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This article discusses a new privacy definition called probably approximately correct (PAC) Privacy, 
which offers a formal probabilistic characterization of privacy risk aligned with general privacy 
concerns. PAC Privacy enables automated, universal, and provable privatization for any (possibly 
black-box) computation.

Any processing of sensitive 
data carries the risk of leak-

age. In practice, leakage manifests 
in various forms, including physi-
cal characteristics, such as timing, 
power consumption, and cache 
behaviors in cryptographic imple-
mentations,1 or releases, such as 
aggregated census data (e.g., aver-
age salary or age),2 AI models 
trained on sensitive data3 or their 
inference results.4 However, miti-
gating information leakage often 
comes at a cost—privacy protec-
tion typically necessitates trading 
off the efficiency of information 
propagation against obscuring cor-
relations with sensitive features. 
Thus, a fundamental challenge 
in privacy research is designing 
the most efficient leakage control 
mechanisms, ensuring that, given 
the observed leakage, an adversary 
cannot easily recover the underly-
ing secret while minimizing per-
formance or utility degradation. To 
achieve an optimal utility–privacy 
tradeoff, a crucial step is to rigor-
ously define privacy and quantita-
tively assess privacy risk.

Defining Privacy Through 
Belief Changes
The first formal definition of pri-
vacy was established by Shannon in 
1949,5 known as perfect secrecy. To 
illustrate, consider a leakage or pro-
cessing function ( ),F $  where the 
input X represents a secret contain-
ing sensitive features to be protected, 
and the output ( )XF  represents 
the corresponding leakage dur-
ing or after processing X. Perfect 
secrecy requires that the leakage 
( )XF  is statistically independent 

of the secret X. For example, if ( )F $  
always returns a constant, this pro-
vides no useful information to assist 
the adversary’s inference on X.

Although perfect secrecy is pro-
hibitively expensive, which effectively 

prevents any information propaga-
tion, it establishes a fundamental 
semantic notion of privacy: regardless 
of an adversary’s prior belief about 
the secret X, observing ( )XF  does 
not alter their posterior belief. For 
instance, if X is a six-digit passcode 
of a mobile phone and an adversary 
initially believes X = 123456, then 
under perfect secrecy after observing 
( )X ,F  the adversary’s belief remains 

unchanged. Mathematically, this 
implies that for any assumed prior 
distribution of X, the posterior distri-
bution of X conditional on ( )XF  is 
identical to the prior.

This principle—limiting changes  
in adversarial belief—forms the foun-
dation of many subsequent works, 
including modern cryptography6 

Digital Object Identifier 10.1109/MSEC.2025.3563116
Date of current version: 9 September 2025

PAC Privacy and Black-Box 
Privatization

Hanshen Xiao , | Purdue University / NVIDIA
Srinivas Devadas , | Massachusetts Institute of Technology Computer Science and Artificial  
Intelligence Laboratory

©SHUTTERSTOCK.COM/WHO IS DANNY

Authorized licensed use limited to: MIT. Downloaded on September 19,2025 at 04:04:21 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3380-4518
https://orcid.org/0000-0001-8253-7714
mailto:ajmeneze@uwaterloo.ca
mailto:dstebila@uwaterloo.ca
http://shutterstock.com


www.computer.org/security� 93

and differential privacy (DP).7 Nota-
bly, from Goldwasser and Micali’s 
pioneering work on probabilistic 
encryption in 1982, this concept has 
also been equivalently framed as a 
challenge for an adversary to dis-
tinguish the leakage produced by 
two arbitrary secret candidates Xr  
and X ,r l  namely input-independent 
indistinguishability (III). The exact 
definition of distinguishability 
depends on the adversary model and 
the sensitive features in X that require 
protection. For example, in DP, 
where the goal is to obscure the par-
ticipation of an individual record in 
a sensitive data set X, the III require-
ment ensures that there does not 
exist a computationally-unbounded 
adversary that can distinguish the dis-
tributions of ( )XF r  and ( )XF r l  for 
any adjacent Xr  and Xr l  differing by 
a single data point.a The distinguish-
ability challenge has been quantified 
through various divergence met-
rics, leading to different DP security 
parameters, including pure e  DP, 
approximate ( , )e d  DP and Rényi 
( , )a ea  DP; they reduce to perfect 
indistinguishability with security 
parameters being zeroes.

