
AEGIS: Architecture for Tamper-Evident and
Tamper-Resistant Processing

G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, Srinivas Devadas
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

{suh,declarke,gassend,marten,devadas}@mit.edu

ABSTRACT
We describe the architecture for a single-chip aegis proces-
sor which can be used to build computing systems secure
against both physical and software attacks. Our architec-
ture assumes that all components external to the processor,
such as memory, are untrusted. We show two different im-
plementations. In the first case, the core functionality of the
operating system is trusted and implemented in a security
kernel. We also describe a variant implementation assuming
an untrusted operating system.

aegis provides users with tamper-evident, authenticated
environments in which any physical or software tampering
by an adversary is guaranteed to be detected, and private
and authenticated tamper-resistant environments where ad-
ditionally the adversary is unable to obtain any information
about software or data by tampering with, or otherwise ob-
serving, system operation. aegis enables many applications,
such as commercial grid computing, secure mobile agents,
software licensing, and digital rights management.

Preliminary simulation results indicate that the overhead
of security mechanisms in aegis is reasonable.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Miscellaneous;
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security, Design, Performance

Keywords
Certified execution, software licensing, secure processors

1. INTRODUCTION AND MOTIVATION
It is becoming common to use a multitude of computing

devices that are highly interconnected to access public as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’03, June 23–26, 2003, San Francisco, California, USA.
Copyright 2003 ACM 1-58113-733-8/03/0006 ...$5.00.

well as private or sensitive data. On the one hand, users
desire open systems for ease-of-use and interoperability, but
on the other hand, they require privacy mechanisms that
restrict access to sensitive data, and authentication mech-
anisms that ensure data integrity. With the proliferation
and increasing usage of embedded, portable and wearable
devices, in addition to protecting against attacks from ma-
lignant software, we also have to be concerned with physical
attacks that corrupt data, discover private data or violate
copy-protection, as well as combinations of physical and soft-
ware attacks.

Given these trends, computing systems have to achieve
several goals in order to be secure. Systems should pro-
vide tamper-evident (TE) environments where software pro-
cesses can run in an authenticated environment, such that
any physical tampering or software tampering by an adver-
sary is guaranteed to be detected. In private and authenti-
cated tamper-resistant (PTR) environments,1 an additional
requirement is that an adversary should be unable to obtain
any information about software and data within the environ-
ment by tampering with, or otherwise observing, system op-
eration. Ideally, a computing platform should provide a mul-
tiplicity of private and authenticated environments wherein
each process (or each user) is protected from all other users
and potential adversaries.

In this paper we describe the aegis processor architecture,
which provides multiple mistrusting processes with environ-
ments such as those described above, assuming untrusted
external memory. We first show an implementation with an
untrusted operating system. We also describe a variant im-
plementation of the architecture, that may provide increased
flexibility under a different secure computing model, wherein
core functionality of the operating system, termed the secu-
rity kernel, is trusted – the remaining part of the operating
system is untrusted, as is external memory.

We believe that these environments will enable a new set
of applications. For example, grid computing is a pop-
ular way of solving computationally-hard problems (e.g.,
SETI@home, distributed.net) in a distributed manner on
a huge number of machines with different volunteer owners
connected via the Internet. However, maintaining reliabil-
ity in the presence of malicious volunteers requires signifi-
cant additional computation to check the results produced
by volunteers. The TE and PTR environments provided by

1In the remainder of this paper, we may refer to these envi-
ronments as private tamper-resistant (PTR) environments
for brevity.

aegis can enable commercial grid computing on multitask-
ing server farms, where computation power can be sold with
the guarantee of a compute environment that processes data
correctly and privately.

PTR environments can also enable applications where a
compute server is used as a trusted third party. For example,
a proprietary algorithm owned by party A can be applied
to a proprietary instance of a problem owned by party B
to produce a certifiable result, ensuring that no informa-
tion regarding either the algorithm or the problem instance
is leaked, and ensuring that the data was processed by the
code correctly.2 PTR environments also enable the copy-
protection of software and media content in a wide range of
computing systems in a manner that is resistant to software
or physical attacks. This will enable strong forms of software
licensing and intellectual property protection on portable as
well as desktop computing systems. Finally, this PTR plat-
form can enable secure mobile agents to perform electronic
transactions on untrusted hosts [5].

The key architectural mechanisms required in an aegis

processor that assumes an untrusted operating system are
memory integrity verification, encryption/decryption of off-
chip memory and a secure context manager. In this pa-
per, we describe how these mechanisms are integrated into
the aegis microarchitecture, and evaluate the performance
overheads of these mechanisms. We describe a variant imple-
mentation, that assumes a trusted security kernel, wherein
some of the hardware functionality can be eliminated. De-
tailed simulation results indicate that the performance over-
head of security mechanisms in aegis is reasonable. These
mechanisms therefore enable the implementation of a secure
computing system with the only trusted component being a
single-chip aegis processor.

We present our security model in Section 2. The aegis

architecture is described in Section 3. Section 4 presents two
essential mechanisms to protect off-chip memory: integrity
verification and encryption. We describe how the architec-
ture can be used for a certified execution application and
a simple Digital Rights Management (DRM) application in
Section 5. Simulation experiments to evaluate the perfor-
mance overheads of the various mechanisms are presented
in Section 6. Related work is described in Section 7, and we
conclude the paper in Section 8.

2. SECURE COMPUTING MODEL
We consider systems that are built around a processing

subsystem with external memory and peripherals. Figure 1
illustrates the model. The processor is assumed to be trusted
and protected from physical attacks, so that its internal
state cannot be tampered with or observed directly by phys-
ical means. The processor can contain secret information
that identifies it and allows it to communicate securely with
the outside world. This information could be a Physical
Random Function [7], or the secret part of a public key pair
protected by a tamper-sensing environment [9].

In the model of Figure 1, external memory and peripher-
als are assumed to be untrusted. They may be observed and
tampered with at will by an adversary. In general, the op-
erating system (OS) is also untrusted. Software attacks by

2By correctly, we do not mean that the code does not have
any bugs, but that the code was not tampered with and was
correctly executed.

Private Key

Secure Context
Manager

Registers
Cache

Encryption Untrusted
Memory

Key
board

Display Sound
card

Disk

Physical
Attacks

Software,
Physical
Attacks

Software
Attacks

Integrity
Verification

Processor

Security
Kernel

Untrusted Part of O/S

Malicious
Software

SCM
Table

Figure 1: Our secure computing model.

the operating system or from other malicious software are
therefore possible. In particular implementations, it may be
assumed that there is a trusted part of the operating sys-
tem, called the security kernel, that operates at a higher
privilege level than the regular operating system. The pro-
cessor is used in a multitasking environment, which uses
virtual memory, and runs mutually mistrusting processes
within TE or PTR environments.

The adversary can attack off-chip memory, and the pro-
cessor needs to check that it behaves like valid memory.
Memory behaves like valid memory if the value the proces-
sor loads from a particular address is the most recent value
that it has stored to that address. If the contents of the off-
chip memory have been altered by an adversary, the memory
may not behave correctly (like valid memory). We therefore
require memory integrity verification [22].

