DP-SGD with inner and outer momentum.

In Algorithm 2, to improve both space and computation
complexity, we split the momentum computation into two
parts. First, during optimization we only need to store the
K0 latest iterates. In each iteration, we apply i.i.d. sampling
to generate a batch of samples and evaluate their gradients
over the past K0 iterations, respectively. Per-sample inner
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Figure 5: Sampling Noise and Inner-Outer Momentum

Algorithm 2 DP-SGD with Inner and Outer Momentum

1: Input: Private dataset D = {(x[1;n], y[1:n])}, loss function
F (w) = 1

n

∑n
i=1 f(w, xi, yi), sampling rate q, step size η,

inner momentum parameter γ0, outer momentum parameter γ1,
momentum length K0, iteration number T , and noise sequence
{∆[1:T ]} with initialization w0.

2: Initialize outer momentum M0 = 0.
3: for k = 1, 2, ..., T do
4: Implement i.i.d. sampling to generate a sample batch Sk of

size Bk.
5: For each sample (xi, yi) selected in Sk, compute inner

per-sample momentum

m
(i)
k−1 =

k−1∑
l=k−1−K0

γk−1−l
0 ∇f(wl, xi, yi). (13)

6: Compute Gk =
∑

(xi,yi)∈Sk

m
(i)
k−1

∥m(i)
k−1

∥
.

7: Compute outer momentum

Mk = (1− γ1)Mk−1 +Gk +∆k. (14)

8: Update wk ← wk−1 − ηMk.
9: end for

10: Output: wT .

momentum m
(i)
k , defined in (13), is an exponential average

of the subsampled i-th sample’s gradients over past K0

iterations of rate γ0. Afterwards, we normalize and aggregate
m

(i)
k as Gk. Then, we privately release the outer momentum

Mk, defined in (14), as an exponential average of Mk−1 and
Gk. Since Mk−1 is previously privately published from the
last iteration and post-processing does not incur additional
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privacy loss, we only need noise ∆k to ensure sufficient
privacy guarantee upon releasing Gk whose sensitivity is 1.
One can simply determine the noise parameter as standard
DP-SGD using Rényi divergence [45].

In Fig. 5b, we include the performance of Algorithm
2 with comparisons to the standard clipped-SGD without
momentum. In particular for Algorithm 2, we select K0 = 2,
γ0 = 0.3 and γ1 = 0.6. In the same setup, inner-outer
momentum strengthens the performance.

Before concluding this section, we discuss a bit more
about some other possible directions for variance reduction
at the optimization level. Besides momentum, another idea
is to apply some filter to rule out some undesired samples
or adaptively reweight the loss function according to certain
metric. It is noted that in the standard ERM we adopt, the
weight is uniformly set to be 1/n in (1). Importance sampling
[51], [52], [53] is a well-known approach to adaptively adjust
the weight selection depending on the per-sample-gradient
norm. However, we need to stress that similar to classic
momentum, importance sampling helps the variance reduc-
tion of the aggregate non-clipped gradient rather than the
per-sample gradient to be clipped. To efficiently incorporate
those techniques into DP-SGD, in general we need further
understanding on its relationship to clipped gradient.

5. Network Architecture Perspective: Normal-
ization Layer

In Section 4, we improve the DP-SGD itself subject to per-
sample-gradient clipping, where we take the learning model
(or the loss function to optimize) as given. In this section,
we present several novel modifications at the model level
to enhance the internal normalization such that the clipping
operator on the gradient of those objective functions incurs
less bias and meanwhile strong generalization is preserved.

5.1. Normalization Enhancement

Different selection of the learning model will lead to differ-
ent ERM objectives to optimize, which then consequently
influence the noise of stochastic gradient and the clipping
bias. Over the last decade, after extensive experiments on
massive data, many popular architectures such as CNN [47],
Recurrent Neural Network (RNN) [54], and Transformer [55]
have emerged to handle different tasks. However, behind their
enormous success, deep neural networks are a complicated
system requiring very careful coordination of hidden layers,
otherwise training becomes very difficult [56]. To serve this
goal, many network normalization architectures such as Batch
Normalization (BN) [48], Group Normalization (GN) [57],
and Layer Normalization (LN) [58], are proposed to stabilize
the training process. In particular for our clipping bias control,
we observe that network normalization also plays a key role,
whereas it was largely overlooked in previous works. In
the following, we will study their adaptation to per-sample
gradient computation as detailed below.

In Section 3.3, we show that gradient averaging before
clipping can significantly improve the bias, though this may

not be an efficient privacy-utility tradeoff. If we do not take
privacy issues into account, given access to a batch of samples
S, indeed there exist more efficient approaches to reduce the
sampling noise from the learning model aspect. Recall that
so far we adopt the ERM objective which is a sum of loss
measured on each sample, i.e.,

∑n
i=1 f(w, xi, yi). We may

consider more generic loss functions measured by a group of
samples, say f(w, S). The loss function f(w, S) internally
can further implement normalization over samples in S,
which may produce more efficient noise variance control
compared to simply averaging at the end. In computer vision
tasks, one popular architecture which supports this goal is
BN.

