
Author Retrospective

Analytical Cache Models with Applications to Cache
Partitioning

G. Edward Suh
Electrical and Computer Engineering

Cornell University
Ithaca, NY

suh@csl.cornell.edu

George Kurian, Srinivas Devadas, Larry Rudolph
∗

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA
{gkurian, devadas, rudolph}@csail.mit.edu

ABSTRACT
We summarize the history of the work, revisit primary ob-
servations and lessons that we learned from the modeling
effort, and also briefly describe follow-up work to show how
the research direction evolved over time.

Original Paper: http://dx.doi.org/10.1145/377792.377797

Categories and Subject Descriptors
B.3.2 [Design Styles]: Cache Memories; D.4.1 [Process

Management]: Scheduling; I.6.5 [Simulation and Mod-

eling]: Model Development

Keywords
Cache Partitioning; Process Scheduling; Cache Models

1. HISTORY
The cache modeling work in the 2001 ICS paper was car-

ried out within a larger project named Malleable Caches.
While cache design and performance had been extensively
researched, the Malleable Caches project was motivated by
three observations that were novel at the time: (1) the tradi-
tional assumptions on the locality of memory accesses were
no longer true for emerging applications such as streaming
and real-time applications, (2) the emergence of more spa-
cious caches enabled program blocks to reside longer within
the cache, even across scheduling time slices, and (3) caches
were increasingly shared amongst multiple processors. The
project aimed to improve the efficiency of large caches by
dynamically allocating cache resources to run-time workload
and sharing behaviors. The analytical model introduced in
the ICS paper was a departure from cache optimizations,
verified via simulation, that largely focused on static alloca-
tion for a single program.

∗Also affiliated with Two Sigma

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear thisnotice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ICS 25th Anniversary Volume.2014
ACM 978-1-4503-2840-1/14/06.
http://dx.doi.org/10.1145/2591635.2591662.

Dynamic partitioning of a shared cache, one thrust of the
Malleable Caches project, aimed to more efficiently allocate
cache space among multiple tasks. An effective cache par-
titioning technique requires solving two main challenges: a
low-cost, fine-grained mechanism to control cache space for
each task, and an algorithm to determine how much cache
space that each task needs. For our project, column caching
[2] provided a mechanism to partition caches. However, at
the time, there was no work that answered the question of
how to determine the best allocation.

The cache modeling work was largely motivated by this
need to understand the impact of cache sharing and develop
an effective cache allocation policy. The goal of the model
was to estimate the overall cache miss-rate (or the number of
misses) of a shared cache given individual program charac-
teristics, a cache configuration, and a sharing pattern. The
model assumed that a cache is accessed by one program at a
time in a time-shared fashion, essentially modeling a single-
core system. It was a pleasant surprise to discover that
the model can also be used to estimate the performance of
shared caches in multicore systems.

The main challenge in characterizing the performance im-
pact of multiple programs sharing a cache is estimating the
amount of cache space used by each program without simu-
lating every type of workload combination. One key insight
is that the individual isolated program miss-rate curves can
be combined to determine the shared cache performance.
The miss-rate curve represents the probability of a cache
miss as a function of cache size, and enables an estimation
of the number of unique cache blocks accessed over a given
time period. The number of cache blocks that each program
accesses over its time quantum can be combined across con-
text switches to determine the cache footprint of a program
at the beginning of its time quantum. Once the initial cache
footprint is known, the miss-rate curve can be used to obtain
the miss-rate for each program over a time quantum.

2. OBSERVATIONS AND LESSONS

Role of Analytical Modeling.
Analytical methods are rarely used in designing practical

systems because it is often extremely difficult, if not impos-
sible, to accurately model complex systems mathematically.
As a result, most architectural studies rely on simulations
or emulations. This cache modeling effort shows, however,
that there is a role for analytical studies in system designs.
For example, the modeling process forced us to identify first-



order effects and tradeoffs in a shared cache, and provided
insight and intuition on the range of interference behaviors.
The computational efficiency of the analytical model enabled
our study of the high-level tradeoffs in a large design space.