In the case of PTR environments, we have to encrypt data
values stored in off-chip memory.

We assume that programs are well-written and do not
leak secrets via their memory access patterns. In particu-
lar, we do not handle security issues caused by bugs in an
application program.

3. THE AEGIS ARCHITECTURE
This section describes a processor architecture with which

tamper-evident (TE) and private tamper-resistant (PTR)
execution environments can be built. We first focus on the
high-level description of our architecture and how the en-
vironments are used by application programs. Then, the
protection mechanisms to enable this architecture are dis-
cussed in more detail.

3.1 Trusted Computing Base: TCB
Our trusted computing base (TCB) consists of a processor

chip and optionally a part of an operating system. We refer
to the trusted core part of the operating system as the secu-
rity kernel (SKernel). Unless the entire operating system is
trusted, the security kernel operates at a higher protection
level than other parts of the operating system in order to
prevent attacks from untrusted parts of the operating sys-
tem such as device drivers.

In the following discussion of the high-level architecture,
we do not distinguish between tasks that are accomplished
by a security kernel and tasks that are accomplished by the
processor. In most cases, the same functionality can be im-

plemented in either one. We simply refer to the TCB when
either one is concerned. In Section 3.4, we show how the re-
quired functionality can be partitioned between the security
kernel and the processor in different ways.

3.2 Tamper-Evident Processing
The TE environment guarantees that any physical or soft-

ware tampering that can alter the behavior of a program is
detected or prevented. In other words, the integrity of a
program execution is guaranteed. TE mode does not pro-
vide any privacy for code or data; a PTR environment is
required for privacy.

The aegis architecture provides the following new opera-
tions for an application program to enable TE processing:

• enter aegis: Start execution in a TE environment.

• exit aegis: Exit the TE environment and return to a
standard processing mode.

• sign msg: Generate a signature of a message and a
program hash with the processor’s secret key.

Valid Execution. A valid execution of a program on a
general-purpose time-shared processor can be guaranteed by
securing three potential sources of attacks: initial state, state
on interrupts including context switching, and on-chip/off-
chip memory.

To enter TE mode, applications use the enter aegis in-
struction. The instruction specifies a stub region that is used
to generate a program hash (H(Prog)) that identifies the
program. The program hash is stored in protected storage
for later use. The stub region starts with the enter aegis

instruction and extends over a number of bytes that is spec-
ified as an argument to the instruction. The stub code
gets executed immediately after the enter aegis instruc-
tion, and is responsible for checking any other code and data
that the application relies on. It does so by comparing their
hashes with hashes that are stored in the stub region. The
stub code must also check the sanity of the environment it
is running in: processor mode, virtual address of the stub
code (if it assumes an absolute entry point), position of the
stack, etc. On some architectures such as x86, it is necessary
for the TCB to check that the stack pointer is far from the
stub code, as the stub would be helpless against an interrupt
occurring and writing to the stack before it has a chance to
change the stack pointer. This process guarantees that the
initial state of a program is properly set up.

Once a program starts its execution in TE mode with the
enter aegis instruction, the TCB protects the program’s
state in both on-chip and off-chip memory. In fact, the in-
tegrity of the verified code and data should be protected
as soon as they are used to compute the program hash
H(Prog). The register state of the program is protected
and guaranteed to be preserved over an interrupt. The in-
tegrity of program instructions and data in the on-chip/off-
chip memories is also protected. On-chip caches are secure
from physical attacks, thus only need to be protected from
malicious or buggy software. Off-chip memory, including
pages swapped out to the disk, is vulnerable to both physi-
cal and software attacks. The TCB verifies the integrity of
a block whenever it is read from off-chip memory.

The integrity verification mechanism (see Section 4.1) en-
sures that only one program or processor can legally modify

a memory location. If the entire memory space is protected,
the mechanism does not allow any sharing among different
secure processes. Even any legitimate input from a I/O de-
vice would be prohibited. Therefore, a program should be
able to access a part of memory space without integrity ver-
ification.

We handle this problem by using the most significant bit
(MSB) of an address to determine whether the integrity of
the address should be protected or not. Therefore, the upper
half of the virtual memory space is protected and the lower
half is not. The program lays out its code and data accord-
ingly. This design allows a very simple implementation of
the protection scheme even in hardware. This static division
of memory space restricts processes to have only one half of
the memory space for secure data. This is not a problem for
64-bit architectures. In the case of small address spaces, a
finer granularity might be desirable to avoid wasting virtual
address space.

Exporting Results. The protections described above are
enough to guarantee the correct execution of a program.
However, in practice, there is additional functionality re-
quired for the TE mode to be useful; a user should be able
to trust the result provided by a system when communica-
tion channels from a processor are untrusted.

For this purpose, a program can use the sign msg op-
eration. It returns the signature {H(Prog),M}SKp for a
message M ,3 where H(Prog) is the hash of the program
that was computed when the enter aegis instruction was
executed, and SKp is the secret part of a processor’s pri-
vate/public key pair. The TCB signs the message only if the
program is in TE mode, and always includes the program
hash in the signature. That way, when the user receives a
message signed by the processor’s secret key SKp, he knows
that the message is from a particular program (program
authentication) running on a particular processor (system
authentication). The signature of a message also prevent
adversaries from forging messages (message authentication).

3.3 Private Tamper-Resistant Processing
The TE environment presented in the previous subsec-

tion can be extended to a PTR environment to support a
private and authenticated execution. Additional protections
are needed to ensure the privacy of registers, on-chip caches,
and off-chip memory. One new instruction is needed to sup-
port this mode:

• set aegis mode: Enable or disable the PTR environ-
ment. Set the static key Kstatic that is used to decrypt
static content corresponding to instructions and data
that are encrypted in the program binary.

To enable or disable privacy from TE mode, programs
use the set aegis mode instruction. The instruction enables
the PTR environment and provides the static key encrypted
with the processor’s public key (EPKp{H(Prog),Kstatic}),
so the static key can be decrypted only by a trusted pro-
cessor for a particular program. The processor decrypts the
key and sets the Kstatic accordingly only if the program hash
matches the hash of the executing program. The encryption
scheme should be non-malleable so that an adversary cannot

3If there is a security kernel within the TCB, sign msg re-
turns {H(SKernel), H(Prog),M}SKp so that a user can
authenticate the security kernel as well as the processor.

change the encrypted program hash and use the static key
with a different program. If there is a security kernel, the op-
eration uses EPKp{H(SKernel), H(Prog),Kstatic} to iden-
tify the trusted security kernel as well.

In the PTR environment, all the register values are consid-
ered private and protected. Whether instructions and data
in the memory are private is determined using the second
MSB of the address. Data stored to virtual addresses that
have the second MSB set has its privacy protected.

Ensuring Privacy. The privacy of registers and on-chip
caches should be protected by the TCB from software at-
tacks. When an interrupt occurs, the TCB saves the reg-
ister values in private storage in the TCB and clears them
before an untrusted interrupt handler starts. The TCB also
protects on-chip caches so that no process can read other
process’ private data.