A comprehensive understanding of BN and its effects
in deep learning is still under discussion [26]. Here, we
mainly focus on its application for clipping bias reduction.
To be self-contained, we formally describe the BN function
as Algorithm 4 in Appendix D. At a high level, a network
NW with BN is trained as follows. Given a sample set S =
{(x1, y1), ..., (xB , yB)} of B samples where the B features
x = {x1, x2, ..., xB} are the input of NW(w, ·), the output
NW(w,x) is a B-dimensional vector as the prediction of the
corresponding B labels y = (y1, y2, ..., yB). The objective
function to optimize is defined as l(NW(w,x),y) for some
loss function l(·, ·). Recall the structure of the neural network
described in Section 2.1, when the batch of features x pass
through a layer, we obtain B outputs, which then become
the input to the next layer. The job of BN is to normalize
those outputs from previous layer and then linearly transform
them uniformly before forwarding them to the next layer. In
Fig. 8 (Appendix E), we continue the experiments on SGD
with clipped p-averaged gradient in Section 3.3. But instead
of simple averaging, we use the p-group samples to compute
the gradient of ResNet20 with BN. Compared to Fig. 3, the
sampling noise with p-group BN is only around 50% of that
from p-averaging, and the convergence rate is also boosted,
where the accuracy on average is improved by around 0.05
in absolute value in the same setup.

However, it is noted that for a neural network with
BN, we can no longer derive the per-sample gradient from
the loss function l(NW(w,x),y) anymore. BN introduces
inter-dependence amongst samples x in the computation
of NW(w,x). To artificially enable per-sample gradient
computation, most existing DP-SGD works adopt GN instead
of BN. Different from normalizing along the dimension of
samples, in CNNs, GN divides convolution channels into
multiple groups and implements normalization within each
group [57]. We have to stress that in many popular CNNs,
such as ResNet, BN is incompatible with GN. Besides, in
the non-private regime without restriction on either per-
sample gradient computation or batchsize, BN is the more
common selection producing better performance in general.
Therefore, most existing CNN architectures are optimized
for the setup with a BN rather than a GN layer, and we find
that mere replacement of BN with GN in those networks
leads to sub-optimal performance with a breakdown of many
original design intuitions. In the following, we summarize
the new architectures optimized for GN in CNN, and new
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normalization techniques for RNN for NLP applications.
Illustration and implementation can be found in our code.

1) In ResNet network [47], instead of maintaining the
original layer structure and the non-linear activation
function, after each convolutional layer, we propose
to place the GN layer after non-linear activation. We
also modify the non-linear activation function from
Rectified Linear Unit (ReLU) to Exponential Linear
Unit (ELU). With a similar idea, we also adopt Weight
Standardization [59] to further force normalization on
learnable parameters of CNN layers before convolution
action.

2) With the same principle to normalize per-sample’s activa-
tion in the forward pass, for RNN (used for NLP tasks)
where GN is not applicable, we enforce normalization
on the coordinates of each step’s hidden state vector. We
also find that such normalization action leads to better
performance when it is applied to the input of word
embedding at each time step.
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Figure 6: Enhanced Network Normalization

In Fig. 6, we include the sampling noise of per-sample
gradient and performance when running clipped-SGD (c = 1)
in modified ResNet20 and the RNN structure proposed in
[60] on CIFAR10 and the Internet Movie Database (IMDb)
dataset (details can be found in Section 7), respectively, with
comparisons to those in the original structures. From Fig. 6(a),
the sampling noise in new architectures are close to one half
of that in the original ones, and meanwhile the convergence
rate, shown in Fig. 6(b) is significantly accelerated in the
same setup.

5.2. BatchClipping with Public Data

As mentioned earlier, though BN is not applicable to per-
sample gradient computation, as a milestone technique in non-
private deep learning, it is in general a much more powerful
normalization tool compared to GN. To enable gradient
computation with BN while ensuring efficient sensitivity
control, one simple idea is to apply public data. Similar to
the p-averaged gradient clipping mentioned in Section 3.3,
we can mix a single private sample with other (p−1) public
data samples, and afterwards compute and clip the gradient
from the group. It is not hard to see that such aggregation
does not change the sensitivity bound compared to that in
the standard per-sample gradient clipping.

However, the key challenge in the above approach is how
to mitigate over-fitting if we are only given a very limited
number, say a hundred, of public data samples Dpub. As the
small amount of public data Dpub will be heavily involved
in each gradient computation across iterations, if we follow a
standard training mechanism to take the whole Dpub as a part
of training data, the trained-out model will have tremendous
over-fitting on Dpub. In the following we present an elegant
method termed BatchClipping in Algorithm 3 to address this
problem. We will use xpub as the feature set of Dpub.

