
Author Retrospective

AEGIS: Architecture for Tamper-Evident and
Tamper-Resistant Processing

G. Edward Suh∗, Christopher Fletcher†, Dwaine Clarke†, Blaise Gassend†, Marten van Dijk‡, Srinivas Devadas†

∗ Cornell University, ECE − suh@csl.cornell.edu
† Massachusetts Institute of Technology, CSAIL − {declarke, gassend}@alum.mit.edu, {cwfletch, devadas}@mit.edu

‡ University of Connecticut, ECE − vandijk@engr.uconn.edu

ABSTRACT
AEGIS is a single-chip secure processor that can be used to
protect the integrity and confidentiality of an application
program from both physical and software attacks. We
briefly describe the history behind this architecture and its
key features, discuss main observations and lessons from
the project, and list limitations of AEGIS and how recent
research addresses them.

Original paper: http://dx.doi.org/10.1145/782814.782838

Categories and Subject Descriptors
C.1 [Processor Architectures]: Miscellaneous; D.4.6
[Operating Systems]: Security and Protection

Keywords
Certified execution, software licensing, secure processors

1. HISTORY
The AEGIS project began with the question of what hard-

ware’s role in security should be. At the time, security was
a relatively new topic to computer architects and there were
only a few previous studies in the area of architectural sup-
port for security. One notable work from the academic com-
munity was XOM [10], which proposed to only trust proces-
sor hardware to provide a protected execution environment.
XOM needed this level of security to support software copy
protection. We found the idea of only trusting a single pro-
cessor chip to be particularly promising, especially given the
trend of remote computation on the Internet such as peer-to-
peer or cloud computing and the proliferation of embedded
and mobile devices. In this sense, XOM largely inspired the
security model and the high-level approach of AEGIS.

We started our work in this direction by developing mech-
anisms to protect off-chip memory [5], which we believed
were essential to enable a “single-chip” secure processor but

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ICS 25th Anniversary Volume. 2014
ACM 978-1-4503-2840-1/14/06.
http://dx.doi.org/10.1145/782814.782838.

were missing at the time, including in [10]. This experi-
ence and further investigation of potential application sce-
narios helped us identify key high-level design considera-
tions for AEGIS. First, we found that the cost of protection
mechanisms could be substantial and that application sce-
narios had varying security requirements. Based on these
efficiency concerns, we felt that the secure processor should
to be able to provide flexible protection that matches each
application’s needs. Second, to be useful in remote com-
putations, we found that the security of the computation
must be verifiable externally in addition to being protected
by the processor. Finally, there was a question about how
much software needs to be trusted especially because the
hardware complexity of completely removing trust in an op-
erating system turned out to be non-trivial.

The AEGIS paper in the 2003 ICS presented the high-
level architecture that would enable an application to choose
its protection levels and verify its computation externally.
The paper also investigated multiple design choices based
on the level of trust in system software. In that sense, the
main contribution of the paper was to provide a framework
for single-chip secure processor designs by identifying key
security capabilities, to describe the protections necessary
for each type of attack, and to discuss how best to implement
those protections. In a subsequent paper, we presented a
detailed implementation of one particular design point [13].

AEGIS explicitly identified two protection levels for se-
cure execution environments. First, tamper-evident comput-
ing is intended to ensure the integrity of a computation. In
this environment, any tampering from outside the protected
program such as unintended changes to program memory
should be detected. Second, private tamper-resistant com-
puting requires an additional confidentiality guarantee that
an adversary cannot learn about the user’s secret data.
This distinction means that additional protection overheads
are paid only when necessary, depending on application re-
quirements. For example, crowd sourcing applications like
SETI@home require integrity, but seldom require confiden-
tiality. On the other hand, users usually expect confidential-
ity when they outsource computation with their own sensi-
tive data.