It was both interesting and surprising to discover that the
individual miss-rate curves were sufficient to accurately cap-
ture the performance impact of sharing a cache. The model
showed that there were two program properties in the miss-
rate curves that largely determine the shared cache perfor-
mance. One, the number of cache blocks that are accessed
over a period largely determines how much cache space is
allocated to each program. Traditional cache policies, such
as LRU, prioritize recently accessed data. As a result, pro-
grams that access a large amount of data quickly are likely to
keep more data in the cache compared to the ones with high
locality. Two, the cache performance for each program is
heavily influenced by how sensitive the program’s miss-rate
is to the cache size. Some programs may benefit significantly
from additional cache space, yet programs such as streaming
applications may be largely insensitive to the cache size.

Shared Cache Interference.
While well-known now, our study based on the cache model

showed that the performance impact of interference in shared
caches could be significant and that the traditional cache
management policies could exacerbate the problem.

The study showed that the cache performance of a memory-
intensive program with a large cache footprint could be sig-
nificantly degraded when a cache was simultaneously used by
another memory-intensive program. Streaming applications
turned out to be particularly damaging because traditional
cache policies blindly allocated space to a program with lots
of misses even when the program does not benefit from the
additional space. In certain cases, we even found that the
overall throughput of a multicore system could be improved
by leaving some cores idle to reduce the cache interference.

While not as significant as interference from simultane-
ous sharing, our study also suggested that context switches
could have a noticeable impact on cache performance, espe-
cially for large shared caches. In a traditional round-robin
schedule, the LRU policy evicts cache blocks for old jobs.
These blocks may get evicted just before the job is resched-
uled leading to lots of cold misses after a context switch.

These observations suggested that cache performance could
be significantly improved with more intelligent allocation or
scheduling that minimizes harmful cache interference. As an
example, for a cache that is shared amongst multiple cores,
partitioning can allocate space based on the utility of addi-
tional space to each program and limit the pollution from
streaming applications. Under time sharing, cold misses can
be reduced by keeping a small amount of critical data for
each program across context switches.

Limitations.
While the analytical model provided valuable insight, we

found that there was still a gap between the model and
practical systems. In particular, an accurate prediction for
set-associative caches turned out to be difficult because real-
world applications often accessed cache sets in a non-uniform
manner. In certain cases, this non-uniform access pattern
could artificially reduce cache interference among programs
because accesses from programs might use different sets.
Our attempt to incorporate the non-uniform accesses com-
plicated the cache model with only a limited improvement

in its accuracy. In practice, however, we found that the in-
terference that was captured by the fully-associative cache
model was often sufficient to make partitioning or scheduling
decisions even for set-associative caches.

As another limitation, our cache model targeted multi-
programmed workloads and did not consider accesses to
common memory locations by multiple threads. As a re-
sult, the model could not handle multithreaded programs.

3. OUR FOLLOW-UP WORK
Cache and Memory Monitors[8].

The cache model showed that miss-rate (or miss) curves
contained key program characteristics to understand shared
cache performance. To obtain individual program’s miss(-
rate) curves at run-time for optimizations, we introduced
Recency Hit Counters. The scheme leverages the LRU stack
used for replacement policy decisions. The LRU stack con-
sists of addresses from a sequence of cache or memory ac-
cesses such that the distance from the top (i.e., stack dis-
tance) represents how recently the address was accessed. A
counter, maintained for each LRU stack distance, is incre-
mented when the address in that LRU distance is accessed.
Because the stack distance can be used to predict whether an
access would be a hit or not given a certain cache/memory
size, these counters effectively encode the number of hits as
a function of cache size. In essence, the counters represent
marginal gains (g(x)), which is the number of additional hits
for a particular job when the number of allocated memory
blocks is increased from x− 1 to x.