Whenever data that needs to remain private goes off-chip,
the TCB encrypts it. Fast symmetric encryption and de-
cryption can be used because the data only needs to be read
by the processor that wrote it in the first place. Each pro-
cess uses a pair of keys, Kstatic and Kdynamic. The static
key Kstatic is used to decrypt instructions and data from the
program binary, and obtained from the set aegis mode in-
struction. The dynamic key Kdynamic is used to encrypt and
decrypt data that is generated during the program’s execu-
tion, and randomly chosen by the TCB when enter aegis

is called.
Simply encrypting memory is not sufficient to provide

complete opacity of program operation. Information can
be leaked via memory access patterns or other covert chan-
nels. Here we will assume that programs are well-written
and do not leak their secrets via those channels. Techniques
exist (e.g., [14, 1]) which can check programs for information
leaks and prevent them [9].

3.4 TCB Implementations
The high-level architecture described in the previous sub-

sections can be implemented in many different ways depend-
ing on how to partition the required functionality between
the security kernel and the processor. In general, relying
more on the security kernel provides more flexibility and re-
quires less architectural modification on the processor. On
the other hand, putting mechanisms into the processor re-
duces the trusted code to be verified, and can sometimes
result in better performance.

In this subsection, we present two reference implementa-
tions of the aegis architecture: the Security Kernel Solution
and the Untrusted OS Solution. In the security kernel so-
lution, some core functionality of the operating system is
trusted, so that we can construct a secure system with min-
imal modifications to a conventional processor architecture.
The untrusted operating system solution does not trust any
part of the operating system (which means there is no secu-
rity kernel within the TCB), and implements all mechanisms
in the processor. Table 1 summarizes the two implementa-
tions.

3.4.1 Security Kernel Solution

Security Kernel Start-Up. When a security kernel exists
in the TCB, its identity should be verifiable by a user. In
order to achieve this goal, the processor computes the hash
of the security kernel H(SKernel) when it boots up as in

[2, 4]. After that, the integrity of the security kernel code
is protected using the same mechanisms for other secure
processes: trusted VM management and off-chip integrity
verification. A user can identify a TCB with the security
kernel hash H(SKernel) and the processor’s private/public
key pair.

Initial Start-Up and Interrupts. The security kernel
manages the start-up of a program and interrupts, thus en-
suring that the initial state is properly set up and the states
on an interrupt are correctly restored when a program re-
sumes execution.

Software Attacks on Memory. The security kernel pro-
tects both on-chip caches and off-chip memory from soft-
ware attacks. Indeed, traditional mechanisms such as virtual
memory and privilege levels are adequate to protect appli-
cations from each other. Therefore, we include the virtual
memory manager within the security kernel to properly pro-
tect the integrity and the privacy of memory from software
attacks.

Physical Attacks on Memory. Because we assume that
an adversary cannot tamper with a processor chip, the on-
chip caches are secure from physical attacks. To protect
the off-chip memory from physical attacks, the hardware
memory integrity verification mechanism in Section 4.1 is
applied to the physical memory space. The mechanism uses
hash trees to check if the value the processor loads from a
particular address is the most recent value that it stored to
that address. The mechanism guarantees that if the mem-
ory is written by any entity other than the processor, this
tampering is detected.

When the OS swaps a page from memory to disk, the se-
curity kernel implements the hash tree scheme in software
and protects the page. The hash tree allows the OS to ver-
ify the integrity of a page when the page is brought into the
memory in the future. We note that it would also be possi-
ble to verify the integrity of off-chip RAM with a software
checker in the security kernel as long as the integrity veri-
fication code always stays on-chip. However, this approach
would significantly degrade performance compared to the
hardware implementation.

Encryption. The encryption and decryption of memory
is done by a hardware engine placed between the integrity
checker and the off-chip memory bus, which is detailed in
Section 4.2. Although encryption in software is also possi-
ble, the hardware engine is chosen for performance.

For the PTR environment, the security kernel implements
the set aegis mode operation. To set the static key for a
program, the operation is used with EPKp{H(SKernel),
H(Prog),Kstatic}. The processor provides a special instruc-
tion decrypt key for the security kernel. The instruction
gets the encrypted key and returns H(Prog),Kstatic only if
the hash of the security kernel’s matches the H(SKernel)
in the instruction. Once the security kernel obtains the de-
crypted key, it compares the program hash and sets the
static key for a program if the hashes match. When context
switching between processes, the security kernel is respon-
sible for clearing the static key of the process that is being
interrupted and, if appropriate, loading the key for the new
process into the processor.

Signing Operation. With a security kernel, the sign msg

operation is implemented as a system call. Because the pro-

Problems Security Kernel Solution Untrusted OS Solution

SKernel start-up Processor computes H(SKernel) -
Process start-up Managed by security kernel Processor computes H(Prog),

- trusted loader checks the stack pointer
Registers on - trusted multitasking Processor saves registers,
interrupts clears the registers (PTR),

and restores them on a resume.
On-chip caches Trusted VM manager, Secure process ID tags,

virtual address for each block,
Off-chip RAM Processor verifies physical memory Processor verifies virtual memory
Pages on disk Security kernel verifies paging
Encryption (PTR) Hardware encryption engine Hardware encryption engine
sign msg Security kernel system call Processor instruction

Table 1: Implementing the aegis architecture with/without a trusted security kernel in the operating system
(OS). (PTR) indicates that the mechanism is only required for the private tamper-resistant environment.

gram hashes are maintained by the security kernel, the op-
eration cannot be done by the processor directly. Instead
of a user level sign msg instruction, the processor provides
a privileged instruction sign kernel msg for the security
kernel, which returns {H(SKernel), M ′}SKp for message
M ′. Then, the security kernel uses this instruction with
M ′ = {H(Prog),M} to implement the sign msg system
call, which returns {H(SKernel), H(Prog),M}SKp. Note
that the H(SKernel) is always included in the signature
by the trusted processor so that a malicious security kernel
cannot forge a message on behalf of another security kernel.

3.4.2 Untrusted OS Solution

The Secure Context Manager. To have a secure execu-
tion environment without the security kernel, the processor
needs to keep track of the processes that it is running in the
aegis mode, so that it can securely keep track of their states.
We introduce a secure context manager (SCM), which is a
specialized component in the processor that ensures proper
protection for each secure process. For each secure process,
the SCM assigns a non-zero secure process ID (SPID). Zero
is used to represent regular processes.

The SCM maintains a table that holds various protection
information for each secure process running in aegis mode.
The table entry for a process consists of a SPID, the pro-
gram hash (H(Prog)), the architectural registers (Regs), a
hash used for memory integrity verification, a bit indicating
whether the process is in the PTR mode, and a pair of keys
for encryption (Kstatic, Kdynamic). We refer to the table as
the SCM table. An entry is created by the enter aegis in-
struction, and deleted by the exit aegis instruction. The
operating system can also delete an entry as it has to be
able to kill processes; this feature is not a security issue, as
it does not allow the operating system to impersonate the
application that it killed.