Algorithm 3 DP-SGD with BatchClipping

1: Input: A neural network with BN layer NW(w, ·), loss
function l(·, ·), a private dataset D = {(x[1:n], y[1:n])} and a
public feature set xpub, step size η, total number of iterations
T , sampling rate q, initialization weight w0 and noise sequence
∆[1:T ].

2: for k = 1, 2, ..., T do
3: Implement i.i.d. sampling to generate a sample batch Sk of

size Bk.
4: For each sample (xi, yi) selected in Sk, define a loss

function

f(w, xi,xpub, yi) = l(NW(w, xi,xpub)[1], yi), (15)

where NW(w, xi,xpub)[1] is the first coordinate of the
prediction output vector of NW(w, xi,xpub). Calculate
the gradient g(i)k−1 = ∇f(wk−1, xi,xpub, yi).

5: Calculate Gk =
∑

(xi,yi)∈Sk

g
(i)
k−1

∥g(i)
k−1

∥
.

6: Update wk = wk−1 − η(Gk +∆k).
7: end for
8: Output: wT

In each iteration of Algorithm 3, the per-sample gradient
to be clipped/normalized is computed with the assistance of
public feature xpub. However, the loss function selected is
different from the classic l(NW(w,x),y) described before.
In (15), we do not use any labels of the public data Dpub,
while instead we only measure the loss of the prediction
on the private sample’s label yi. In other words, we only
utilize the features of public data to compute the neural
network function NW(w, ·) with a BN layer rather than
really training on Dpub. This is key to BatchClipping avoiding
over-fitting. On the other hand, when we apply the trained-
out model NW(wT , ·) for prediction on some test data xtest,

12



the inference computation also requires the public feature
xpub and we similarly take NW(wT , xtest,xpub)[1] as our
prediction result.

In Fig. 9 (Appendix E), we conduct similar experiments
on training ResNet20 on CIFAR10 but assume 100 public
features xpub for BatchClipping. Compared to Fig. 6, the
sampling noise is further reduced with accelerated con-
vergence rate. Interestingly, with a comparison to Fig. 8
which implements standard training over BN with a group
of samples, the BatchClipping (without complete training)
still achieves competitive performance. However, to have a
fair comparison with existing DP-SGD works from scratch,
we do not include BatchClipping in our final experiments
reported in Section 7, and we leave the efficient application
of BN in DP-SGD without assistance of any public data as
an open problem.

6. Input Preprocessing: Data Normalization
and Augmentation

So far, we have studied the bias reduction from the perspec-
tives of optimization and learning model. Another key factor
that influences ERM is the training data itself. In this section,
we study two recently-proposed data preprocessing methods
mainly for computer vision tasks.

In [9], the authors propose to split some privacy budget
to first privately train a scattering network [61], which is then
used to normalize the data. It is shown that the performance
of linear or small CNN models trained over the normalized
data afterwards with DP-SGD can be significantly improved.

A different method based on data augmentation is pre-
sented in [28], called self-augmentation. Data augmentation,
which plays an important role in computer vision, represents
a large class of methods to improve robustness and reduce
memorization (instead of generalization) by generating virtual
samples. Those virtual samples are produced by applying
random cropping [62], erasing [63] or mixing [64] on the raw
data. In DP-SGD, instead of clipping a single gradient, [28]
considers applying different data augmentations on each raw
datapoint and clipping the average of the gradients evaluated
by those self-augmented virtual samples. From a privacy
perspective, self-augmentation does not cause additional
privacy issues since the averaged gradient to be clipped
is still only determined by a single private datapoint.

In Fig. 10 and 11 (Appendix E), we still take CIFAR10
as an example and include the sampling noise of stochastic
gradient to be clipped after scattering network normaliza-
tion and self-augmentation, respectively. We find that both
scattering normalization (feature extraction) and careful self
augmentation improve the sampling noise accompanied with
boosted performances, and our theory can be used to explain
those empirical successes.

Before the end of this section, we have several comments
on self-augmentation. Though the average of gradients
evaluated on virtual samples will reduce the sampling noise,
we should also note that the modified loss function defined
by the augmented samples becomes harder to train. It is

observed from Fig. 11 that the convergence rate with self
augmentation in the first several epochs is slower than that
without any augmentation. Moreover, the performance with
p = 32 times augmentation is no better than that of p = 16
and p = 8. In general, a prerequisite to enjoy the gain of self
augmentation is a network with powerful enough learning
capacity to handle the augmented data. As reported in Table
1 later, we will see that the performance improvement of self-
augmentation in ResNet20 is less than that in Wide-ResNet-
40 [28]. As a summary, we believe that the most ideal benefit
from self augmentation requires careful model and parameter
selection depending on the training data. Furthermore, its
generalizations to NLP data is an interesting topic for further
work.