It is also worth emphasizing the 
necessity of III, the indistinguishabil-
ity of two inputs arbitrarily differing 
in the sensitive features, if we expect 
a worst-case bound on the impact 
of leakage for arbitrary adversarial 
belief. However, in many practical 
applications, achieving tight III anal-
ysis remains a significant challenge.

Fundamental Challenges in 
Worst-Case Analysis
We begin with some intuition 
behind the challenges in deriving III 

a Compared to DP that focuses on individual 
privacy, cryptographic applications typically aim 
to protect the entire input X but against a weaker, 
computationally-bounded adversary. In such cases, 
the III requirement is that no polynomial-time 
algorithm can distinguish the distributions of 
( )XF r  and ( )XF r l  for arbitrary Xr  and X .r l   

In this article, we focus on general statistical 
protection against computationally-unbounded 
adversaries.

analysis. Consider a scenario where 
X is a 512-bit secret key used in an 
encryption program executed on a 
complex circuit/processor. The leak-
age function F captures the timing 
required to perform the encryption 
with key X on this circuit. To pre-
serve privacy, we aim to random-
ize or obfuscate the execution time 
by introducing noise. Most existing 
noise mechanisms2 rely on an upper 
bound of the sensitivity, defined as 
the maximal difference between the 
leakage produced by any two secret 
selections Xr  and Xr l  differing in the 
sensitive features to protect

( ) ( )sup X XF F
,X X
< <-r r

r r

l
l

under some metric .·< <  However, 
without additional knowledge or 
assumptions about the circuit and 
program to execute, determining the 
worst-case sensitivity through exhaus-
tive evaluations of F over all possible 
secret key selections is computation-
ally prohibitive, requiring exponen-
tial time.b Currently, tight sensitivity 
bounds are only available for a limited 
class of simple mechanisms, such as 
averaging or linear queries.

To establish provable III guaran-
tees for more complex mechanisms, 
existing methods—particularly in 
the DP literature—primarily follow 
two approaches. The more widely 
used one is decompose-then-
compose: a mechanism is (artifi-
cially) decomposed into multiple 
simpler steps with easily bounded 
sensitivity, and each step’s output 
is perturbed to satisfy III before 
being passed to the next step. The 
III guarantees of individual steps 
are then composed. This approach 
ensures privacy even if all interme-
diate results are released. However, 
it often results in loose privacy 
bounds, requiring excessive per-
turbation to achieve a provable 
guarantee. A notable example is 

b It is known that computing the sensitivity of a 
general function F  is NP-hard.8

DP stochastic gradient descent 
(DP-SGD).3,9

An alternative approach is 
subsample-then-aggregate,10 as seen 
in methods like private aggregation 
of teacher ensembles.4 Here, the 
input data are partitioned into mul-
tiple disjoint subsets, and process-
ing is performed separately on each 
before aggregation. These artificial 
modifications approximate the origi-
nal algorithm, using aggregation as 
a building block to ensure tractable 
III guarantees. However, such modi-
fications come at a cost, imposing 
constraints at both the input and 
algorithmic levels.11

PAC Privacy—The  
Impossibility of Customized 
Adversarial Inference
Originating from the III framework, 
probably approximately correct 
(PAC)c Privacy employs a more 
intuitive probabilistic language to 
quantify the advantage an adversary 
gains from leakage when inferring 
X. Compared to III, PAC Privacy 
introduces two additional assump-
tions regarding secret entropy and 
adversarial knowledge.