The SCM table can be entirely stored on the processor
as in XOM [12], however, this severely restricts the number
of secure processes. Instead, we store the table in a virtual
memory space that is managed by the operating system and
stored in off-chip memory. Memory integrity verification
mechanisms prevent the operating system from tampering
with the data in the SCM table. A specialized on-chip cache
similar in structure to a TLB is used to store the SCM table
entries for recent processes. To protect the encryption keys,
the processor holds a master key KM , which can be ran-

domly generated when the system boots, and encrypts the
encryption keys and register values in the SCM table when
they are moved out to off-chip memory.

Initial Start-Up. To ensure a valid initial start-up, the
SCM implements the enter aegis operation as a processor
instruction. The SCM computes a hash of essential pro-
gram code and data (and checks the initial stack pointer
on architectures such as x86 to avoid a stack overflow if an
interrupt occurs) when the enter aegis instruction is ex-
ecuted. Once the instructions and data are used for the
hash computation, they are protected by the on-chip and
off-chip memory protection mechanisms, described in the
subsequent paragraphs, so that they cannot be tampered
with. The program hash is stored in the SCM table.

Registers on an Interrupt. Given that interrupt han-
dling and context switching are rather complicated tasks,
we let the untrusted operating system manage all aspects of
multitasking. The processor nevertheless has to verify that
a TE process’ state is correctly preserved when it is not ex-
ecuting. For that reason, the SCM stores all the process’
register values in the SCM table when the interrupt occurs,
and restores them at the end of the interrupt. For PTR
processes, once the register values are stored in the SCM
table, the working copy of the registers is cleared so that
the interrupt handler cannot see their previous values.

On-Chip Caches. The on-chip caches are protected using
tags. Whenever a process accesses a cache block, the block
is tagged with the process’ SPID. Regular processes are rep-
resented by the SPID value of zero. This SPID specifies the
ownership of the cache block. Each cache block also con-
tains the corresponding virtual address, which was used by
the owner process on the last access to the block.

When a secure process accesses an address that requires
integrity protection, the processor verifies a cache block be-
fore using it. If the active SPID matches the SPID of the
cache block and the accessed virtual address matches the
virtual address of the cache block, the access continues. Oth-
erwise, the value of the cache block is verified by the off-chip
integrity verification mechanisms, and the SPID and the vir-
tual address of the block is updated.

In PTR mode, if a block’s virtual address is in the private
region, the block requires additional protection for privacy.
Accesses to a private cache block are allowed only if the
SPID of the cache block matches the active SPID and the

active process is in the PTR mode. Otherwise, the block
gets evicted from the cache and reloaded.

Off-Chip Memory. For off-chip memory, we use the hard-
ware memory integrity verification mechanism in Section 4.1.
The memory verification algorithm is applied to each secure
process’ virtual memory space. Each TE process uses a sep-
arate hash tree to protect its own virtual memory space.
Changes made by a different process are detected as tam-
pering. Because we are protecting virtual memory space,
pages are protected both when they are in RAM and when
they are swapped to disk.

As described in the high-level architecture, the private
cache blocks are encrypted when they are evicted from the
L2 cache. Encryption and decryption is done by a hardware
engine placed between the integrity checker and the off-chip
memory bus (see Section 4.2).

Signing Operation. The SCM implements the sign msg

operation as a processor instruction as described in the high-
level architecture. The SCM returns {H(Prog),M}SKp,
which is the signature of the program hash and the mes-
sage.

3.5 Performance Implication
Most mechanisms that are required for TE processing

have marginal overhead on the processor performance. The
enter aegis instruction and the sign msg instruction in-
volve cryptographic hash computation and private/public
key signing, respectively, which are rather expensive oper-
ations. However, these instructions are only used very in-
frequently; the enter aegis instruction is only for the be-
ginning of a program, and the sign msg instruction is only
for exporting trusted results. Thus, the overhead will be
amortized over a long execution period.

There are three mechanisms that are frequently used at
run-time: register protection on an interrupt, on-chip cache
tagging, and off-chip integrity verification. Fortunately, the
performance overhead of register protection and cache tag-
ging is negligible. Register protection simply requires stor-
ing the register in the SCM table, and the cache tags do not
increase cache access time although they occupy additional
on-chip storage.

The only significant performance overhead comes from off-
chip integrity verification. The integrity verification con-
sumes additional memory bandwidth to access meta-data
such as hashes on every memory access, and may also cause
additional latency for the sign msg instruction. Therefore,
the performance overhead of TE processing can be closely
approximated by evaluating the performance overhead of
the memory integrity verification.

The PTR processing requires only one additional run-time
mechanism over TE processing: off-chip memory encryp-
tion. Therefore, the performance overhead of our PTR ar-
chitecture can be estimated by only considering memory in-
tegrity verification and memory encryption. We study this
performance impact quantitatively through simulations in
Section 6.

4. MEMORY PROTECTION SCHEMES
This section describes two mechanisms to protect off-chip

memory: integrity verification and encryption. The memory
integrity verification protects the integrity of off-chip data,
and the encryption protects the privacy of the data.

Memory integrity verification mechanisms operate as a
layer between the L2 cache and the encryption mechanisms,
protecting the plaintext data. Therefore, an encrypted data
block from memory is first decrypted and then verified by
the integrity verification mechanism. Verifying plaintexts
rather than ciphertext eliminates the need to protect the
meta-data for encryption such as random vectors because
such tampering will be detected by the integrity verification
of the decrypted plaintext.

4.1 Integrity Verification
This section briefly summarizes an integrity verification

mechanism based on cached hash trees [8], and discusses is-
sues related to applying this scheme to our architecture. We
use the hash tree scheme for simplicity, but note that there
exists a more efficient scheme that can reduce the perfor-
mance overhead of memory integrity verification [22].

4.1.1 Cached Hash Trees
Hash trees (or Merkle trees) are often used to verify the

integrity of dynamic data in untrusted storage [13]. Figure 2
illustrates a hash tree. The memory space is divided into
multiple chunks, denoted by V1, V2, etc. The chunks are
the leaves of the hash tree. A parent is the hash of the
concatenation of its children. In our case, each hash covers
one L2 cache block. The root of the tree is stored in the
SCM table where it cannot be tampered with.

V1

h1=h(V1.V2)

V2 V3 V4

h2=h(V3.V4)

root = h(h1.h2)

Figure 2: A binary hash tree. Each internal node is
a hash of the concatenation of the data in the node’s
children.

To check the integrity of a node in the tree, the processor
(i) reads the node and its siblings from the memory, (ii)
concatenates their data together, (iii) computes the hash
of the concatenated data, and (iv) checks that the resultant
hash matches the hash in the parent. The steps are repeated
all the way to the root of the tree.

To update a node, the processor checks its integrity as
described in the previous paragraph while it (i) modifies the
node, and (ii) recomputes and updates the parent to be the
hash of the concatenation of the node and its siblings. These
steps are repeated to update the whole path from the node
to the root, including the root.