Thread Scheduling[10, 8].
We studied how thread scheduling could be improved tak-

ing memory contention into account in a shared-memory
multiprocessor system. The goal was to find the job sched-
ule that minimizes the processor idle time due to either page
faults or processors with no jobs scheduled. The study first
found that job scheduling has a significant impact on shared
memory performance due to interference. We then investi-
gated algorithms to find good schedules. For a small number
of jobs, the analytical model could be used to estimate the
memory performance of all possible job schedules and deter-
mine the best one. For a large number of jobs, a brute-force
search based on the model was intractable so a new heuristic
method was developed. It first identified the memory needs
of jobs by allocating available memory capabilities based on
marginal gains. Then, the jobs were grouped together to
balance the total memory needs in each time slice.

Cache Partitioning[8, 9, 11].
We investigated partitioning of shared last-level caches in

the context of both chip multiprocessors (CMP) and simul-
taneous multithreading (SMT). The recency hit counters
were used to obtain marginal gains and cache space was
allocated based on the gains. While the high-level approach
was simple, a few challenges had to be addressed to make
partitioning effective for set-associative caches. First, be-
cause the LRU stack was only maintained within a set, the
marginal gains were obtained at a coarser granularity, such
as one counter for each cache way. Second, partitioning
based on cache ways effectively reduced the associativity for
each program and increased conflict misses. To address this
problem, we introduced a modified LRU policy that replaces
a cache block based on the owner and its cache allocation.



Finally, cache miss curves were often non-convex and finding
the optimal allocation efficiently was difficult. Our solution
relied on a heuristic that uses greedy algorithms with mul-
tiple starting points.

4. FOLLOW-UP RESEARCH DIRECTIONS
This section provides a brief overview of the research di-

rections that followed our work.

Thread Scheduling.
There has been a large body of work on improving schedul-

ing decisions considering shared cache/memory contention,
especially in the context of multi-core processors. For ex-
ample, Chen et al. [1] presented a scheduling algorithm that
leverages the constructive cache sharing behavior of multi-
threaded programs. Zhuravlev et al. [15] proposed to im-
prove scheduling using classification schemes which deter-
mine how programs affect each other when competing for
shared resources such as caches, memory bus, etc.

Partitioning for Efficiency.
There have been efforts to improve both effectiveness and

costs of cache partitioning. Qureshi et al. [6] proposed utility-
based cache partitioning using dynamic set sampling. The
sampling enables obtaining a complete isolated miss curve
of each application at run-time without maintaining full re-
cency counters for each application. The number of sampled
sets is chosen to obtain good accuracy with negligible hard-
ware overhead. The work also uses a lookahead algorithm to
avoid local minima when searching for the best allocation.

To avoid losing associativity, partitioning of cache sets in-
stead of ways has also been investigated [13]. Such schemes,
however, require significant redesign of the cache arrays and
must do scrubbing, i.e, flush data when resizing partitions.
Sanchez et al. proposed Vantage [7] that allows fine-grained
partitioning while maintaining high associativity and strong
isolation. Vantage requires cache designs with high associa-
tivity and good hash functions (e.g., zcaches).

Partitioning for Commodity Processors.
Researchers have investigated partitioning on commodity

processors without custom hardware support. One set of
techniques obtained the miss curve (or marginal gains) us-
ing existing hardware functions such as performance coun-
ters. Tam et al. [12] proposed to collect the cache references
using the Sampled Data Address Register (SDAR) of IBM
Power5 processors and build the LRU stack model at regular
intervals to estimate the miss curve of an application. West
et al. [14] proposed an analytical model that measures the
cache occupancy of an application and combined this with
miss rate information from performance counters to estimate
the miss curve. Multiple occupancy (/miss-curve) points are
obtained by co-scheduling the application with different co-
runners or by dynamically throttling its execution rate.