The AEGIS paper investigated the tradeoffs based on how
much trust is placed on software components, in particular
operating system (OS) functions. General-purpose comput-
ing systems often rely on OS support to provide the ability to
time-share resources (e.g., CPU and memory) and manage
multiple users, among other responsibilities. Yet, OS code is
often quite complex, which results in vulnerabilities that at-



tackers use to break the security of the system. For security,
some or all of the OS functions can either be moved to or
checked by hardware so the software trusted computing base
shrinks. However, more security-related functions in hard-
ware come at the cost of reduced flexibility and increased
design complexity. To investigate this tradeoff, AEGIS pre-
sented two designs: a version that trusts a small piece of
critical OS code, and a version that does not trust any OS
code.

AEGIS also described which protection mechanisms are
necessary given different attack types. For example, con-
ventional virtual memory and privilege levels are sufficient
to protect the memory contents from a pure software at-
tack. On the other hand, to prevent hardware attacks that
physically read memory by tapping the main memory bus,
encryption is necessary. Similarly, the design that assumes
an untrusted OS requires additional protection mechanisms
that are not necessary with trusted OS components.

2. OBSERVATIONS AND LESSONS

Hardware Root-of-Trust.
For systems that are physically exposed to potential ad-

versaries, hardware must provide a root of trust that cannot
be duplicated or altered. Thus, a system’s root keys should
be kept secret in hardware. The most fundamental secu-
rity functions should also be implemented as ROM code or
custom hardware to ensure their integrity. For example, to-
day’s mobile devices such as smartphones and tablets rely
on a secret key inside the processor hardware to authenti-
cate the device and a secure booting mechanism in ROM
code to check the integrity of a boot loader.

Single-Chip Trusted Computing Base.
History also suggests that the single-chip approach of min-

imizing trusted hardware has important benefits in build-
ing secure systems in practice. Having multiple chips in
the hardware trusted computing base turned out to pose
challenges in both securing inter-chip communication chan-
nels from physical attacks and coordinating multiple man-
ufacturers. As an example, Intel’s TXT technology [2] re-
lies on both an Intel processor and a third-party (external)
chip called a TPM [15] to provide hardware-based security
functions. TXT+TPM has been successfully attacked by
probing or tampering with the processor-TPM bus [12, 16].
While TXT+TPM has been available for several years, the
technology has not been widely utilized.

In 2013, Intel announced the next-generation of TXT
called Software Guard Extensions (SGX) [9]. SGX works
by maintaining one or more enclaves, where each enclave is
a memory region that is inaccessible to software running at
any non-enclave privilege level. Like TXT, code/data loaded
into an enclave is measured and the result/starting state can
be signed before it is returned to a user. Interestingly, SGX
takes the third-party TPM out of the picture and adopts
a single-chip approach, only relying on the main processor.
SGX also performs automatic encryption and integrity ver-
ification on all data that leaves the processor. AEGIS pro-
posed these techniques to protect against physical attacks.

Similarly, game consoles and mobile devices also integrate
their basic security functions into the main processing chip
instead of utilizing an auxiliary chip. These decisions are
likely to have been taken in order to provide a proper level
of security against physical attacks.

Hardware’s Role in Reducing the Software TCB.
It is now widely accepted that a complex piece of soft-

ware cannot be trusted to be secure. For example, a large
monolithic OS has been repeatedly shown to have security
vulnerabilities. In that sense, hardware support to reduce
the software trusted computing base is necessary to build a
secure system.

However, exactly how much software should be trusted
and how critical security functions should be implemented
are open design choices. In the AEGIS project, after investi-
gating two design points with and without trusted software,
we implemented the one with a trusted security kernel to get
the flexibility of software in executing certain tasks, and the
security of hardware for the remaining operations. While the
ability to tolerate a completely untrusted OS was attractive,
full hardware protection added significant design complexity
and could only support a very restrictive protection model.
We remark that Intel’s SGX also chose to rely on a special
piece of system software, which Intel provides, to implement
TPM-like functionality.

On one hand, cryptographic primitives are good candi-
dates for hardware implementations because they are rel-
atively static, seldom requiring a patch once implemented
correctly, and their efficiency can often benefit significantly
from parallelism in hardware. Indeed, AEGIS implemented
encryption and hashing functions for memory protection in
hardware for performance reasons. Further, a cryptographic
operation implemented in hardware is nearly always more
resistant to attacks compared to the same operation in soft-
ware. For example, Intel’s hardware AES-NI extensions pre-
vent cache side-channel attacks on AES [8].