a)	 Secret Entropy: Entropy mea-
sures the randomness of a 
variable. PAC Privacy focuses 
on scenarios where the secret 
X is randomly drawn from 
some distribution D.  Unlike 
an adversarial belief, which is a 
subjective assumption about 
X, the entropy of X is an objec-
tive property determined by the 
underlying distribution D.  In 
some cases, such as side-channel 
leakage from cryptographic sys-
tems, the distribution D  of a 
secret key X enjoys a closed 
form, e.g., a uniform distribu-
tion. However, in many prac-
tical scenarios, e.g., a collection 

c The definition of PAC Privacy borrows the idea 
from the PAC learning theory, which models 
privacy preservation as an impossible learning task 
for an adversary.
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of training image samples for a 
machine learning task, charac-
terizing D  is challenging. For 
these cases, we may artificially 
create a data distribution. One 
commonly-used strategy is 
subsampling: we may generate 
our secret data X by subsam-
pling the data pool, as is also 
adopted in membership infer-
ence attacks and DP auditing.12

b)	 Full-Knowledge Adversary: Rather 
than considering arbitrary  
adversarial beliefs, PAC Privacy  
assumes a computationally- 
unbounded adversary with full 
knowledge of both the secret 
distribution D  and the leakage 
function .F  The only elements 
unknown to the adversary are the 
randomness inherent in secret 
generation and the randomness 
in the processing function ,F  
which are typically controlled by 
the user or secret holder.

Under these assumptions, PAC 
Privacy introduces a criterion ,t   
allowing a general expression of 
privacy concerns based on events 
where a full-knowledge adversary, 
after observing the leakage, can 
reconstruct a satisfactory estimate 
Xu  such that ( , )X X 1t =u . The 

choice of t  reflects the level of leak-
age deemed unacceptable by the 
secret holder. We list several exam-
ples: imagine X is a secret key, and 
t  captures a full reconstruction 
where ( , )X X 1t =u  iff X X,=u  or 
X is a data set of medical records, 
and t  captures membership iden-
tification where ( , )X X 1t =u  if Xu  
correctly recovers the patient’s iden-
tity; X can also be a personal record, 
and t  captures some approxima-
tion where ( , )X X 1t =u  if Xu  esti-
mates the salary attribute within an 
error margin of 1,000.

Accordingly, PAC Privacy 
quantifies risk as the adversary’s 
best possible success probability, 
( )1 ,d- t  in producing such a sat-
isfactory estimate. The probability 

( ( , ) )Pr X X 1t =u  here accounts 
for the randomness in both the 
secret X and the leakage function 
F . Thus, a PAC Privacy guaran-

tee essentially characterizes an 
adversarial inference task that is 
provably impossible, as formally 
defined as follows.

Research Direction: (( D, ,d tt )  
PAC Privacy13): For a leakage/
processing function ,F  some 
data distribution D, and an 
inference criterion function  
t ( ,r), we say F  satisfies  
( D, ,d tt )-PAC Privacy if the fol-
lowing experiment is impossible:

A user generates data X 
from distribution D and sends 

XF^ h  to an informed adver-
sary. A full-knowledge adversary 
who knows D and F  is asked 
to return an estimation Xu  on 
X such that with probability at 
least ( )1 ,d- t  ( , )X X 1t =u .

We illustrate the comparison 
between the III framework and 
PAC Privacy in Figure 1 and have 
two important remarks.

1.	 III Can (Loosely) Imply PAC 
Privacy: As discussed earlier, III 
provides a global upper bound 
on the difference between an 
arbitrary prior and its corre-
sponding posterior belief. By 
setting the prior belief to that 
of a full-knowledge adversary, 
III guarantees can be used to 
derive an upper bound of PAC 
Privacy guarantees.14 However, 
this reduction can be loose due 
to two main reasons. First, 
worst-case leakage—defined 
independently of the secret 
distribution—can be overly 
conservative when applied to 
the actual secret distribution. 
Second, distinguishability 
hardness, typically expressed 
through binary hypothesis 
testing, may not tightly cap-
ture more general adversarial 

inference tasks (as illustrated 
by the different t  selections 
discussed earlier).