7. Further Experiments

In this section, we combine all proposed improvements
together and provide further experiments on three bench-
mark datasets, CIFAR10, [65], SVHN [66], and IMDb [67].
CIFAR10 consists of 60,000 color images, where 50,000
are for training and 10,000 for test. The Street View House
Numbers (SVHN) dataset has 73,257 images of real world
house digits for training and 26,032 for test. We do not use
the extra 600K data provided in SVHN, which would make
the problem too easy. IMDb set is a canonical NLP sample
set, which contains 50,000 movie reviews with obvious bias
(positive or negative). Among them, 25,000 are in the training
set, while the remaining 25,000 are in the test set. In all the
following experiments, we assume the training set is private,
which we apply DP-SGD on, and we report the accuracy of
the trained-out model on the corresponding test data. For all
the experiments in this section, we select q = 2000

n , i.e., the
expected batchsize is 2000; clipping threshold is set to be
c = 5; learning rate η = 0.1; outer-momentum γ1 = 0.9 and
inner-momentum γ0 = 0.08 with length K0 = 2; iteration
number T = ⌈ 60q ⌉, i.e., epoch is set to be 60. All experiments
are repeated for 5 times with different random seeds. We
include our codes in the GitHub Link 4 with implementation
details.

For different privacy budgets, we include the corre-
sponding performance in Table 1. As a comparison, we
also test DP-SGD upon the original network architectures
without normalization enhancement proposed. In addition,
we also replace the inner-outer momentum by a standard
outer momentum. The results are included in Table 2. We
repeat 5 trials for each privacy budget selection and report
the median accuracy number. It is noted that for CIFAR10,
with budget (ϵ = 8, δ = 10−5), we achieve 76.0% on ResNet
20 which outperforms 72.6% in [38] with additional 2,000
public data for low-rank gradient embedding. For IMDb data,
with budget (ϵ = 4, δ = 10−5), we achieve 77.5% which
outperforms the best-known 70.2% in recent work [53] via
additional importance sampling.

4. https://github.com/zihangxiang/A-Theory-to-Instruct-Differentially-
Private-Learning-via-Clipping-Bias-Reduction.git
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ϵ (δ = 10−5) 4 5 6 7 8

CIFAR10 71.5 ± .3 72.1 ± .3 73.0 ± .1 73.8 ± .2 74.5 ± .1
CIFAR10, 8 self-aug. 72.4 ± .3 73.7 ± .3 74.3 ± .7 75.8 ± .2 74.9 ± .3
CIFAR10, 16 self-aug. 72.2 ± .5 73.7 ± .5 74.8 ± .4 75.1 ± .3 76.0 ± .3

SVHN 86.3 ± .3 87.4 ± .3 87.8 ± .2 88.1 ± .2 88.6 ± .3
SVHN, 8 self-aug. 88.2 ± .2 89.1 ± .1 89.5 ± .2 89.3 ± .2 90.1 ± .3
SVHN, 16 self-aug. 88.5 ± .3 89.0 ± .3 89.4 ± .1 89.8 ± .2 90.1 ± .2

IMDb 77.5 ± .3 78.1 ± .2 78.4 ± .1 78.8 ± .2 79.2 ± .3

TABLE 1: Test Accuracy (%) with Normalization Enhancement and Inner-Outer Momentum

ϵ (δ = 10−5) 4 5 6 7 8

CIFAR10 51.3 ± .7 54.1 ± .7 59.1 ± .4 61.1 ± .3 61.2 ± .2
SVHN 70.5 ± .3 78.1 ± .3 80.5 ± .2 85.1 ± .2 85.3 ± .3
IMDb 69.6 ± .4 70.3 ± .2 70.4 ± .1 72.6 ± .3 73.5 ± .9

TABLE 2: Test Accuracy (%) with Original Network Architecture and only Outer Momentum

8. Conclusion and Prospects

In this paper, we develop a theoretical foundation of practical
implementation of DP-SGD and initiate a study on clipping
bias reduction subject to the artificial sensitivity control.
Our theory points out a promising direction for systematic
improvement via sampling noise reduction. A meaningful
lesson learned from our results is that, rather than using brute-
force exploration, we need to adapt learning algorithms to
existing DP privatization. This requires a more fundamental
understanding with respect to the effects of artificial privacy-
preservation operations on state-of-the-art machine learning
methods.