To reduce the performance overhead of the hash tree,
we cache the internal hash nodes in the on-chip L2 cache
with regular data. The processor trusts data stored in the
cache. Therefore, instead of checking the entire path from
the chunk to the root of the tree, the processor checks the
path from the chunk to the first hash it finds in the cache.
This hash is trusted and the processor can stop checking.

When a chunk or hash is ejected from the cache, the pro-
cessor brings its parent into the cache (if it is not already
there), and updates the parent in the cache. Details and
variants can be found in [8].

4.1.2 Initialization
To make initialization easier, we have simply attach a

valid bit to each hash in the tree to indicate whether the
cache line that it covers is actually present in the tree. Ini-
tially all the hashes in the tree are marked as invalid. When-
ever a hash with a zero valid bit is read during memory
checking, the processor automatically initializes it by com-
puting a hash of its child cache line and setting the valid bit.
This way, as soon as a virtual address has been accessed once
in TE or PTR mode, the data that it contains is protected.
Protecting data before that first access would be futile as the
data predates the initialization of TE mode, and therefore
could have been tampered with before any protection mech-
anism was activated. With this scheme, there is no need to
allocate physical memory for hashes or data until they are
used. Hashe in newly allocated pages must have zero valid
flags or a memory integrity exception will be raised.

4.1.3 Tree Layout
In order to implement the hash tree scheme, a proces-

sor should be able to easily obtain a parent’s address from
a node’s address. By laying out the nodes of the tree in
breadth first or depth first manner, the address of a parent
node can easily be computed from the address of a child.

When there is a security kernel case, we propose that the
physical memory be split into three parts: an unverified
region for programs that do not use the secure modes and
for DMA accesses, a region for verified data, and a region for
the nodes of the hash tree. The nodes of the hash tree should
be laid out in depth first manner to make expanding the tree
easy. The security determines the size of these regions base
on the needs of running applications.

4.1.4 Checking Virtual Memory
When a virtual memory space is authenticated, a pro-

cessor needs additional support to use the tree layout and
determine the physical address of the parent hash for a cache
block. In this case, the L2 cache contains virtual addresses,
which are also used for on-chip cache protection. From this
virtual address, a processor computes the virtual address of
the corresponding parent node. We assume that the nodes
of the hash tree are laid out in breadth first manner in their
own virtual memory space, separate from the user space,
so that the entire process virtual space can be utilized by
the program. Finally, the processor needs to convert virtual
addresses of parent nodes into physical addresses. For this
we use a TLB; in practice, we should not use the proces-
sor core’s standard TLB and should use a second TLB to
avoid increasing the latency of the standard TLB. The sec-
ond TLB is also tagged with process identifier bits which
are combined with virtual addresses to translate to physical
addresses.

4.1.5 Blocking Instructions
When data is loaded from memory, operations which do

not generate a signature or reveal private information are
immediately allowed to start using the fetched data. Mem-
ory checking is carried out concurrently in the background.

This speculative execution on unchecked data is permissi-
ble because these operations do not break the security of
our system when they are executed on tampered data, as
long as an exception is eventually raised when the tamper-
ing is detected. Because these exceptions imply either a
malicious OS or physical attacks, graceful recovery is not
needed, and the exceptions need not be precise. Therefore,
integrity checking latency is not directly added to the data
access latency seen by the processor.

There are exceptions to this rule. In a TE environment,
the processor must wait for integrity checking of all the pre-
vious memory accesses to complete before allowing the re-
sult of a (sign msg) instruction to be exported outside of
the processor. In a PTR environment, besides waiting when
there is a signing instruction, the processor must also wait
for the integrity checking to complete before executing an
instruction that stores plaintext data (i.e., when storing to
a non-private memory region).

4.1.6 Untrusted I/O
For untrusted disk, when virtual memory is being pro-

tected, pages will already be protected by the integrity veri-
fication even when they are stored on disk. For Direct Mem-
ory Access (DMA), an unprotected area for use in DMA
transfers is set aside in the memory space. When the trans-
fer is done, the process can copy it to protected memory and
authenticate the data using some scheme of its choosing.

4.2 Encryption
For off-chip memory encryption, we use a symmetric key

encryption algorithm rather than public/private key algo-
rithms. In our case, it is safe to use symmetric keys because
the same processor performs both encryption and decryp-
tion.

4.2.1 Advanced Encryption Standard
The National Institute of Standards and Technology spec-

ifies Rijndael as the Advanced Encryption Standard (AES),
which is an approved symmetric encryption algorithm [15].
AES is one of the most advanced symmetric encryption al-
gorithms in terms of both security and performance. While
any symmetric key encryption algorithm can be used for our
purposes, we base our subsequent discussions on AES as a
representative symmetric algorithm.

AES can process data blocks of 128 bits using cipher keys
with lengths of 128, 192, and 256 bits. The encryption and
decryption consist of 10 to 16 rounds of four transforma-
tions. The critical path of one round consists of one S-
box look-up, two shifts, 6-7 XOR operations, and one 2-to-1
MUX. This critical path will take 2-4 ns in 0.13µ technology
depending on the implementation of the S-box look-up table.
Therefore, encrypting or decrypting one 128-bit data block
will take about 20-64 ns depending on the implementation
and the key length.

When the difference in technology is considered, this la-
tency is in good agreement with one custom ASIC imple-
mentation of the Rijndael in 0.18µ technology [11, 19]. It
is reported that the critical path of encryption is 6 ns per
round and the critical path of key expansion is 10 ns per
round with 1.89 ns latency for the S-box. Their key expan-
sion is identical to two rounds of the AES key expansion
because they support 256-bit data blocks. Therefore, the
AES implementation will take 5 ns per round for key ex-

pansion, which results in a 6 ns cycle per round, for a total
of 60-96 ns, depending on the number of rounds.

Given the gate counts in [19], a 128-bit block encryption
using AES without pipelining costs approximately 75,000
gates. If we implement AES fully in parallel for the four
128-bit blocks in a 64-B L2 cache block, the module should
be duplicated four times. Therefore, in this case, the AES
implementation will result in the order of 300,000 gates.

4.2.2 Direct Block Encryption
We encrypt and decrypt off-chip memory on an L2 cache

block granularity because memory accesses are carried out
with that granularity. Encrypting multiple cache blocks to-
gether implies that all the blocks have to be decrypted to
access any one of them.

AESKey

B1

AES AES AES

B2 B3 B4

EB1 EB2 EB3 EB4Cipher Text

Cache Block

AES-1Key AES-1 AES-1 AES-1

Encryption

Decryption

B1 B2 B3 B4Cache Block

IV

IV

Figure 3: Encryption mechanism that directly en-
crypts cache blocks with the AES algorithm.

To encrypt a dirty cache block when it gets evicted from
the L2 cache, the cache block is used as an input data block
of the AES algorithm. For example, a 64-B cache block B

is broken into 128-bit chunks (B[1], B[2], B[3] and B[4]),
and encrypted by the AES algorithm. Figure 3 illustrates
this mechanism with Cipher Block Chaining (CBC) mode.
The encrypted cache block EB = (EB[1], EB[2], EB[3],

EB[4]) is generated by EB[i] = AESK(B[i] ⊕ EB[i-1]),
where EB[0] is an initial vector IV.