2.	 Immunity to Biased Adversar-
ies: While PAC Privacy explic-
itly targets a full-knowledge 
adversary rather than arbitrary 
adversarial beliefs, its probabi-
listic guarantees remain valid 
for adversaries with biased 
beliefs or incomplete knowl-
edge of the secret distribution 
D  or the leakage function F .  
For any inference task ,t  those 
adversaries can never achieve a 
success rate exceeding that of a 
full-knowledge adversary.

Black-Box Privacy Analysis 
and Solution
In this section, we provide an 
overview of black-box PAC Pri-
vacy analysis, which automatically 
determines a perturbation strategy 
to randomize F  into a satisfactory 
private version M  with required 
privacy guarantees. Before pro-
ceeding, it is important to clarify 
what we mean by “black-box." To 
establish a universal framework for 
deriving privacy solutions, we aim 
to minimize algorithmic assump-
tions about the leakage func-
tion F . Specifically, we assume 
that the secret holder can per-
form privatization without prior 
knowledge of the secret distribu-
tion D  or the leakage function 
F  but only relying on samples 

from D  and evaluations of F  
on these samples to construct the 
perturbation strategy. However, 
this black-box restriction applies 
only to the secret holder; for the 
full-knowledge adversary, both D  
and F  are fully known.

With this understanding, the 
framework can be naturally divided 
into two key components:

1.	 Automated Noise Distribution  
Determination: The secret 
holder samples m instances 
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{ , , ..., }X X Xm1 2r r r  f r o m  D  
and evaluates  F  on each 
instance. An algorithm then  
takes  these  evaluat ions 
{ ( ) | , , ..., }X i m1 2F i =r , along 
with the required PAC Privacy 
parameters ( , )d tt  and confi-
dence level ( )1 c- , and out-
puts a noise distribution D .e

2.	 Privacy-Preserving Release: The 
secret holder samples the true 
secret X from D,  samples noise e 
from De, and releases the noisy 
output ( ) ( )X X e.M F= +

The entire procedure is illus-
trated in Figure 2. Intuitively, Part 
(a) serves as a calibration phase, 
where the secret holder gains 
insight into the leakage distribution 
through empirical observations. 
After sufficiently many evaluations 
m, a noise scheme is constructed 
such that, with high confidence 
( )1 ,c-  the perturbed mechanism 
( ) ( ) eM F$ $= +  satisfies the 

required PAC Privacy guarantees. 
The noisy leakage ( )XM  is then 
used in Part (b) for final release. 
Technical details on noise deter-
mination can be found in Sections 
3 and 4 of the work by Xiao et al.13 
Several key insights are highlighted 
as follows.

1.	 Inference Hardness Becomes 
Learnable With Proper Perturba-
tion: One clear role of noise is 
to control leakage: intuitively, 
stronger noise increases the chal-
lenge of adversarial inference. 
However, beyond merely limit-
ing leakage, well-structured noise 
plays a crucial role in smoothing 
the leakage distribution, thereby 
enabling a tractable formula-
tion of inference hardness in a 
black-box setting. While deter-
mining the exact (black-box) 
distribution of ( )XF  remains 
fundamentally infeasible with 
finite samples—similar to the 
worst-case analysis challenges in 
the III framework—an insightful 
observation is that, under proper 

perturbation (e.g., Gaussian 
noise), the adversary’s posterior 
success rate itself can be prov-
ably bounded based on empirical 
evaluations.

2.	 Anisotropic (Non-Uniform) 
Noise: In many practical appli-
cations, the leakage function 
( )XF  is not uniformly dis-

tributed, and the required noise 
should adapt to its structure. 
In high-dimensional spaces, it 
is optimal to introduce noise 
selectively—adding just enough 
noise to match the variation of 
( )XF  along each direction. 