We show that the clipping bias is underestimated in
previous works, which also heavily influences the robustness
of practical deep learning with DP-SGD. As a first step, we
present several preliminary methods from different angles to
design efficient learning schemes friendly to DP-SGD. Incor-
porating a more advanced variance reduction method with a
broader study on other popular neural network architectures
will be a very interesting generalization to further close
the gap between private and non-private learning. Beyond
gradient clipping, our work may also be of independent
interest to the study of truncation/clipping bias in other
applications.
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Appendix A.
Proof of Theorem 3.1

Based on the updating rule of DP-SGD with normalized
per-sample gradient wk = wk−1 − η(Gk +∆k), we use the
fact that F (w) is smooth and obtain

F (wk)− F (wk−1)

≤ ⟨∇F (wk−1), wk − wk−1⟩+
β∥wk − wk−1∥2

2

= −η⟨∇F (wk−1), Gk +∆k⟩+
βη2∥Gk +∆k∥2

2
.

(16)

Here, Gk =
∑

(xi,yi)∈Sk

∇f(wk−1,xi,yi)
∥∇f(wk−1,xi,yi)∥ is the sum of

normalized per-sample gradients as defined in (8), where
Sk is the minibatch selected in the k-th iteration by q-i.i.d.
sampling.

As for Gk, we use Ḡk = E[Gk/(nq)], i.e., the expecta-
tion of E[Gk] scaled by 1/(nq). We use gk to denote the
stochastic gradient at wk−1 for (x, y) randomly selected from
the training set D. It is noted that on average qn samples are
selected in Sk and thus conditional on wk−1, the expectation
E[Gk/(nq)] equals

Ḡk = E[Gk/(nq)] = E(x,y)

[ ∇f(wk−1, x, y)

∥∇f(wk−1, x, y)∥
]
= E[

gk
∥gk∥

].

Now, we take the expectation on both sides of (16) condi-
tional on wk−1, and then have

E
[
F (wk)− F (wk−1)

]
≤ −ηE[⟨∇F (wk−1), Gk +∆k⟩] + E

[βη2∥Gk +∆k∥2

2

]
= −η⟨∇F (wk−1),E[Gk]⟩] + E

[βη2∥Gk +∆k∥2

2

]
≤ −η′⟨∇F (wk−1), Ḡk⟩+

βη′2(2 + σ2d)

2
.

(17)
In the third line of (17), it is noted that the DP noise is of
zero mean, E[∆k] = 0, and we use η′ = η · (nq) to represent
the scaled learning rate. In the last inequality of (17), we
use the following fact to upper bound E

[βη2∥Gk+∆k∥2

2

]
. Let

vi =
∇f(wk−1,xi,yi)

∥∇f(wk−1,xi,yi)∥ for i = 1, 2, ..., n, and ∥vi∥ = 1. We
use n independent Bernoulli variables 1[1:n] of parameter q,
i.e., Pr(1i = 1) = q, as indicators to show whether the i-th
sample is selected. Now, we have that

E[∥Gk∥2] = E[∥
∑
i

1ivi∥2]

≤
∑
i ̸=j

E[1i · 1j ]∥vi∥∥vj∥+
n∑

i=1

E[1i · 1i]∥vi∥2

= n(n− 1)q2 + qn.
(18)

Therefore,

E[βη2∥Gk∥2] ≤
βη′2

(
n(n− 1)q2 + nq

)
(nq)2

< 2βη′2,

since nq ≥ 1 as assumed. Combining that E[∥Gk+∆k∥2] =
E[∥Gk∥2 + ∥∆k∥2], we have the bound claimed.

In the following, we analyze the term ⟨∇F (wk−1), Ḡk⟩.
It is noted that, if we let ξk = gk − ∇F (wk−1) be the
sampling noise, then

Ḡk = E(x,y)[
gk
∥gk∥

] = E(x,y)[
∇F (wk−1) + ξk
∥∇F (wk−1) + ξk∥

].

Now, ⟨∇F (wk−1), Ḡk⟩ can be rewritten as

⟨∇F (wk−1), Ḡk⟩ = E[⟨∇F (wk−1),
∇F (wk−1) + ξk
∥∇F (wk−1) + ξk∥

⟩]

= E[
∥∇F (wk−1)∥2 + ⟨∇F (wk−1), ξk⟩

∥∇F (wk−1) + ξk∥
].

(19)
We consider the following two cases. Let p > 1 be some

parameter to be determined. For any given values of ∥ξk∥,
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(1).When ∥∇F (wk−1)∥ > p∥ξk∥, or equivalently,
∥∇F (wk−1)∥/p > ∥ξk∥

⟨∇F (wk−1),
∇F (wk−1) + ξk
∥∇F (wk−1) + ξk∥

⟩

=
∥∇F (wk−1)∥2 + ⟨∇F (wk−1), ξk⟩

∥∇F (wk−1) + ξk∥

>
∥∇F (wk−1)∥2

(1 + 1/p)∥∇F (wk−1)∥
− (1/p)∥∇F (wk−1)∥2

(1− 1/p)∥∇F (wk−1)∥

= (
p

p+ 1
− 1

p− 1
)∥∇F (wk−1)∥

=
p2 − 2p− 1

p2 − 1
∥∇F (wk−1)∥.