The initial vector IV consists of the address of the block
and a random vector RV, and is padded with zeros to be 128
bits. To prevent adversaries from comparing whether two
cache blocks are the same or not, RV is randomly generated
as a non-zero value on each encryption. Zero indicates the
block should be decrypted with the static key. After the
encryption, the random vector RV is stored in the off-chip
memory along with the encrypted cache block (EB). The
random vectors are laid out linearly in memory as an array.

In our experiments, we used a 32-bit random vector for
each cache block. Although the encryption is randomized,
we note that an adversary may be able to find out that a
cache block has the same value at different times if both
happen to use the same random vector. To eliminate this
information leak, we can replace the random vector by a
counter and re-encrypt memory with a new dynamic key
whenever the counter reaches its limit. When encryption is
combined with the hash tree mechanism, some randomiza-
tion should be included in the lowest level hashes or else we

lose the benefit of randomized encryption. The most con-
venient way of achieving this is to include IV in the hash,
though care must taken to ensure that using the same ini-
tial vector for the hashes and the encryption does not lead
to any unexpected interaction between primitives.

For an L2 cache miss in a private memory space, an en-
crypted cache block (EB) and the corresponding random vec-
tor RV are read from memory. If the random vector is zero,
the initial vector is set to zero and the static key is used
for decrypting the block. Otherwise, the initial vector is
computed from the address of the block and the random
vector, and dynamic key is used. Once the data arrives,
the decryption of four chunks (B[1], B[2], B[3] and B[4])
can be done in parallel, and stored in the L2 cache. Since
decryption starts after reading data from off-chip memory,
the decryption latency is directly added to the memory la-
tency. For example, if the memory latency is 120 ns and
the decryption latency is 40 ns, the processor will see a load
latency of 160 ns.

5. APPLICATIONS
We describe two representative applications enabled by

the aegis processor, Certified Execution and Digital Rights
Management.

5.1 Certified Execution

Job Dispatcher Processor

Program,

Data,

PKm

SKp, PKp,

{PKp}SKmProgram

{h, Out}SKp, {PKp}SKm

Compute H(Program)
Start: enter_aegis:

Processor computes

h=H(Program)

program

executes

Execute Out

Sign: sign_msg
Verify signature

Verify hash

Figure 4: Certified execution for distributed com-
putation.

A typical example of certified execution is grid comput-
ing. A number of organizations, such as SETI@home and
distributed.net, are trying to carry out large computa-
tions in a highly distributed way. This style of computation
is unreliable as the person requesting the computation has
no way of knowing that it was executed without any tam-
pering. In order to obtain correctness guarantees, redun-
dant computations can be performed, at the cost of reduced
efficiency. Moreover, to detect malicious volunteers, it is
assumed that these volunteers do not collude and are con-
tinuously malicious [18].

Using a TE environment as described in Section 3, a cer-
tificate can be produced that proves that a specific computa-
tion was carried out on a specific processor chip. The person
requesting the computation can then rely on the trustwor-
thiness of the chip manufacturer who can vouch that he pro-
duced the processor chip, instead of relying on the owner of
the chip.

Figure 4 outlines a protocol that could be used by a job
dispatcher to do certified execution of a program on a remote
computer. First (1) the job dispatcher needs to know the
hash of the program that it is sending out. For simplicity,

we assume that the program encompasses all the necessary
code and data for the run. The program is sent to the secure
processor (2), which proceeds to run it. The program enters
TE mode by using the enter aegis instruction (3), at that
time, a hash of the program gets computed for later use.
The program executes and produces a result (4). The result
gets concatenated with the program’s hash and signed (5).
The processor returns the signed result to the job dispatcher
along with a certificate from the manufacturer that certifies
the processor’s public key as belonging to a correct processor
(6). The job dispatcher checks the signature (7) and the
program hash (8) before accepting the program’s output as
correct.

5.2 Digital Rights Management

Content Provider Customer’s Processor

Secure Player,

Content,

PKm

SKp, PKp,

{PKp}SKm

Secure Player
Compute H(Player)

Set up

Analog

Output

Start PTE:

enter_aegis

set_aegis_mode

Decode and play
Order and

(uses sign_msg)
SSL connection

deliver content

Figure 5: Digital rights management with PTR ar-
chitecture.

Digital Rights Management (DRM) is a hot topic since
the advent of large scale sharing of copyrighted media over
the Internet. We are starting to see applications that at-
tempt to enforce simple DRM policies [20]. A typical sce-
nario is for an individual to buy a media file that can only
be played once, or on a single computer. This type of policy
is enforced by encrypting the the media file so that it can
only be decoded by an authorized reader, which enforces the
single use policy. Unfortunately, a determined attacker can
use debugging tools to get the player to provide him with a
decrypted version of the media file, thus breaking the DRM
scheme.

In Figure 5, we show how a bidirectional private and au-
thentic channel can be created between a content provider,
and a trusted program, running in PTR mode on a cus-
tomer’s computer. This channel can be used to send digital
content to the customer. Once it is on the customer’s ma-
chine, the content is managed by the trusted program which
is designed to enforce the content provider’s policy concern-
ing access to the content. Since the trusted program is run-
ning in PTR mode, the content cannot be accessed except
in ways that are approved by the trusted program, even if
an attacker tries to use debugging tools, or tries to modify
the hardware of his machine. Only physical attacks on the
aegis processor could break the privacy of the system.

The protocol is very simple. First the content provider
produces a trusted player program to run on the customer’s
machine. Embedded in the program is the content provider’s
public key. The content provider calculates a hash of the
program that he will use to identify it (1), before sending it
to the customer (2). When the player runs on the customer’s
machine, it uses the enter aegis and set aegis mode in-
struction to enter PTR mode (3). The player program now

Architectural parameters Specifications

Clock frequency 1 GHz
L1 I-caches 64KB, 2-way, 32B line
L1 D-caches 64KB, 2-way, 32B line
L2 caches Unified, 1MB, 4-way, 64B line
L1 latency 2 cycles
L2 latency 10 cycles

Memory latency (first chunk) 80 cycles
I/D TLBs 4-way, 128-entries

Memory bus 200 MHz, 8-B wide (1.6 GB/s)
Fetch/decode width 4 / 4 per cycle
issue/commit width 4 / 4 per cycle

Load/store queue size 64
Register update unit size 128

AES latency 40 cycles
AES throughput 3.2 GB/s

Hash latency 160 cycles
Hash throughput 3.2 GB/s

Hash buffer 32
Hash length 128 bits

Initial vectors 32 bits
Initial vector buffer 32 8-B entry

Table 2: Architectural parameters used in simula-
tions.

has the public key of the server it wishes to access. It can use
a standard protocol such as Secure Socket Layer (SSL) [16],
with client authentication, to establish a bidirectional pri-
vate and authenticated channel with the content provider
(4), the sign msg instruction being used to authenticate the
client. In order to perform the SSL handshake, the player
program requires a secure source of randomness. The aegis

processor must therefore be equipped with a secure hard-
ware random number generator that secure processes can
use. Once the secure connection is established, it is used
to transmit orders and content (5). Finally, the content is
played (6) through a secure peripheral that gets encrypted
content and outputs it in analog form (7).