Xiao et al.13 present a method 
for determining the optimal 
noise under mild assumptions 
on the covariance spectrum, 

Perfect Secrecy
(III)

Arbitrary Prior Belief
(Assumed Secret Distribution)

Processing of Secret
and Output
Leakage Generation

Processing of Secret
and Output

Leakage Generation

Secret Distribution
(Determining Secret Entropy)

Identical Posterior Belief
(Secret Distribution Conditional on Leakage)

Impossibility for a Full-Knowledge Adversary to
Successfully Recover the Secret With High Probability

PAC Privacy
(Impossible Inference With Secret Entropy)

Figure 1. Illustrations of III and PAC Privacy. 

Figure 2. Automated noise solution in PAC Privacy. 
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while a follow-up work by Srid-
har et al.12 proposes a more 
efficient hybrid approach that 
approximates the optimal noise 
distribution in linear time.

3.	 Tradeof f Among Simulation 
Budget, Confidence, and Noise: 
There exists a fundamental 
tradeoff among three factors: 
the number of simulations m, 
the confidence level ( )1 ,c-   
and the required noise level. 
A larger simulation budget 
enables a tighter noise solu-
tion with higher confidence, 
while a smaller budget necessi-
tates either lower confidence or 
more perturbation.

4.	 Win–Win Between Privacy, Sta-
bility, and Algorithmic Co-Design: 
One of the key contributions of 
the black-box analysis is foster-
ing a win–win scenario between 
provable privacy and algorith-
mic stability. Under PAC Pri-
vacy, a more stable leakage 
function—one exhibiting less 
variation across different secret 
inputs in an average sense—is 
inherently easier to privatize, 
requiring less noise. Stability is 
desirable in many practical con-
texts, contributing to properties 
such as adversarial robustness 
and generalization in machine 
learning. Furthermore, the 
black-box analysis framework 
facilitates flexible exploration 
of algorithmic structures, allow-
ing privacy-preserving designs 
to be co-optimized with other 
trustworthy guarantees, such as 
fairness, backdoor defense, and 
copyright protection.

W e would like to point out sev-
eral interesting directions 

to advance black-box privatization 
stemming from PAC Privacy. From 
a theoretical standpoint, for many 
complicated adversarial inference 
tasks, existing PAC Privacy results 

are still conservative upper bounds 
on the optimal posterior success rate. 
Narrowing this gap with tight charac-
terization remains an open challenge.

From a noise solution perspec-
tive, most existing approaches 
focus on optimizing and injecting 
zero-mean (Gaussian) noise. How-
ever, in many practical scenarios—
especially in side-channel leakage 
mitigation—only one-sided (posi-
tive) noise is feasible. For instance, 
extending processing time or send-
ing and storing dummy messages/
data are typically implementable, 
whereas modifications in the oppo-
site direction are constrained by 
hardware limitations, communica-
tion protocols, and data manage-
ment systems. This motivates an 
interesting generalization: optimiz-
ing noise under such constraints.

From an efficiency standpoint, 
end-to-end evaluation of complex 
processing functions, such as deep 
learning model, can be computa-
tionally expensive. Treating every 
procedure as a black box in PAC 
Privacy analysis may still incur high 
costs. A promising direction is to 
explore more efficient privacy anal-
ysis in a gray-box manner by decom-
posing a processing function into 
multiple black-box components.

Finally, from a win–win per-
spective, stability in practical pro-
cessing may not always manifest in 
an absolute sense, but rather in a 
distributional or geometric form. 
For example, SGD exhibits distri-
butional stability, while principal 
component analysis demonstrates 
geometric stability. Efficiently and 
provably leveraging privacy benefits 
from such more involved forms of 
stability remains an open challenge. 
We refer interested readers to Srid-
har et al.12 and Xiao et al.15 for fur-
ther intuition and examples. 
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