(2). When ∥∇F (wk−1)∥ ≤ p∥ξk∥, since
∇F (wk−1)+ξk

∥∇F (wk−1)+ξk∥ = 1,

⟨∇F (wk−1),
∇F (wk−1) + ξk
∥∇F (wk−1) + ξk∥

⟩ ≥ −∥∇F (wk−1)∥

= (
p2 − 2p− 1

p2 − 1
− p2 − 2p− 1

p2 − 1
− 1)∥∇F (wk−1)∥

≥ p2 − 2p− 1

p2 − 1
∥∇F (wk−1)∥ − (

p2 − 2p− 1

p2 − 1
+ 1) · p∥ξk∥

≥ (p2 − 2p− 1)∥∇F (wk−1)∥ − 2p(p2 − p− 1)∥ξk∥
p2 − 1

.

Putting the two cases together and back to (19), we have
that

⟨∇F (wk−1), Ḡk⟩ ≥
p2 − 2p− 1

p2 − 1
∥∇F (wk−1)∥ −

2p(p2 − p− 1)

p2 − 1
E[∥ξk∥].

Let p = 3, we have that

⟨∇F (wk−1), Ḡk⟩ ≥
1

4
∥∇F (wk−1)∥ −

15

4
E[∥ξk∥]. (20)

Now, put (20) back to (17), and we have

∥∇F (wk−1)∥ ≤
4E

[
F (wk−1)− F (wk)

]
η′

+ 15E[∥ξk∥]

+ 2βη′(2 + σ2d).
(21)

Now, summing up both sides of (21) for k = 1, 2, ..., T , and
we have

E[min
k
∥∇F (wk−1)∥] ≤ E[

∑T
k=1 ∥∇F (wk−1)∥

T
]

≤ 4F (w0)

η′T
+ 2βη′(2 + σ2d) + 15

∑T
k=1 E[∥ξk∥]

T

≤ 2

√
8F (w0)β(2 + σ2d)

T
+ 15τ,

where we select η′ =
√

4F (w0)
2βT (2+σ2d) and use the fact that the

sampling noise E[∥ξk∥] ≤ τ as assumed.

Appendix B.
Proof of Theorem 3.2

We adopt the same notations as those used in the proof of
Theorem 3.1. Now,

Gk =
∑

(xi,yi)∈Sk

CP
(
∇f(wk−1, xi, yi), c

)
becomes the sum of clipped per-sample gradients in the
minibatch and Ḡk = E(x,y)[CP(gk, c)] is the expectation of
Gk scaled by 1/(nq). Similarly, by the property of smooth
functions and conditional on wk−1, we obtain that

E
[
F (wk)− F (wk−1)

]
≤ E

[
⟨∇F (wk−1), wk − wk−1⟩+

β∥wk − wk−1∥2

2

]
= E

[
− η⟨∇F (wk−1), Gk +∆k⟩+

βη2∥Gk +∆k∥2

2

]
≤ −η′⟨∇F (wk−1), Ḡk⟩+

βc2η′2(2 + σ2d)

2
,

(22)
We still use gk = ∇f(wk−1, x, y) to represent the stochastic
gradient at wk−1 for (x, y) randomly selected. The under-
lined term in (22) is similarly derived from (18). The only
difference is that now the clipped norm ∥vi∥ is no larger than
c due to clipping rather than fixed to be 1 in the normalization
scenario, where vi = CP(∇f(wk−1, xi, yi), c).

In the following, we focus on the term ⟨∇F (wk−1), Ḡk⟩.
We use ξk = gk − ∇F (wk−1) to represent the sampling
noise. It is noted that

Ḡk = E(x,y)[CP(gk, c)] = E(x,y)[gk ·min{1, c

∥gk∥
}]

= Eξk [(∇F (wk−1) + ξk) ·min{1, c

∥(∇F (wk−1) + ξk)∥
}].

Thus, we can rewrite ⟨∇F (wk−1), Ḡk⟩ as

⟨∇F (wk−1), Ḡk⟩
= E

[
1∥∇F (wk−1)+ξk∥<c · ⟨∇F (wk−1),∇F (wk−1) + ξk⟩

]︸ ︷︷ ︸
(A)

+ c · E
[
1∥∇F (wk−1)+ξk∥≥c ·

⟨∇F (wk−1),∇F (wk−1) + ξk⟩
∥∇F (wk−1) + ξk∥

]
︸ ︷︷ ︸

(B)

.

Let Pk = Pr(∥∇F (wk−1) + ξk∥ < c). Then, for the term
(A), we have that

(A) = Pk∥∇F (wk−1)∥2

−E
[
1∥∇F (wk−1)+ξk∥≥c · ⟨∇F (wk−1), ξk⟩

]︸ ︷︷ ︸
(C)

.