6. EVALUATION
This section evaluates the performance overhead of the

aegis processor architecture through detailed simulations.
Our experimental results are indicative of the performance

of both the security kernel and the untrusted OS solutions.
The two solutions have about the same performance because
they both use the same hardware mechanisms for integrity
verification and encryption, and those mechanisms are re-
sponsible for the only two major performance penalties in
our architecture (see Section 3.5 for more detailed discus-
sion).

6.1 Simulation Framework
Our simulation framework is based on the SimpleScalar

tool set [3]. The simulator models speculative out-of-order
processors. To model the memory bandwidth usage more ac-
curately, separate address and data buses were implemented.

The architectural parameters used in the simulations are
shown in Table 2. In the experiments, we use 4-B encryption
random vector RV for each cache block while the memory
bus is 8-B wide. To avoid wasting off-chip bandwidth, a
processor always accesses two consecutive random vectors
(8 Bytes) at a time, and uses small 32 entry buffer for them.
SimpleScalar is configured to execute Alpha binaries, and
all benchmarks are compiled for EV6 (21264) to maximize
performance.

To capture the characteristics of benchmarks in the mid-

dle of computation, each benchmark is simulated for 100
million instructions after skipping the first 1.5 billion in-
structions. In the simulations, we ignore the initialization
overhead of the integrity checking schemes. Given the fact
that benchmarks run for a long time, the overhead should
be negligible compared to the steady-state performance.

For all the experiments in this section, nine SPEC2000
CPU benchmarks [10] are used as representative applica-
tions: gcc, gzip, mcf, twolf, vortex, vpr, applu, art, and
swim.

6.2 Tamper-Evident Processing
As discussed in Section 3.5, the performance overhead of

the TE processing can be estimated by the performance
overhead of the off-chip memory integrity verification.

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

(a) 64B

N
or

m
al

iz
ed

 IP
C

256KB
1MB
4MB

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

(b) 128B

N
or

m
al

iz
ed

 IP
C

256KB
1MB
4MB

Figure 6: The performance overhead of TE process-
ing. The results are shown for various L2 cache sizes
with two block sizes (64B and 128B).

Figure 6 illustrates the impact of TE processing on appli-
cation performance. For different L2 cache configurations,
the IPCs are shown normalized by the corresponding IPC
without TE processing. The figure first demonstrates that
the performance overhead of the TE processing is relatively
low. Even though the hash tree mechanism can cause over
ten additional memory accesses per L2 cache miss, the per-
formance degradation is less than 50% in the worst case.

Moreover, the performance degradation decreases rapidly
as either the L2 cache size or the block size increases. Having
a large L2 cache improves the performance by reducing the

number of off-chip memory accesses. Integrity verification
show less performance degradation with larger L2 blocks
because the larger blocks reduce the levels in the hash tree.
However, we note that a larger L2 block size can degrade
the performance of applications that do not use integrity
verification.

Obviously, the performance overhead of the TE process-
ing also depends on the application characteristics. Because
the major overhead occurs for off-chip memory accesses, ap-
plications with less off-chip accesses show less performance
degradation. For example, gzip shows less than 15% per-
formance degradation for all cases, while the performance of
mcf can be degraded by as much as 50%.

In summary, with the hash tree mechanism, the TE pro-
cessing can be done with less than 20% performance over-
head for most cases, and 50% overhead in the worst case.
For a more detailed discussion of memory integrity verifica-
tion, see [8] and [22].

6.3 Private Tamper-Resistant Processing
PTR processing requires both memory encryption and

memory integrity verification. As discussed in Section 3.5,
the overhead of these two mechanisms are the only major
concerns for our PTR architecture. We first study the per-
formance overhead of the encryption mechanism. Then, we
estimate the performance overhead of the PTR architecture
by simulating memory encryption and memory integrity ver-
ification together.

6.3.1 Encryption Performance

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 IP
C

256KB
1MB
4MB

Figure 7: The performance overhead of the direct
encryption scheme. Results for three different L2
caches with 64-B blocks are shown.

Figure 7 shows the performance overhead of the direct
encryption mechanism compared to the standard case with-
out encryption. In the experiments, we simulated the case
where all instructions and data are encrypted in memory.
The encryption degrades the processor performance by con-
suming additional memory bandwidth for random vectors,
and by delaying the data delivery for decryption. Therefore,
increasing the L2 cache size or L2 block size reduces the per-
formance degradation for encryption as it does for integrity
verification. In our experiments, the memory encryption
results in up to 25% degradation.

Figure 8 shows the impact of changing the memory band-
width on the encryption overhead. Our base configuration
assumes the memory bandwidth of 1.6GB/s, which corre-

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2
N

or
m

al
iz

ed
 IP

C
1.6GB/s
4GB/s
8GB/s

Figure 8: The impact of memory bandwidth on the
memory encryption overhead.

sponds to 5 processor cycles per 8-B memory transfer in our
case. Modern microprocessors are beginning to have higher
bandwidth with the development of new memory and in-
terconnect technologies. With higher bandwidth, the per-
formance is more sensitive to the memory latency because
it is not limited by the bandwidth anymore. At the same
time, the memory latency without encryption decreases as
we can transfer a cache block faster, which means that the
decryption latency becomes more significant in comparison
to the original memory latency. On the other hand, higher
bandwidth mitigates the effect of the bandwidth overhead
for accessing random vectors. Because there are effects on
both positive and negative sides, the bandwidth change does
not significantly change the relative performance degrada-
tion in one way although it always improves the absolute
performance.

6.3.2 Overall Performance

gcc gzip mcf twolf vortex vpr applu art swim
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 IP
C

256KB
1MB
4MB

Figure 9: The performance overhead of PTR pro-
cessing. Results for three different L2 caches with
64-B blocks are shown.

Finally, we study the performance of the PTR processing
by simulating integrity verification and encryption together.
Figure 9 demonstrates that PTR processing can be done
with 60% overhead in the worst case (mcf), and less than
40% overhead in most cases. With the trend of larger on-
chip caches and faster improvement of computation speed
compared to the memory latency, the overhead should re-
duce with time. We also note that these numbers correspond
to the case where all instructions and data are encrypted.

7. RELATED RESEARCH

7.1 Secure Processors
Secure co-processors have been proposed (e.g., [23], [21])

that encapsulate processing subsystems within a tamper-
sensing and tamper-responding environment where one can
run security-sensitive processes. A processing subsystem
contains the private key of a public/private key pair [6] and
uses classical public key cryptography algorithms such as
RSA [17] to enable a wide variety of applications. To main-
tain performance, the processing subsystems have invariably
been used as co-processors rather than primary processors.
The processing subsystems of these processors typically as-
sume that system software is trusted.