Another set of techniques explored the cache partition
space using hill climbing [5], albeit with non-convex prob-
lems. To enforce partitioning policies, these approaches use
virtual memory and page coloring to constrain the pages of
a process to specific cache sets. Repartitioning requires po-
tentially costly recoloring, involving page mapping updates
and copying of physical pages.

Partitioning for Quality of Service.
Researchers have shown that cache partitioning can also

be used to improve Quality of Service (QoS). For example,

Iyer [4] designed a QoS framework for shared caches on CMP
platforms. The hardware partitions the cache into multiple
regions and directs memory references to separate regions
to enforce priority. Cook et al. [3] proposed a partition-
ing technique that allowed latency-sensitive foreground jobs
to run simultaneously with throughput-bound background
jobs. The proposal ensures that enough shared cache space
is allocated to the foreground job.

5. REFERENCES
[1] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis,

A. Ailamaki, G. E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas,
T. C. Mowry, and C. Wilkerson. Scheduling Threads for
Constructive Cache Sharing on CMPs. In Proceedings of the
19th Annual ACM Symposium on Parallel Algorithms and
Architectures, 2007.

[2] D. Chiou, P. Jain, L. Rudolph, and S. Devadas.
Application-specific Memory Management for Embedded
Systems Using Software-controlled Caches. In Proceedings of
the 37th Annual Design Automation Conference, 2000.

[3] H. Cook, M. Moreto, S. Bird, K. Dao, D. A. Patterson, and
K. Asanovic. A Hardware Evaluation of Cache Partitioning to
Improve Utilization and Energy-efficiency While Preserving
Responsiveness. In Proc. of the 40th Annual International
Symposium on Computer Architecture, 2013.

[4] R. Iyer. CQoS: A Framework for Enabling QoS in Shared
Caches of CMP Platforms. In Proceedings of the 18th Annual
International Conference on Supercomputing, 2004.

[5] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Gaining Insights into Multicore Cache
Partitioning: Bridging the Gap between Simulation and Real
Systems. In Proc. of the International Symposium on High
Performance Computer Architecture, 2008.

[6] M. K. Qureshi and Y. N. Patt. Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance, Runtime
Mechanism to Partition Shared Caches. In Proceedings of the
39th Annual IEEE/ACM International Symposium on
Microarchitecture, 2006.

[7] D. Sanchez and C. Kozyrakis. Vantage: Scalable and Efficient
Fine-grain Cache Partitioning. In Proc. of the 38th
International Symposium on Computer Architecture, 2011.

[8] G. E. Suh, S. Devadas, and L. Rudolph. A New Memory
Monitoring Scheme for Memory-Aware Scheduling and
Partitioning. In Proc. of the 8th International Symposium on
High-Performance Computer Architecture, 2002.

[9] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Cache
Partitioning for Simultaneous Multithreading Systems. In
Proceedings of the IASTED International Conference on
Parallel and Distributed Computing and Systems, 2001.

[10] G. E. Suh, L. Rudolph, and S. Devadas. Effects of Memory
Performance on Parallel Job Scheduling. In Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2001.

[11] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Partitioning
of Shared Cache Memory. Journal of Supercomputing, 28(1),
2004.

[12] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.
RapidMRC: Approximating L2 Miss Rate Curves on
Commodity Systems for Online Optimizations. In Proc. of the
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2009.

[13] K. Varadarajan, S. K. Nandy, V. Sharda, A. Bharadwaj,
R. Iyer, S. Makineni, and D. Newell. Molecular Caches: A
Caching Structure for Dynamic Creation of Application-specific
Heterogeneous Cache Regions. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on
Microarchitecture, 2006.

[14] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang. Online
Cache Modeling for Commodity Multicore Processors. SIGOPS
Oper. Syst. Rev., 44(4), 2010.

[15] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing
Shared Resource Contention in Multicore Processors via
Scheduling. In Proc. of the International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2010.