Here, we use the fact that E[ξk] = 0 and thus

E[1∥∇F (wk−1)+ξk∥<c · ⟨∇F (wk−1), ξk⟩]
= −E[1∥∇F (wk−1)+ξk∥≥c · ⟨∇F (wk−1), ξk⟩].

Now, we focus on term (C). For simplicity, in the following
we use Sk,≥c to denote the set of selections of ξk such that
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∥∇F (wk−1)+ξk∥ ≥ c, and Pk,z,c = Pr(ξk ∈ Sk,≥c, ∥ξk∥ =
z) to denote the probability (or density function) that ξk is
within Sk,≥c and its norm equals z. Then, we can lower
bound term (C) as follows,
(C)

≥ −E
[
1ξk∈Sk,≥c

· ∥∇F (wk−1)∥ · ∥ξk∥
]

= −∥∇F (wk−1)∥ ·
∫ +∞

0

Pk,z,c · z dz

= −∥∇F (wk−1)∥ ·
∫ +∞

0

√
Pk,z,c ·

√
z2 · Pk,z,c dz

≥ −∥∇F (wk−1)∥

√(∫ +∞

0

Pk,z,cdz
)
·
( ∫ +∞

0

z2Pk,z,cdz
)

≥ −∥∇F (wk−1)∥ ·
√

(1− Pk) · τ2.
(23)

In the first and the fourth inequality of (23), we use the fact
that ⟨a, b⟩ ≥ −∥a∥ ·∥b∥ and Hölder’s inequality, respectively.
In the last inequality of (23), it is noted that∫ +∞

0

z2Pk,z,cdz ≤ E[∥ξk∥2] ≤ τ2,

as assumed in Assumption 3.1. As for the term (B), we may
follow the analysis in the proof of Theorem 3.1 and obtain,

(B) ≥ E
[
c · 1∥∇F (wk−1))+ξk∥≥c ·

(∥∇F (wk−1)∥
4

− 15∥ξk∥
4

)]
(24)

≥ E
[c(1− Pk)∥∇F (wk−1)∥

4
−

15c
√

(1− Pk)τ

4

]
.

(25)

In (25), we apply tricks similar to those developed in (23)
on the term −E[1∥∇F (wk−1)+ξk∥≥c · ∥ξk∥] again, which can
be lower bounded by −

√
(1− Pk)τ .

With this preparation, we now go back to (22) with
(A,C) and (B), where ⟨∇F (wk−1), Ḡk⟩ = (A) + (B) =
Pk∥∇F (wk−1)∥2+(C)+(B), and with the fact that Pk ≤ 1,
we have

Pk∥∇F (wk−1)∥2 +
(
c(1− Pk)/4−

√
1− Pkτ

)
∥∇F (wk−1)∥

≤ E[F (wk−1)− F (wk)]

η′
+

βc2η′(2 + σ2d)

2

+
15cτE[

√
(1− Pk)]

4
.

(26)
Summing up both sides of (26) from k = 1, 2, ..., T , with
expectation, we have

E
[
min
k

(
Pk∥∇F (wk−1)∥2

+
(
c(1− Pk)/4−

√
1− Pkτ

)
· ∥∇F (wk−1)∥

)]
≤ F (w0)

η′T
+

βc2η′(2 + σ2d)

2
+

∑T
k=1 15cτE[

√
(1− Pk)]

4T

= 2

√
βc2(2 + σ2d)F (w0)

2T
+

15cτ
∑T

k=1 E[
√

(1− Pk)]

4T
,

when we select η′ =
√

2F (w0)
Tβc2(2+σ2d) .

Appendix C.
Proof of Theorem 4.1

We use ξ̂
(i)
k = m

(i)
k −∇F (wk) to denote the estimation error

between the exponentially averaged per-gradient and the true
gradient in the k-th iteration in the following. Recall the
updating rule (line 7) described in Algorithm 1, we have the
following recursion with respect to ξ̂

(i)
k ,

ξ̂
(i)
k = (1− γ)m

(i)
k−1 + γ∇f(wk, xi, yi)−∇F (wk)

= (1− γ)(∇F (wk−1) + ξ̂
(i)
k−1) + γ∇f(wk, xi, yi)−∇F (wk)

= (1− γ)ξ̂
(i)
k−1 + γ(∇f(wk, xi, yi)−∇F (wk))

− (1− γ)
(
∇F (wk)−∇F (wk−1)

)
.

(27)
First, due to the smooth assumption which implies that

gradient is β-Lipschitz and the normalized gradient which
ensures that E[∥wk − wk−1∥] ≤ η′(1 + σ

√
d), we have that

E[∥∇F (wk)−∇F (wk−1)]∥] is upper bounded by βη′(1 +
σ
√
d). Now, when we unravel the recursion (27) with the

union bound, we have that

E[∥ξ̂(i)k ∥] ≤ (1− γ)k∥ξ̂(i)0 ∥+ γEA
(i)
k +

2βη′(1 + σ
√
d)

γ
.