On the other hand, for infrequent and control-intensive
functions, the added complexity and reduced flexibility of
a hardware implementation is often difficult to justify. For
example, a context switcher in hardware is likely to be im-
plemented as a sequential state machine and is in a sense
equivalent to a fixed microcode routine. Therefore, if the
integrity of the software routine can be ensured by, for ex-
ample, checking the hash at run-time, both hardware and
software implementations arguably provide comparable se-
curity and performance, and a trusted software implementa-
tion will be preferable. In fact, the AEGIS implementation
relied on ROM code for infrequent and complex security
functions such as entering or exiting a protected execution
environment.

In essence, architects need to consider the overall system
complexity of both hardware and software combined, in ad-
dition to efficiency and security, to make a decision on where
to place a security function. For certain cases, we found that
the complexity can be reduced by having a trusted compo-
nent verify the operations of an untrusted one. For example,
the AEGIS design with an untrusted OS had a hardware ver-
ifier, which is much simpler than the context switcher itself,
to check the context switching operation in the OS. However,
simply moving one function from software to hardware may
not necessarily reduce the overall complexity of the trusted
computing base.

3. LIMITATIONS

Untrusted Programs and Side/Covert Channels.
The AEGIS architecture was designed to protect a pro-

gram from external software and physical attacks, but as-
sumed that the protected program itself is trusted and well-
written. A malicious program, on the other hand, may pro-
duce a bogus result or intentionally leak the user’s private



data. Also, AEGIS did not provide protection against side-
channel or covert-channel attacks. As a result, a protected
program may still leak confidential information if its ob-
servable behaviors, such as memory access patterns [7] or
execution time [1], depend on the confidential data.

AEGIS made the above assumptions because it mainly
considered application scenarios where a program was writ-
ten by a trusted party. In fact, these assumptions are fairly
common for many secure processor designs. For example,
Intel SGX assumes software running inside the enclave is
trusted, and requires the user program to wipe register val-
ues upon a normal enclave exit if those registers stored con-
fidential data.

However, the assumptions of trusted and well-written pro-
grams pose limitations on applicable application scenarios
and on the level of security provided by AEGIS. For exam-
ple, in many cloud computing scenarios today, users do not
own or see the program that processes their data (e.g., the
algorithms in Google Docs are kept secret by Google). Fur-
ther, these types of programs are frequently updated. As a
result, it is difficult (if not impossible) for users to vet these
programs. Second, being “well-written” to prevent uninten-
tional leakage is difficult and/or incurs large overhead. In
fact, the only “fool proof” way to quell unintentional leakage
channels is to use Fully Homomorphic Encryption [6], which
currently has over a billion times overhead when running
even simple programs.

To address these issues, a new single-chip secure proces-
sor called Ascend is being designed to run untrusted pro-
grams [3]. The key idea behind Ascend is program obfusca-
tion: an adversary should not be able to tell what program
or data is running inside Ascend by observing the Ascend
chip’s external pins. To achieve this security level, Ascend
is built with a primitive called Oblivious-RAM (ORAM)
that keeps main memory encrypted and additionally shuffles
memory to prevent leakage through the program’s address
pattern [11]. Further, Ascend uses information-theoretic
principles to bound leakage over timing channels (e.g., pro-
gram runtime and ORAM access rate) [4]. On the other
hand, Ascend’s security comes with a more limited usage
model. Currently, Ascend runs programs on bare metal
and does not allow sharing resources with other users. As-
cend can only run programs whose IO is limited to Ascend’s
ORAM — such as batch programs and stream computa-
tions [17].

Secure User IO.
The AEGIS proposal is also limited in its support for se-

cure IO channels. AEGIS relies on a program itself to secure
its communication channels using cryptographic protocols.
This approach is relatively easy to apply for network commu-
nications where both sides can be authenticated and trusted,
but difficult to use for local user interfaces such as displays
and keyboards.