The eXecute Only Memory (XOM) architecture [12] is de-
signed to run security requiring applications in secure com-
partments, where instructions are encrypted and from which
data can escape only on explicit request from the applica-
tion. Even the operating system cannot violate the security
model. However, XOM’s integrity mechanism is vulnerable
to replay attacks, which was also pointed out in [20]. In par-
ticular, XOM will not notice if writes to memory are some-
times ignored. XOM can be fixed by using memory integrity
verification to protect against replay attacks. In the aegis

untrusted operating system solution, we have drawn insight
from XOM, notably for the on-chip data tagging mechanism
and the saving of contexts. Our implementation of the con-
text manager is different because we use hash-trees to verify
process state, which can be stored in off-chip memory. This
allows us to support a much larger number of processes run-
ning in TE and PTR environments. Our architecture also
provides flexibility for applications to use protection mech-
anisms only when they are necessary, avoiding unnecessary
performance degradation.

7.2 Systems
The Trusted Computing Platform Alliance (TCPA) is an

alliance led by Intel whose stated goal is ‘a new computing
platform for the next century that will provide for improved
trust in the PC platform’. The proposed implementation in
the first phase of TCPA is a Fritz chip - a smartcard chip
or dongle soldered to the motherboard. When the PC boots
up, the Fritz chip stores a hash of the boot ROM before ex-
ecuting it. The boot ROM stores a hash of the boot loader
on the Fritz chip before executing it. This process is re-
peated throughout the boot process so that a trace of the
system boot can be read from the Fritz chip. This is similar
to the integrity-checking boot process described in [2]. Be-
cause the security mechanisms are implemented separately
from the main processor, physical attacks on communica-
tion between off-chip components, such as memory and the
Fritz chip, are possible.

Palladium [4], recently renamed to NGSCB, is software
with minimal hardware support that Microsoft plans to in-
corporate in future versions of Windows. In Palladium, the
Nexus is a trusted security kernel. Palladium protects soft-
ware from software, but does not concern itself with physical
attacks.

Because they are both vulnerable to hardware attacks,
TCPA and Palladium can be enhanced, i.e., made secure
against a larger set of attacks, using the components in the
aegis processor, namely, integrity verification and memory
encryption. With integrity verification, applications could

get guarantees that their data has not been modified, even
by a physical attacker. Encryption of data in main memory
would prevent physical attacks that attempt to read private
data from memory.

Moreover, in the aegis architecture, it is possible to per-
form secure computation while only trusting a processor and
an application program. In TCPA and Palladium, the user
has to trust the entire software stack or at least part of the
operating system.

8. CONCLUSION
We have described the architecture of a processor that

can be used to build secure computing systems where the
processor is the only trusted component. This requires the
integration of many architectural mechanisms into a conven-
tional architecture, notably, memory integrity verification,
memory encryption/decryption, and secure context man-
agement. Using simulation, we have shown that the per-
formance overhead of integrating such mechanisms into a
high-performance super-scalar processor is reasonable. We
believe this overhead can likely be reduced with further ar-
chitectural innovation.

Our current architecture focuses on a single processor sys-
tem where a secure process always executes on the same
processor. In multiprocessor systems, a process can run on
multiple processors. Therefore, efficient ways for multiple
processors to share off-chip memory while preserving the
protection should be developed as future work.

9. ACKNOWLEDGEMENTS
This work was funded by Acer Inc., Delta Electronics Inc.,

HP Corp., NTT Inc., Nokia Research Center, and Philips
Research under the MIT Project Oxygen partnership.

We would also like to thank Ron Rivest and Krste Asanovic
for many constructive comments, as well as all the members
of our group who helped proof-read this paper.

10. REFERENCES
[1] J. Agat. Transforming out timing leaks. In 27th ACM

Principles of Programming Languages, January 2000.

[2] W. Arbaugh, D. Farber, and J. Smith. A Secure and
Reliable Bootstrap Architecture. In Proceedings of the
1997 IEEE Symposium on Security and Privacy, pages
65–71, May 1997.

[3] D. Burger and T. M. Austin. The SimpleScalar Tool
Set, Version 2.0. Technical report, University of
Wisconsin-Madison Computer Science Department,
1997.

[4] A. Carroll, M. Juarez, J. Polk, and T. Leininger.
Microsoft “Palladium”: A Business Overview. In
Microsoft Content Security Business Unit, August
2002.

[5] J. Claessens, B. Preneel, and J. Vandewalle. (how) can
mobile agents do secure electronic transactions on
untrusted hosts? a survey of the security issues and
the current solutions. ACM Transactions on Internet
Technology, 3, Feb. 2003.

[6] W. Diffie and M. E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information
Theory, IT-22(6):644–654, 1976.

[7] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas.
Silicon Physical Random Functions . In Proceedings of

the Computer and Communication Security
Conference, May 2002.

[8] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and
S. Devadas. Caches and merkle trees for efficient
memory integrity verification. In Proceedings of Ninth
International Symposium on High Performance
Computer Architecture, February 2003.

[9] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious RAMs. Journal of the
ACM, 43(3):431–473, 1996.

[10] J. L. Henning. SPEC CPU2000: Measuring CPU
performance in the new millennium. IEEE Computer,
July 2000.

[11] H. Kuo and I. M. Verbauwhede. Architectural
optimization for a 1.82 gb/s vlsi implementation of
the aes rijndael algorithm. In Cryptographic Hardware
and Embedded Systems 2001 (CHES 2001), LNCS
2162, 2001.

[12] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz. Architectural
Support for Copy and Tamper Resistant Software. In
Proceedings of the 9th Int’l Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IX), pages 169–177,
November 2000.

[13] R. C. Merkle. Protocols for public key cryptography.
In IEEE Symposium on Security and Privacy, pages
122–134, 1980.

[14] A. C. Myers. JFlow: Practical Mostly-Static
Information Flow Control. In 26th ACM Principles of
Programming Languages, January 1999.

[15] N. I. of Science and Technology. FIPS PUB 197:
Advanced Encryption Standard (AES), November
2001.

[16] E. Rescola. SSL and TLS: Designing and Building
Secure Systems. Addison-Wesley, 2001.

[17] R. Rivest, A. Shamir, and L. Adleman. A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM,
21:120–126, 1978.

[18] L. F. G. Sarmenta. Volunteer Computing. PhD thesis,
Massachusetts Institute of Technology, June 2001.

[19] P. R. Schaumont, H. Kuo, and I. M. Verbauwhede.
Unlocking the design secrets of a 2.29 gb/s rijndael
processor. In Design Automation Conference 2002,
June 2002.

[20] W. Shapiro and R. Vingralek. How to Manage
Persistent State in DRM Systems. In Digital Rights
Management Workshop, pages 176–191, 2001.

[21] S. W. Smith and S. H. Weingart. Building a
High-Performance, Programmable Secure Coprocessor.
In Computer Networks (Special Issue on Computer
Network Security), volume 31, pages 831–860, April
1999.

[22] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. Hardware mechanisms for memory
integrity checking. In Technical Report
MIT-LCS-TR-872, November 2002.

[23] B. S. Yee. Using Secure Coprocessors. PhD thesis,
Carnegie Mellon University, 1994.