(28)
Therefore, summing up (28) for i = 1, 2, ..., n and k =
1, 2, ..., T , since∑n

i=1 ∥ξ̂
(i)
0 ∥

n
=

∑n
i=1 ∥∇f(w0, xi, yi)−∇F (w0)∥

n
≤ τ,

from Assumption 3.1, we obtain

n∑
i=1

T∑
k=1

E[∥ξ̂(i)k ∥]
nT

≤ τ

γT
+

γ
∑n

i=1

∑T
k=1 EA

(i)
k

nT

+
2βη′(1 + σ

√
d)

γ
.

(29)

Now, we may apply the results (21) in the proof of Theorem
3.1 where we still let nη′ = η and obtain

E[min
k
|∇F (wk)∥] ≤

4F (w0)

η′T
+ 2βη′(2 + σ2d)

+ 15
( τ

γT
+

γ
∑n

i=1

∑T
k=1 EA

(i)
k

nT
+

2βη′(1 + σ
√
d)

γ

)
.

(30)
Now, in (30), we select η′ = O(T−3/4) and γ = O(T−1/2),
we have that

min
k

E[∥∇F (wk)∥]

= O
(F (w0) + 1 + σ

√
d

T 1/4
+

τ

T 1/2
+

∑n
i=1

∑T
k=1 EA

(i)
k

nT 3/2

)
.

Appendix D.
Batch Norm Layer
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Algorithm 4 Batch Norm [26]
1: Input: Output vectors from previous layer u1,u2, ...,uB ,

ui ∈ Rd0 , evaluated by a minibatch B of samples. Trainable
parameters χ and θ to be learned.

2: Calculate the empirical average µ← 1
B

∑B
i=1 ui.

3: for j = 1, 2, ..., d0 do
4: Compute coordinate-wise variance

σ2
j =

1

B
·

B∑
i=1

(ui(j)− µ(j))2.

5: for i = 1, 2, ..., n do
6: Implement coordinate-wise normalization

ûi(j)←
ui(j)− µ(j)

σj
.

7: end for
8: end for
9: Output: χ ◦ ûi + θ, i = 1, 2, ..., B.

Appendix E.
Additional Experiments

In Fig. 7, we report the cosine similarity between the full
gradient and the p-averaged clipped gradient. For two vectors
u and v, its cosine similarity is defined as ⟨u,v⟩

∥u∥∥v∥ . It is
observed that when p ≥ 4, the direction of estimated p-
averaged gradient is almost identical to that of the true
gradient.

In Fig. 8, we include the results of experiments for SGD
with clipped gradient on a group of samples with BN. To
be specific, we consider the two cases where we split each
batch in each iteration into groups of p = 4 and p = 10
samples 5, respectively, and then calculate and clip the group
gradient of ResNet20 with BN on CIFAR10.

In Fig. 9, we implement BatchClipping (Algorithm 3) on
ResNet20 with BN. We randomly select 100 features from
CIFAR10’s test set as the public feature xpub. To have a
comparison with the experiments in Fig. 8, in each iteration,
for each sub-sampled sample, we randomly assign p = 3
and p = 9 public features from xpub for the BatchClipping
computation. As for the model inference, for each test data,
we also randomly select p public features and compute the
prediction. We repeat this prediction mechanism 10 times
and take the majority as the final prediction result.

In Fig. 10, we adopt the three-layer CNN used in [9],
and compare the sampling noise of per-sample gradient and
the convergence rate of DP-SGD (c = 1) on CIFAR10
preprocessed with or without Scattering Network.

In Fig. 11, we test self-augmentation, where we im-
plement p = 8, 16, 32 independent augmentations on each
subsampled sample and clip the averaged gradient. We
record the norm of averaged gradient, sampling noise,
per-sample-augmented gradient norm, and the convergence

5. If the batchsize is not divided by the p, we simply take the remainder
samples as the last group.

rate in the standard ResNet20 with normalization enhance-
ment proposed, and a comparison to the case without self-
augmentation (i.e., the augmentation number is 1).
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Figure 7: Cosine Similarity between True Gradient and p-
averaged Clipped Gradient
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(a) Group BN Gradient Statistics, c = 1, p = 4

0 10 20 30 40 50 60
Iteration

0

5

10

15

20

25

30 sampling noise
avg gradient norm
quantile 0
quantile .25
quantile .75

(b) Group BN Gradient Statistics, c = 1, p = 10
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Figure 8: Experiments on SGD with Clipped p-Group
Gradient with BatchNorm, CIFAR10, ResNet20
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(b) Convergence Rate of Clipped SGD with c = 1

Figure 9: Experiments on SGD with BatchClipping with 100
Public Feature, CIFAR10, ResNet20
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Figure 10: Effect of Scattering Feature Extraction
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Figure 11: Effect of Self-Augmentation
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