In fact, providing secure yet rich user interfaces is a chal-
lenge that still needs further investigation [18]. In tradi-
tional systems, user interfaces involve multiple components
on a system such as a processor, a south bridge, and an
IO device. As a result, the processor needs to be able to
secure communications among multiple distributed compo-
nents and also maintain consistent security policies across
them. Modern system-on-chip (SoC) designs mitigate this
problem by integrating most of the IO components into a
single chip. However, even for SoCs, secure user IO requires
device drivers to be trusted, adding to the TCB.

Virtualization Support.
AEGIS was designed in the context of traditional systems

that run a single operating system. Today, however, virtu-
alization has become a norm especially for cloud computing,
allowing a single processor to run multiple operating systems
managed by a hypervisor. Recent studies (e.g., [14]) showed
that the general secure processor approach in AEGIS can
be applied to the virtualization context, protecting a virtual
machine (or an application) even from untrusted hypervi-
sors, thereby reducing the trusted computing base.

4. CONCLUSION
In retrospect, the high-level approach in AEGIS that re-

lies only on a single processor chip to protect a program’s
execution turned out to be a promising direction which con-
tinued in more recent systems. The architecture had some
limitations and much research still remains to be done to
fully realize the promise of single-chip secure processors.

5. REFERENCES
[1] D. J. Bernstein. Cache-Timing Attacks on AES. Technical

report, 2005.
[2] David Grawrock. The Intel Safer Computing Initiative:

Building Blocks for Trusted Computing, 2006.
[3] C. Fletcher, M. van Dijk, and S. Devadas. Secure Processor

Architecture for Encrypted Computation on Untrusted
Programs. In STC; an extended version is located at
http://csg.csail.mit.edu/pubs/memos/Memo508/memo508.pdf
(Master’s thesis), 2012.

[4] Fletcher, Christopher and Ren, Ling and Yu, Xiangyao and
Van Dijk, Marten and Khan, Omer and Devadas, Srinivas.
Suppressing the Oblivious RAM Timing Channel While
Making Information Leakage and Program Efficiency
Trade-offs. In HPCA, 2014.

[5] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and
S. Devadas. Caches and Merkle Trees for Efficient Memory
Integrity Verification. In HPCA, 2003.

[6] C. Gentry. Fully Homomorphic Encryption Using Ideal
Lattices. In STOC, 2009.

[7] O. Goldreich and R. Ostrovsky. Software Protection and
Simulation on Oblivious RAMs. In J. ACM, 1996.

[8] S. Gueron. Intel Advanced Encryption Standard (AES)
New Instructions Set, 2012.

[9] Intel. Software Guard Extensions Programming Reference,
2013.

[10] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural Support for
Copy and Tamper Resistant Software. In ASPLOS, 2000.

[11] Ling Ren and Xiangyao Yu and Christopher Fletcher and
Marten van Dijk and Srinivas Devadas. Design Space
Exploration and Optimization of Path Oblivious RAM in
Secure Processors. In ISCA, 2013.

[12] E. Sparks. A Security Assessment of Trusted Platform
Modules. Technical Report 597, 2007.

[13] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas.
Design and Implementation of the aegis Single-Chip Secure
Processor Using Physical Random Functions. In ISCA,
2005.

[14] J. Szefer and R. B. Lee. Architectural Support for
Hypervisor-Secure Virtualization. In ASPLOS, 2012.

[15] Trusted Computing Group. TCG Specification Architecture
Overview Revision 1.2.
http://www.trustedcomputinggroup.com/home, 2004.

[16] Winter, Johannes and Dietrich, Kurt. A Hijacker’s Guide
to the LPC Bus. In EUROPKI, 2012.

[17] Yu, Xiangyao and Fletcher, Christopher W and Ren, Ling
and van Dijk, Marten and Devadas, Srinivas. Generalized
External Interaction with Tamper-Resistant Hardware with
Bounded Information Leakage. In CCSW, 2013.

[18] Zhou, Zongwei and Gligor, Virgil D. and Newsome, James
and McCune, Jonathan M. Building Verifiable Trusted
Path on Commodity x86 Computers. In IEEE S&P, 2012.


